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ABSTRACT
Experimental studies on single-molecule junctions are typically in need of a simple theoretical approach that can reproduce or be fitted
to experimentally measured transport data. In this context, the single-level variant of the Landauer approach is most commonly used, but
methods based on Marcus theory are also gaining popularity. Recently, a generalized theory unifying these two approaches has also been
developed. In the present work, we extend this theory so that it includes entropic effects (which can be important when polar solvents are
involved but are likely minor for solid-state systems). We investigate the temperature-dependence of the electric current and compare it to
the behavior predicted by the Landauer and the conventional Marcus theory. We argue that this generalized theory provides a simple yet
effective framework for understanding charge transport through molecular junctions. Furthermore, we explore the role of the entropic effects
in different transport regimes and suggest experimental criteria for detecting them in solvated molecular junctions. Finally, in order to account
for nuclear tunneling effects, we also demonstrate how lifetime broadening can be introduced into the Marcus–Levich–Dogonadze–Jortner-
type description of electron transport.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0034782., s

I. INTRODUCTION

Following a series of experimental breakthroughs that took
place around the turn of the millennium,1–6 the field of molecular
electronics has seen two decades of rapid experimental and theo-
retical development. From the technological perspective, the focus
has been largely put on proof-of-principle experiments. It has been
shown, for instance, that electronic devices based on molecular junc-
tions can act as transistors,2,7,8 rectifiers,9–11 spintronic devices,12–14

or thermoelectric materials.15,16 These experimental studies were
performed in a multitude of device geometries and on a plethora
of molecular structures. Currently, however, progress beyond such
prototypical devices is also slowly being made. It has been demon-
strated, for example, that it is possible to construct molecular diode
devices based on self-assembled molecular monolayers that can
achieve rectification ratios comparable to those of conventional

rectifiers.17 Reproducibility of the molecular junctions continues,
nevertheless, to be a problem.

In order to understand the experimentally observed trans-
port behavior, it is necessary to resort (at least on a qualitative
level) to a particular transport theory, many of which have been
developed over the last few decades. The off-resonant transport
regime (where the molecular energy levels lie outside of the bias
window) is nowadays almost universally described using the non-
interacting Landauer approach,18 which includes the use of a trans-
mission coefficient,19 with the results typically yielding a good match
between the observed and theoretically predicted behavior.20,21

Simultaneously, it has been repeatedly demonstrated that this non-
interacting approach fails in the resonant regime where the effects
of electron-vibrational and electron–electron interactions become
important.22–25 Following the early work of Ulstrup, Kuznetsov, and
co-workers,26–29 as well as more recent studies by Migliore and
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Nitzan,30,31 Marcus theory has also become a popular framework to
describe charge transport through molecular junctions at relatively
high temperatures. This theory has been successfully applied in the
resonant transport regime.24,32,33 As we shall demonstrate, due to
the lack of lifetime broadening in the conventional Marcus theory,
it may fail to correctly describe charge transport in the off-resonant
regime. Recently, however, a relatively simple theory (which we shall
refer to as the generalized theory) unifying the Marcus and Lan-
dauer descriptions of charge transport has been developed34 (see
also Refs. 35 and 36). In the present paper, we modify it so as to
include entropic effects in the case of polar solvents. We also pro-
vide an intuitive derivation of this theory and apply it to study the
transport behavior of molecular junctions.

Besides its perturbative nature (with respect to the molecule–
lead interactions), the conventional Marcus theory also treats the
vibrational degrees of freedom classically.37 Consequently, it fails
to capture the effects of nuclear tunneling, which can still play
an important role in overall charge transport characteristics, even
at around room temperature when high-frequency vibrations are
involved, particularly in the “inverted” region.38,39 This inverted
region has been recently observed experimentally in charge trans-
port through molecular junctions.32,40 Therefore, in the last part of
this work, we demonstrate how lifetime broadening can be incorpo-
rated into the Marcus–Levich–Dogonadze–Jortner-type description
of molecular conduction.

II. THEORY
We are interested in molecular junctions comprising a molec-

ular system weakly coupled to two metallic electrodes. At zero
bias, the molecular system within the junction is found in the N
charge state. As the bias is increased, the charging of the molecule—
populating theN + 1 (or N − 1) charge state—will eventually become
possible. For simplicity, we assume that each of the two consid-
ered charge states is non-degenerate and ignore any excited elec-
tronic states. Then, the molecular system in question can be mod-
eled as a single energy level with energy ε0 that corresponds to the
chemical potential for the charging of the molecular system. We
note that, generally, in the presence of electron-vibrational inter-
actions and molecule–lead coupling, the position of the molecu-
lar energy level will be renormalized as compared to its gas-phase
value. Since, experimentally, the position of the molecular level is
typically an empirical parameter, here we simply absorb all these
renormalizations into ε0.

In this work, it will be sufficient to model charge transport
through the junction using a rate equation approach. As schemat-
ically shown in Fig. 1, charge transport through the weakly cou-
pled single-molecule junction can be modeled as a series of elec-
tron transfers taking place at the left (L) and right (R) electrode. In
what follows, we will work within the wide-band approximation.30,41

We will assume that each of the leads has a constant density of
states [%l(ϵ) = const. where l = L, R] and that the electronic cou-
pling between the molecular energy level and a continuum of energy
levels in the leads is also constant (V l = const., where V l is the
molecule–lead coupling matrix element).

The populations of the N (PN) and N + 1 (PN+1) charge states
can be found by considering the following pair of rate equations:

FIG. 1. (a) Artistic impression of a single-molecule junction. The effective rates of
electron transfer on and off the molecular system are denoted by kL, kR and k̄L,
k̄R, respectively. (b) Schematic illustration of the rate-equation model considered
here; fl(ϵ) denotes the Fermi distribution in the lead l. K±(ϵ) are the molecular
densities of states.

dPN
dt
= −(kL + kR)PN + (k̄L + k̄R)PN+1, (1)

dPN+1

dt
= −(k̄L + k̄R)PN+1 + (kL + kR)PN , (2)

where kl and k̄l are the rates of electron hopping on and off the
molecular structure at the l interface, respectively, as denoted in
Fig. 1. In the steady-state limit, dPN/dt = dPN+1/dt = 0, it has the
solution

PN =
k̄L + k̄R

kL + kR + k̄L + k̄R
, (3)

and PN+1 = 1 − PN . The current through the junction can be deter-
mined by considering either the left or the right molecule–lead inter-
face. Considering, for instance, the left interface, the current through
the junction is given by

I = e[kLPN − k̄LPN+1], (4)

which gives the well-known expression29,30

I = e
kLk̄R − kRk̄L

kL + kR + k̄L + k̄R
. (5)

Although in this work we shall consider a non-degenerate electronic
level, the (spin) degeneracy of the electronic level in question can
be relatively easily introduced into this model (see, for instance,
Ref. 24).
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The rates of electron transfers in Eq. (5) are given by34,42,43

kl =
2
h̵
Γl ∫

∞

−∞

dϵ
2π

fl(ϵ)K+(ϵ), (6)

k̄l =
2
h̵
Γl ∫

∞

−∞

dϵ
2π
[1 − fl(ϵ)]K−(ϵ), (7)

where f l(ϵ) = 1/[exp((ϵ − μl)/kBT) + 1] is the Fermi distribution, μl
is the chemical potential of the lead l, and Γl is the strength of the
molecule–lead interaction,

Γl = 2π∣Vl∣
2%l, (8)

where %l is the (constant) density of states in the lead l (we make
use of this wide-band approximation throughout). K±(ϵ) are the
molecular densities of states for the relevant processes. As we shall
demonstrate in Sec. II A, they are given by

K±(ϵ) = ∫
∞

−∞

dE
1

√
4πλkBT

exp(−
[λ ± (E − TΔS○ − ϵ)]2

4λkBT
)

×
Γ

(E − ε0)2 + Γ2 , (9)

where λ is the classical reorganization energy, Γ is the lifetime broad-
ening, Γ = (ΓL + ΓR)/2, and ΔS○ the entropy change associated with
the considered heterogeneous electron transfer (ΔS○ typically takes
negative values when charged species are produced in a polar sol-
vent). The entropic effects, which will be discussed below, arise from
the presence of the TΔS○ term in Eq. (9) and, physically, stem pre-
dominantly from the changes in the librational-rotational frequen-
cies of the solvent that depend on the charge on the electroactive
molecule in the junction (an effect omitted in all “spin-boson” treat-
ments of electron transfer).37 We note that the entropic effects are,
therefore, not accounted for in descriptions of molecular conduc-
tion, which treat the nuclear environment quantum-mechanically.
It is well-known, however, that they can play a significant role in
electron transfer reactions in polar solvent environments.37,44,45

What is the physical meaning of Eqs. (6) and (7)? The overall
rate of electron transfer from the lead onto the molecule (kl) can be
understood as a sum of the rates for all the possible electron transfers
from the continuum of donor states (the population of each of which
is determined by the Fermi–Dirac distribution) and conversely for
the rate of an electron transfer off the molecular system (k̄l). Γl in
Eq. (8), in units of h̵, is the well-known golden rule rate constant for
electron transfer from the electronic state of the molecule into the
electronic states of the lead, evaluated at the same energy. By micro-
scopic reversibility, the rate constant for the isoenergetic reverse step
has the same value.

A. Expression for the rate constant
In this section, we provide an intuitive derivation for the molec-

ular densities of states K±(ϵ) from the perspective of the classical
theory of electron transfer. For more rigorous derivation, we refer
the reader to our earlier work in Ref. 34 [leading, however, to the
omission of the entropic term in Eq. (9)].

Let us consider a non-adiabatic electron transfer between a sin-
gle band in a metallic lead l (with electrochemical potential ϵ) and the
molecular level in question (with energy ε0). According to the con-
ventional theory of non-adiabatic electron transfer, the rate constant
of this process is given by39,46–48

kET
=

2π
h̵
∣Vl∣

2 FCWD, (10)

where V l is the coupling matrix element and FCWD is the Franck–
Condon-weighted density of states. In what follows, we shall treat
the vibrational dynamics classically as it is done within the Marcus
theory49 (although a number of ways to include nuclear tunneling in
a Marcus-type description have been developed34,50,51). Later, we will
also assume that the nuclear degrees of freedom are thermalized at all
times. [We note that methods accounting for non-equilibrium vibra-
tional effects in charge transfer and transport (while treating the
vibrational environment classically) have also been developed.52–54]
In the classical limit, FWCD is, therefore, given by37,39,47,48

FCWD =
1

√
4πλkBT

exp(−
[λ + (ΔE − TΔS○)]2

4λkBT
), (11)

where λ is the reorganization energy and ΔE and ΔS○ are the energy
and entropy differences between the “products” and the “reactants”
of the considered process, respectively.

Here, we wish to account for the fact that due to the coupling to
metallic leads, the state corresponding to the “products” has a finite
lifetime (i.e., is lifetime-broadened, see Fig. 2). We, therefore, assume
that the electronic state corresponding to the “products” comprises
a continuum of states with the molecular density of states ρ(E) such
that

∫

∞

−∞

dE ρ(E) = 1. (12)

Then, the rate of electron transfer (between the single consid-
ered metallic band and the molecular energy level) is given by the
integral

kET
= ∫

∞

−∞

dE
2π
h̵
∣Vl∣

2 FCWD(E) ρ(E), (13)

FIG. 2. Schematic illustration of the origins of the generalized theory. Parabo-
las describe the free energies of the reactants and products (of the considered
electron transfer) as a function of the nuclear coordinate. Molecule–lead coupling
results in broadening of the parabola corresponding to the N + 1 charge state
(M−). Note that the shading does not show the dramatic effect that the Lorentzian
tails can have on K±(ϵ).
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where the FCWD(E) is given by

FCWD(E) =
1

√
4πλkBT

exp(−
[λ + (E − TΔS○ − ϵ)]2

4λkBT
). (14)

In order to determine ρ(E), let us consider the wavefunction
ψ(t) for the molecular energy level. It can be written (in units
of h̵) as

ψ(t) = θ(t)[exp(−iε0t)][exp(−Γt)]ψ(0), (15)

where θ(t) is the Heaviside step function, Γ/h̵ is the lifetime (decay
constant) for the state in question, and we assume that ψ(0) is nor-
malized. In the energy space, the corresponding function can be
obtained by means of a Fourier transform,

ϕ(E) = ∫
∞

−∞

dt ψ(t) exp(iEt) = ψ(0)/(Γ + i(E − ε0)). (16)

The probability density ρ(E) is proportional to |ϕ(E)|2, i.e.,

ρ(E) = C2
∣ϕ(E)∣2, (17)

where C is the normalization factor. Since |ψ(0)|2 = 1, we obtain

ρ(E) =
Γ

π[(E − ε0)2 + Γ2]
. (18)

The electron-transfer rate given in Eq. (13), therefore, becomes

kET
= ∫

∞

−∞

dE
2π
h̵
∣Vl∣

2 1
√

4πλkBT

× exp(−
[λ + (E − TΔS○ − ϵ)]2

4λkBT
)

Γ
π[(E − ε0)2 + Γ2]

. (19)

The overall (effective) rate of electron transfer from the metallic elec-
trode onto the molecular level (or vice versa) is simply a sum of the
rates of individual electron transfers weighted by the Fermi distribu-
tion and the lead density of states, as described by Eqs. (6) and (7).
From Eq. (19), we, therefore, obtain the expression for K±(ϵ) given
in Eq. (9). This result constitutes the basis of what we will refer to as
the generalized theory (which shall be discussed in greater detail in
Sec. II C).

B. Landauer and Marcus limits
In this section, we will demonstrate that the conventional Lan-

dauer and Marcus theories can be obtained as the limiting cases of
the generalized theory. As shown in Eq. (9), K±(ϵ) in the generalized
theory is given by a convolution of the Lorentzian and Gaussian pro-
files. Let us first consider the case of vanishing reorganization energy.
Then,

√
4λkBT/Γ → 0, i.e., the Gaussian profile in Eq. (9) becomes

very narrow as compared to the Lorentzian. We also know that with
vanishing reorganization energy, the−TΔS○ term also vanishes since
the time is too short for the changes in polar solvent configurations
to contribute. In this limit, therefore, the relevant Gaussian function
becomes

1
√

4πλkBT
exp(−

[λ ± (E − TΔS○ − ϵ)]2

4λkBT
)→ δ(E − ϵ), (20)

and Eq. (9) simplifies to

K±(ϵ) =
Γ

(ϵ − ε0)2 + Γ2 , (21)

where the molecular densities of states are identical for an electron
transfer on and off the molecular system (microscopic reversibil-
ity). Inserting Eq. (21) into Eq. (5) allows us to reduce the expres-
sion for electric current to the usual Landauer (Landauer–Büttiker)
approach.55–59 It becomes

I =
e
h̵ ∫

∞

−∞

dϵ
2π
(fL(ϵ) − fR(ϵ))T (ϵ), (22)

where T (ϵ) is the transmission function, here given by a Breit–
Wigner resonance,60

T (ϵ) = ΓLΓR

(ϵ − ε0)2 + Γ2 . (23)

Furthermore, it is instructive to consider the Landauer approach
in the limit of zero temperature and for a constant transmission
function T (ϵ) = T. Then, Eq. (22) becomes

I =
e
h
(μL − μR)T =

e2

h
VbT . (24)

Introducing an additional factor of two to account for the spin
degeneracy of the considered level, we recover the celebrated Lan-
dauer formula for the electronic conductance

G =
dI

dVb
=

2e2

h
T , (25)

where T can vary between 0 and 1.55,61 For completeness, an alterna-
tive derivation of Eq. (25) is given in Appendix A.

Next, we consider Eq. (9) in the limit when Γ/
√

4λkBT → 0, that
is, when the width of the Lorentzian profile is negligible compared
to that of the Gaussian profile. Then,

Γ
(E − ε0)2 + Γ2 → π δ(E − ε0), (26)

and K±(ϵ) in Eq. (9) take the familiar form

K±(ϵ) =
√

π
4λkBT

exp(−
[λ ± (ε0 − TΔS○ − ϵ)]2

4λkBT
). (27)

Together with Eqs. (6) and (7), Eq. (27) constitutes Marcus
(Marcus–Levich–Dogonadze–Hush–Chidsey–Gerischer) theory of
transport.30,37,42,49,62,63

As was previously discussed,63 Landauer and Marcus theories
describe the opposite limits of the charge transport mechanism. The
former describes transport as a coherent process. In the latter, mean-
while, it is assumed that before and following an electron transfer
(from one of the metallic leads), the vibrational environment relaxes
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and the charge density localizes on the molecular system (until it
tunnels out into the metallic lead).64

C. Back to the generalized approach
Here, we return to the generalized theory derived in Sec. II A,

which, as we have shown above, unifies the conventional Marcus
and Landauer theories of molecular conduction. (We note that the
performance of our generalized theory is yet to be validated in the
intermediate regime, between the Landauer and Marcus limits, by a
detailed comparison with an exact quantum-mechanical calculation
or experiment.) As shown clearly in Eq. (9), the molecular densi-
ties of states K±(ϵ) in the generalized theory are given by a Voigt
function (a convolution of a Gaussian and a Lorentzian).65

It is instructive to consider Eq. (9) far away from resonance, i.e.,
when |ϵ − ε0|≫ λ, kBT, Γ. In this limit, the Lorentzian and Gaussian
profiles in Eq. (9) are centered very far apart from each other (on
the E-axis) so that the wings of the Lorentzian are virtually constant
over the width of the Gaussian profile. Consequently, the integral in
Eq. (9) returns simply the value of the Lorentzian profile (far away
from the resonance). Therefore, as we also more rigorously show in
Appendix B, far away from resonance, the K±(ϵ) in Eq. (9) can be
approximated as

K±(ϵ) ≈
Γ

(ϵ − ε0)2 . (28)

This is a significant result for several reasons. First, we note
that far from resonance, K±(ϵ) are independent of temperature.
Furthermore, in the limit of |ϵ − ε0| ≫ Γ, the same expression
can be obtained from the Landauer expression for K±(ϵ) given in
Eq. (21). Therefore, the generalized theory coincides with the Lan-
dauer approach not only for vanishing reorganization energy (as
we have previously discussed) but also far away from resonance: in
the deep off-resonant regime, an interacting system can be approx-
imated as a non-interacting one. This result is in agreement with a
multitude of experimental studies that, as discussed above, success-
fully modeled off-resonant transport using the Landauer approach.
Off-resonant charge transport is often the mechanism of conduction
through molecular junctions especially at relatively low bias voltage,
and it is possible that it may also account for the long-range electron
transport observed through DNA-based systems.66–69

In our previous work, we have studied the IV characteris-
tics and the thermoelectric response predicted by the generalized
theory.34,70 Here, we will explore the temperature-dependence of
electric current predicted by this approach in various transport
regimes and compare it to that predicted by the conventional
Landauer and Marcus approaches.

D. Some general remarks
In summary, charge transport through a weakly coupled molec-

ular junction (modeled as a single electronic level) can be described
as a series of electron transfers with the molecular densities of states
taking a form of a Lorentzian (Landauer approach), a Gaussian
(Marcus theory), and Voigt functions (generalized theory), as shown
in Fig. 3. We note that within all of these approaches,71

2∫
∞

−∞

dϵ
2π

K±(ϵ) = 1 (29)

FIG. 3. Molecular densities of states K±(ϵ) as present in the (i) Landauer
approach [solid thick line], (ii) Marcus theory [solid lines], and (iii) generalized the-
ory [dashed lines]. K±(ϵ) were calculated for instructive values of λ = 0.3 eV and
Γ = 50 meV at T = 300 K. For simplicity, we also set ΔS○ = 0.

so that at very high bias, kL = ΓL/h̵, k̄R = ΓR/h̵, and kR = k̄L = 0 or
vice versa. Therefore, in the limit of very high bias voltage, we obtain
the well-known value of electric current

I =
e
h̵

ΓLΓR

ΓL + ΓR
, (30)

which is independent of the chosen theoretical approach (and so also
of the strength of the vibrational coupling).

We again stress that all the theories discussed here assume the
presence of only a single molecular electronic energy level (in each of
the two considered charge states). They are, therefore, valid (in their
presented form) at sufficiently low bias voltages such that the excited
electronic states can be disregarded and far away from the remaining
charge degeneracy points (where populating charge states other than
N and N + 1 become possible).

E. Single-barrier model
In the above, the molecular system within the junction was

effectively modeled as a well potential with two tunneling barriers—
one at each of the molecule–lead interfaces. It is also worth to
mention another relatively simple theoretical model that is some-
what complementary to what has been discussed here. Namely, it is
possible to approximately model the molecular junction as a single
(typically trapezoidal) tunneling barrier72–75 and obtain the current–
voltage characteristics using the Simmons model.76 Within this
approach, no additional charge density can localize on the molecule.
It does not, therefore, account for the reorganization of the vibra-
tional environment associated with the charging of the molecule in
the junction and is typically justified only in a deep off-resonant
regime. This approach has been successfully used to account for
the observed charged transport through a molecular system with
high-lying molecular energy levels.72–75

III. COMPARISON OF THE CONDUCTION THEORIES
In this section, we explore the temperature-dependence of

the electric current as predicted by the three approaches described
above. We first calculate the IV characteristics for the energy level
lying at ε0 = 0.5 eV above the Fermi levels of the unbiased leads.
Where appropriate, we set λ = 0.3 eV (cf. Ref. 24), assume relatively
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weak and symmetric molecule–lead coupling: ΓL = ΓR = 1 meV, and
for simplicity, setTΔS○ = 0. Experimentally, values of lifetime broad-
ening from less than 1 μeV up to a few hundred meV have been
observed.24,25,77,78 This large spread in the observed Γ stems most
likely from variations in the nature of molecule–lead contacts (the
electronic coupling is typically assumed to decay exponentially with
distance) as well as in the densities of states in the metallic electrodes
(which depend on the exact atomic structure of the metallic tips).
The chemical potentials of the leads are determined by the applied
bias voltage Vb: μL = −|e|αVb and μR = |e|(1 − α)Vb. The parameter
α accounts for how the potential difference is distributed between
the left and right electrodes (and varies between 0 and 1) (see Ref. 79
for a detailed discussion). In particular, if α = 0.5, the bias voltage is
applied symmetrically resulting in a symmetric IV curve. Otherwise,
the bias is applied asymmetrically giving rise to current rectification
(asymmetrical IV characteristics).17,78

We begin by calculating the IV characteristics for α = 0.5 and
α = 0.9 in Figs. 4(a) and 4(b), respectively. All of them exhibit the
expected behavior (for a single-level model): a region of suppressed
current at low bias voltage (where the molecular energy level is found
outside of the bias window) followed by a rise in current and an
eventual plateau in the deep resonant regime. In the presence of
electron-vibrational interactions (i.e., within the Marcus and gen-
eralized approaches), we can observe lower values of current as the

FIG. 4. IV characteristics calculated using the Landauer, Marcus, and generalized
approaches for (a) α = 0.5 and (b) α = 0.9. We set the position of the molecular
level above the Fermi level of the unbiased leads ε0 = 0.5 eV, ΓL = ΓR = 1 meV,
λ = 0.3 eV (in Marcus and generalized approaches), and T = 300 K. The shaded
area marks the off-resonant regime (when the molecular level lies outside of the
bias window). Note that Marcus and generalized theory curves appear to closely
overlap in the resonant transport regime.

molecular energy level enters the bias window. This is fundamen-
tally an example of a Franck–Condon blockade.80,81 Furthermore,
due to relatively small Γ, the Marcus and generalized theory pre-
dict seemingly very similar behavior. As we shall demonstrate (vide
infra), the differences between these approaches become appreciable
in the off-resonant transport regime.

We now turn to examine the temperature dependence of the
electric current as predicted by the three approaches considered
here. This is done in Fig. 5, which shows the electric current as a
function of temperature (on an Arrhenius plot) for different values
of the bias voltage. We consider current at four different bias volt-
ages [as marked by arrows in Fig. 4(b)], initially disregarding the
entropic effects (ΔS○ = 0).

Within the Landauer approach, the temperature dependence of
the electric current stems solely from the temperature dependence
of the Fermi distributions in the leads. Consequently, the electric
current is almost independent of temperature when the molecular
energy level lies far away from the bias window [Fig. 5(a)], increases
with temperature in the case of near-resonant transport [Fig. 5(b)],
and decreases with increasing temperature in the resonant transport
regime [Figs. 5(c) and 5(d)], although this effect can be relatively
modest.

In contrast, within the Marcus approach, the temperature-
dependence is determined by both the temperature dependence of
the Fermi distributions in the leads and that of the Marcus rates
in Eq. (27). The latter contribution typically dominates and usually
exhibits an exponential dependence on inverse temperature. Indeed,
we observe an Arrhenius-type behavior in the far off-resonant sce-
nario [Fig. 5(a)]: electric current depends exponentially on inverse
temperature and is greatly suppressed, as compared to that predicted
by the Landauer theory. The same is true in the near-resonant case
[Fig. 5(b)]. In the resonant regime, the electric current increases (in
an Arrhenius-type fashion) with temperature as long as the chemi-
cal potential of the left lead satisfies μL < ε0 + λ [Fig. 5(c)].63 In the
deep resonant regime (for μL > ε0 + λ), broadening of both the Fermi
distributions in the leads and the molecular densities of states K±(ϵ)
leads to a modest decrease in current with increasing temperature
[Fig. 5(d)].

Finally, we consider the generalized theory. Within this
approach, the temperature dependence of electric current once again
stems from the broadening of the Fermi distributions as well as
temperature dependence of the electron transfer rates. The tem-
perature dependence of K±(ϵ) given in Eq. (9) is, however, rather
non-trivial. In the deep off-resonant regime [Fig. 5(a)], electric cur-
rent is virtually independent of temperature and takes values sim-
ilar to those predicted by the Landauer approach (see discussion
in Sec. II C). In the near-resonant case [Fig. 5(b)], electric current
generally increases with increasing temperature, although in a non-
linear fashion, different from what is predicted by both the Landauer
and Marcus transport theories. Conversely, in the resonant regime,
the predictions of the generalized theory closely coincide with those
of the conventional Marcus theory.

These results illustrate the fact that both the Landauer and
Marcus theories can be used to describe charge transport through
molecular junctions in their respective regimes of applicability.
As discussed above, these different regimes may even corre-
spond to different ranges of bias voltage for the same molecular
junction.
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FIG. 5. Arrhenius plots of electric current [log 10(I) vs 1/T ] at bias voltage Vb = {1, −0.4, −0.8, −1.2} V as a function of temperature. Other parameters as shown in Fig. 4(b):
α = 0.9, ΓL = ΓR = 1 meV, and λ = 0.3 eV. Left panels schematically show the relative positions of the molecular energy level and the chemical potentials of the leads (for
clarity, broadening of the Fermi distributions in the leads is not shown).

IV. ENTROPIC EFFECTS

We next investigate the role of entropic effects in molecular
conduction. In accordance with previous experimental studies of
electron transfer in polar solvents,82–84 we set ΔS○ = −40 J K−1 mol−1

(which corresponds to roughly −0.41 meV K−1) unless stated other-
wise. First, in Fig. 6(a), using our generalized theory, we calculate
the IV characteristics obtained for ΔS○ = 0 and −40 J K−1 mol−1

and at different temperatures. The current steps, present in the IV
characteristics when the molecular energy level falls into the bias
window, are significantly shifted for non-zero ΔS○. Furthermore,
in the presence of entropic effects, the magnitudes of those shifts
are increasing with temperature, while for ΔS○ = 0, increasing tem-
perature leads solely to the broadening of the IV characteristics. In
the resonant (high-current) region, qualitatively identical behavior
is also predicted by the conventional Marcus theory (not shown).

The origin of both of these effects can be understood using
Eq. (9): the inclusion of entropic effects corresponds to an effective
(and temperature-dependent) renormalization of the position of the

molecular energy level. For negative ΔS○, this results in a shift of the
current step toward higher values of bias voltage (shift in the oppo-
site direction will be observed in the case of transport through a level
found below the Fermi level of the unbiased leads). From Eqs. (9)
and (27), it can be inferred that strong entropic effects should be
expected when λ + (ε0 − ϵ) = 0. It is shown in Fig. 6(a) that inclu-
sion of negative ΔS○ leads to a negative temperature coefficient of
the current (decreasing current with increasing temperature) in the
resonant regime. The analogous negative temperature coefficient has
been seen experimentally in charge recombination electron transfer
reactions in polar liquids when the intrinsic barrier to reaction is
small and has been discussed in the literature.37,45 The decrease in
electric current with increasing temperature can occur when ΔS○ is
negative and the molecular energy level is found above the Fermi
levels of the unbiased leads or when ΔS○ is positive and the and
the molecular energy level is found below the Fermi levels of the
electrodes. We also note that the qualitative behavior of the electric
current in the resonant regime (as a function of temperature) could
be used to experimentally determine the sign of ΔS○.
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FIG. 6. (a) IV characteristics calculated at different temperatures for ΔS○
= −40 J K−1 mol−1 and 0 J K−1 mol−1. Other parameters as shown in Fig. 5.
[(b) and (c)] Temperature dependence of the electric current at Vb = +0.5 V
calculated using the (b) generalized and (c) conventional Marcus theory.

In Figs. 6(b) and 6(c), we further consider the temperature
dependence of the electric current in the off-resonant regime using
the generalized and conventional Marcus theory, respectively (we
do not consider here the Landauer theory since it disregards the
environmental interactions). In the presence of negative ΔS○, we
observe lower values of electric current through the junction (once
again due to the temperature-dependent shift of the effective posi-
tion of the molecular level). The electric current predicted by the
generalized theory [Fig. 6(b)] exhibits only fairly weak tempera-
ture dependence, in accordance with the previous discussion. In
the case of non-zero ΔS○, the current very unusually decreases
with increasing T as the temperature dependence is dominated
by the entropic effect. This can again be explained by the effec-
tive renormalization of the position of the molecular level by the
entropic term. On the other hand, within the conventional Mar-
cus theory [Fig. 6(c)], we once again observe Arrhenius-type char-
acteristics. Unlike the magnitude of the current, its temperature-
dependent behavior is not significantly affected by the entropic
effects.

In summary, entropic effects (of a realistic magnitude) can
result in an unusual temperature-dependent behavior of the elec-
tric current. The negative temperature coefficient, in particular, may
serve as an indication of this phenomenon in experimental studies
on solvated molecular junctions.

V. MARCUS–LEVICH–DOGONADZE–JORTNER
DESCRIPTION

Thus far, the entire vibrational environment was treated classi-
cally. It is well-known, however, that the high-temperature assump-
tion of Marcus theory is generally not valid at around room temper-
ature for the high-frequency molecular modes. These modes should
be treated quantum-mechanically in order to obtain a qualitative
agreement with the experimental studies.85,86 This need motivated
Jortner and co-workers to develop an extension of the classical
Marcus theory, known as the Marcus–Levich–Dogonadze–Jortner
theory.47,51 Within this approach, the molecular vibrational envi-
ronment is divided into two components: the low-frequency part
typically associated with the outer-sphere environment and the
high-frequency part represented by a single effective mode of fre-
quency ω0. This effective high-frequency mode typically represents
molecular vibrational modes corresponding to carbon–carbon and
carbon–oxygen double-bond stretches (ubiquitous to most organic
structures) and has a frequency of roughly 190 meV (∼1500 cm−1).
Then, the rate of electron transfer is given by Eq. (10) with the
Franck–Condon-weighted density of states,51

FCWD =
1

√
4πλoutkBT

∞

∑
m=0

e−D
Dm

m!

× exp(−
[ΔE − TΔS○ + λout + mω0]

2

4λoutkBT
), (31)

where λout is the outer-sphere reorganization energy. D is the
Huang–Rhys parameter for the coupling to the effective high-
frequency vibrational mode

D =
λin

ω0
, (32)

where λin is the corresponding reorganization energy. Marcus–
Levich–Dogonadze–Jortner theory (in its original formulation as
well as its multi-mode extension) has become the most commonly
used way to introduce nuclear tunneling into the description of
electron transfer.38 We recall that in the conventional Levich–
Dogonadze and all similar quantum mechanical treatments, the
medium in which the charges exist do not contain a ΔS○ term
because of the assumptions tacitly made in treating the environment
quantum mechanically.

It is also possible to adapt this theory in the transport set-
ting considered here and incorporate lifetime broadening into this
framework. Using Eq. (13) and the FCWD factor given in Eq. (31),
the relevant densities of states are given by

K±(ϵ) =
√

π
4λoutkBT

∞

∑
m=0

e−D
Dm

m! ∫
∞

−∞

dE

× exp(−
[(λout + mω0) ± (E − TΔS○ − ϵ)]2

4λoutkBT
)

×
Γ

(E − ε0)2 + Γ2 . (33)

This constitutes what we shall refer to as the generalized Marcus–
Levich–Dogonadze–Jortner (gMLDJ) theory.

In Fig. 7, we plot the molecular densities of states K±(ϵ)
obtained using the generalized Marcus and generalized MLDJ
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FIG. 7. Molecular densities of states K±(ϵ) calculated for Γ = 5 meV, λout
= 150 meV, D = 1.9, ω0 = 190 meV (gMLDJ), and λ = λout + Dω0 (generalized
theory) at T = 300 K. For simplicity, ΔS○ = 0.

approaches. The latter clearly shows a set of equidistant peaks sepa-
rated by ω0, which corresponds to the excitations of the (effective)
high-frequency molecular mode. Since this high-frequency vibra-
tional mode constitutes a somewhat phenomenological description
of the inner-sphere environment (which in reality comprises a set
of vibrational modes), the presence of these equally spaced con-
ductance peaks is an artifact of the Marcus–Levich–Dogonadze–
Jortner approach. Furthermore, the Marcus–Levich–Dogonadze–
Jortner approach predicts a much larger magnitude of K±(ϵ) (as
compared to the classical Marcus rates) for both smaller and larger
values of |ϵ − ε0|, a direct result of incorporating nuclear tunneling
in the Marcus–Levich–Dogonadze–Jortner theory. All these aspects
of Marcus–Levich–Dogonadze–Jortner theory have long been well-
understood.38 We note that nuclear tunneling is much more impor-
tant in the inverted regime than in the normal regime.

In an analogy to what was discussed in Sec. II B, by setting
λout = λin = 0 in the gMLDJ theory, we again recover the Landauer
description of transport. Once again, lifetime broadening becomes
especially relevant in the off-resonant regime of transport. Qual-
itatively, the behavior that is predicted by this approach in the
off-resonant regime will coincide with that of the generalized the-
ory: inclusion of lifetime broadening will result in increased elec-
tric current and its very weak temperature dependence, cf. Sec. III.
Finally, we note that lifetime broadening can also be introduced
in the multi-mode extension of Marcus–Levich–Dogonadze–Jortner
theory (where it would normally be necessary to calculate the
Huang–Rhys factor for each of the molecular modes).47,51 This mod-
ification would lead, however, to an even more complicated expres-
sion, and we see little advantage in using such an approach in
practical applications (as opposed to, for instance, the generalized-
quantum-master-equation result of Ref. 34).

VI. CONCLUDING REMARKS
In this work, we first focused on the recently derived gen-

eralized theory. We have presented an intuitive derivation of this
approach, showed how entropic effects can be incorporated into
that formalism, and demonstrated how the conventional Landauer
and Marcus approaches can be obtained as limiting cases of this
more general approach. We have further demonstrated that (for
relatively weak molecule–lead coupling) the predictions of the gen-
eralized theory coincide very well with those of Landauer and Mar-
cus theories in the off-resonant and resonant regime, respectively.

Consequently, we believe that the generalized theory correctly
describes transport properties of molecular junctions across the
entire experimentally accessible domain (i.e., in both the reso-
nant and off-resonant regime, provided that the high-temperature
assumption of Marcus theory is justified). We have also studied
the influence and identified experimental signatures of entropic
effects in the molecular electronic conduction in different transport
regimes. Finally, in Sec. V, we have shown how lifetime broaden-
ing can be introduced into Marcus–Levich–Dogonadze–Jortner the-
ory. The theory presented here can be also extended beyond the
single-level model and thus introduce lifetime-broadening effects
into the rate-equation descriptions30 of multi-level molecular junc-
tions.87 Our hope is that this work will inspire a wide use of the
theory described here in experimental studies on molecular junc-
tions and stimulate empirical exploration of entropic effects in these
systems.
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APPENDIX A: ALTERNATIVE DERIVATION
OF THE LANDAUER FORMULA

To derive the Landauer formula for the electronic conductance,
let us consider a one-dimensional wire connecting two electronic
reservoirs with electrochemical potentials μL and μR, respectively. If
the length of the wire is given by L, then the electric current through
the considered system is (at zero temperature) given by

I = e n+ v

L
, (A1)

where v is the velocity of the charge carriers within the wire and
n+ is the number of states for electrons propagating from left to right
within the bias window (i.e., between μL and μR). Assuming that the
wire possesses a (quasi-)continuum of states, we can write

I = e (μL − μR)
dn+

dμ
v

L
. (A2)

Here, dn+/dμ is the density of states in the wire for electrons moving
from left to right.

Let us assume that the considered wire can be described with a
square-well potential. Then the energies of the electronic levels are

E =
n2h2

8 mL2 , (A3)

where m is the mass of the charge carrier. Then, the density of states
becomes

dn+

dμ
= 2 ×

1
2
×

2L
h

v−1, (A4)
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where the factor of two accounts for the spin of the electrons, while
the factor of 1/2 accounts for the fact that we are interested only in
the states corresponding to electrons propagating from left to right.
Inserting Eq. (A4) into Eq. (A2), the current is given by

I =
2e
h
(μL − μR) =

2e2

h
Vb, (A5)

giving the conductance Landauer expression for the conductance for
a perfectly transmitting channel,

G =
2e2

h
. (A6)

If the transmission through the wire is less than 1, the conductance
can be expressed using Eq. (25).

APPENDIX B: GENERALIZED THEORY FAR AWAY
FROM RESONANCE

First, we note that Eq. (9) can be equivalently written as34

K±(ϵ) = Re[
√

π
4λkBT

exp(
(Γ − iν±)2

4λkBT
)erfc(

Γ − iν±
√

4λkBT
)], (B1)

where ν± = λ ∓ (ϵ − ε0 + TΔS○), Γ is again the lifetime broadening,
and erfc(x) denotes a complementary error function. Let us consider
here the limit of Γ≪

√
4λkBT and define

x ∶= ν±/
√

4λkBT, (B2)

y ∶= Γ/
√

4λkBT. (B3)

Then, the molecular densities of states can be written as

K±(ϵ) =
√

π
4λkBT

Re[w(x + iy)], (B4)

where w(x + iy) is the Faddeeva function [the real part of which (up
to a factor) is the Voigt function],

w(x + iy) = exp[(y − ix)2
] erfc[y − ix]. (B5)

We can now take the limit y≪ 1 where Eq. (B5) can be approximated
[by considering the Taylor expansion of w(x + iy) around y = 0] as88

w(x + iy) ≈ e−x
2

(1 − 2ixy)[1 + erf(ix)] −
2y
√
π

, (B6)

where erf(x) denotes the error function. Substituting Eq. (B6) into
Eq. (B4) gives (after some rearrangements)

K±(ϵ) ≈
√

π
4λkBT

exp(−
[λ ∓ (ϵ − ε0 + TΔS○)]2

4λkBT
)

+
Γ

λkBT
[
λ ∓ (ϵ − ε0 + TΔS○)

√
4λkBT

× D(
λ ∓ (ϵ − ε0 + TΔS○)

√
4λkBT

) −
1
2
], (B7)

where D(x) denotes a Dawson function. We note here that the first
term on the right-hand side of Eq. (B7) is simply the Marcus rate
from Eq. (27) so that the correction to the conventional Marcus rate
is proportional to Γ. Since Eq. (B1) was derived for the case of weak
molecule–lead coupling,34 the (mathematical) validity of Eq. (B7)
typically coincides with the (physical) validity of the generalized
Marcus theory.

Next, we consider Eq. (B7) in the limit of large |ϵ − ε0|,

∣ϵ − ε0∣≫ λ, kBT, Γ,TΔS○. (B8)

First, we note that the first term on the right-hand side of Eq. (B7)
vanishes. Second, using the definition of x from Eq. (B2), we note
that for large x, the Dawson function can be approximated as

D(x) ≈
1

2x
+

1
4x3 . (B9)

Then,

K±(ϵ) ≈
Γ

λkBT
[x(

1
2x

+
1

4x3 ) −
1
2
], (B10)

where inserting the definition of x becomes

K±(ϵ) ≈
Γ
ν2
±

. (B11)

Finally, setting

ν± = [λ ∓ (ϵ − ε0 + TΔS○)]2 ≈ (ϵ − ε0)
2 (B12)

gives Eq. (28) in the main body of this work.
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