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1. A QUESTION

There are a number of areas in chemical kinetics where generalizations have been
helpful in interpreting and correlating a large body of experimental data in gas phase
or solution reactions. I am reminded here of Bronsted’s relation between rate
constants and equilibrium constants,! Eyring’s and Evans and Polanyi’s work on
transition state theory,? Rice, Ramsperger and Kassel’s work on unimolecular
reactions,® later augmented to RRKM,* treatments of the curve crossing problems,’
Hammett’s op relation and acidity function, and the subsequent equations they
stimulated, theories of three-body recombination of atoms 7 and of electron transfers
in solution & and at electrodes,® simple BEBO calculations on activation energies,?
the Woodward-Hoffman rules and their implications for activation energies,!?
Breit-Wigner and later treatments of resonances,'? models for ion-molecule reac-
tions,'3 to name a few. In the case of inelastic non-reactive collisions one would
include the SSH theory,'# distorted wave theory for some systems,!> the Anderson
theory of spectral line broadening 16 and its later extensions.!?

The interested observer, as well as the seasoned practitioner, might well ask which
of these generalizations of analytical thought apply to current problems of molecular
dynamics, what new ones have been developed, or what experimental generalizations
are there, if any, which literally cry out for a theoretical answer. He might ask, too,
whether the present field is sufficiently different from the previous ones that the
approximate analytical theory will be literally swept under by a Spartan-like phalanx
of exact classical trajectories and their semiclassical and quantum mechanical counter-
parts, with much analytical thought going into this army.

We shall not attempt to answer all of these questions here, but shall summarize
instead some of the trends which appear to be developing in the field. Calculations
in the area are diverse, and some classification would be useful. A possible scheme
for dynamical calculations is proposed in this introductory paper.

2. INTERACTIONS AND SURFACES

Perhaps it would be well to begin our inquiry with this chemical topic. Hersch-
bach and his colleagues in some of their recent studies have obtained or inferred
information about shapes, linear versus nonlinear, of activated complexes (i.e., of the

* This research was supported by a grant from the National Science Foundatior t the University
of Llinois.
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“ reaction geometry *’) and have correlated the results with Walsh’s rules based on
molecular orbital theory.’® The work of Grice and coworkers in this Discussion
also treats this problem for methyl radical reactions. In their paper, Herschbach et
al. comment on implications of the Woodward—Hoffman rules for four-centre reaction
activation energies involving electron rearrangement, and the relation to their study.

Studies of infra-red chemiluminescence, notably by Polanyi and coworkers,*?
including the paper presented at this symposium, have revealed much on the disposi-
tion of energy in exothermic reactions. In turn such information has been correlated
with characterization of the relevant potential energy surfaces as early downhill, late
downhill, and mixed energy release.?

The purely theoretical quantitative calculations include the many LEPS surfaces,
as well as the modest surprising-in-its simplicity BEBO method.1® The latter, with
its use of non-kinetic data, has yielded reasonably good results for activation energies
of a class of reactions (one bond broken, one formed), give or take a few kcal/mol.
The need for a knowledge of potential energy surfaces having the right shape is well-
known, of course, to dynamicists, and several ab initio surfaces for reactions or ine-
lastic collisions have been calculated, such as H+H,, F+H, and Lit+H,.2°

Bernstein and Rulis, in their Discussion paper, have drawn our attention to the
many facts which must be satisfied by any reputable K + CH,I surface. The rise and
the subsequent rapid drop of reaction cross-section with increasing initial translational
energy, and its possible relation to curve crossing, was considered earlier.?!

3. MOTION ON THE SURFACES

The theoretical treatments for motion on these potential energy surfaces are now
many, as recent reviews amply confirm. These theories can be classified as (1)
dynamical, (2) statistical, (3) statistical-dynamical, a term coined elsewhere,?? and (4)
numerical or * exact ”’. We shall explore some of the current trends in these areas,
beginning with a brief recall of some relevant history of the pre-beam era.

(i) EARLIER THEORY

The earlier theory of reactive collisions had a flavour different from that of inelastic
collisions, both because of the difference in data available and in complexity of theory :
prior to the 1950’s essentially all the data on reactive collisions were of a highly
statistical, ensemble-averaged nature (rate constants of systems in averaged initial
states) while much of the inelastic collision data offered dynamics fairly directly in the
form of vibrational relaxation in sound dispersion experiments.’* Thus, a statistical
treatment of the former and a partly dynamical treatment of the latter was needed and
responded to. Again, the complexity of the dynamics of reactive collisions, arising
mainly from the fact that the coordinates of the reactants do not conveniently describe
in a simple way the motion of the products, made a statistical treatment a matter of
necessity in the 1920’s to the 1950’s. Even today, for most of the reaction rate data
in chemistry in solution and the gas phase, statistical treatment is a matter of necessity.

While the chemical kinetics data lent themselves to statistical theory, it is refreshing
to recall that many of the dynamical concepts in use today were considered in the
earlier years, including the concept of adiabaticity for the internal motions, and the
role of excess energy in stimulating vibrational excitation.2® To be sure, in the
1960’s and onwards these concepts have been further developed and made more
quantitative. In the case of inelastic collisions, the dynamical grounds were laid in
the early 1930’s 15+ 2¢ and fashioned into a practical tool, SSH, in the 1950’s.1¢
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(ii) CURRENT DYNAMICAL PICTURE

For purposes of examining current trends 2° in dynamical calculations, I would
suggest a classification such as in table 1:

TABLE 1.—A CLASSIFICATION OF DYNAMICAL CALCULATIONS

Dynamical Inelastic and Reactive Collision Theories

I |
Exact (Q, C, SC) Approximate (Q, C, SC)
I
I |
Static Adiabatic
(in each valley) (natural collision
] coordinates)

I | |
Distorted Wave Classical Path
| “ Distorted Wave * Classical Path

| | |
Sudden DIPR Half
| Collision
Spectator
Stripping

The non-italicized portion refers to inelastic collisions. All parts of the table,
including the italicized ones, refer to reactive collisions. The abbreviations Q, C and
SC denote quantum, classical and semiclassical, since the approximations can be
formulated for each of them. Quantum is used in the sense that at least some of the
internal coordinates of the system are treated quantum mechanically. Classical
indicates that all degrees of freedom satisfy Hamilton’s equations of motion.  Semi-
classical is used in the sense adopted in the papers by Miller, Connor and Marcus in
this Discussion.

A principal distinction in table 1 is the * static * versus ¢« adiabatic ”” approxima-
tion. The label * static”* or * adiabatic * is one used for brevity in table 1 and is
intended to signify the zero’th order calculation plus a higher order one needed for
calculation of change of rotational-vibrational state. (Hence, for example, the
“ adiabatic ”* in table 1 includes the usual zero’th order adiabatic calculation plus a
nonadiabatic correction.) We recall the difference in the zero’th order calculations
for the static and adiabatic models as follows.

In calculations some reaction coordinate s is first selected, typically the radial
coordinate in the case of inelastic collisions. The static model has, for the zero’th
order s-motion, an effective potential obtained by averaging the interaction potential
¥V over the unperturbed initial internal state.* In the adiabatic model, this effective
potential is obtained instead by averaging V over the locally adjusted internal state at
anys. That adjusted internal state is obtained beforehand by solving the equation for .
the internal motion at each s. In the case of a reactive collision, s is some curvilinear
coordinate, leading smoothly from reactants to products in the adiabatic case.

* The importance, at least in some instances, of using an averaged V instead of one which ignores
the dependence of ¥ on internal coordinates, has been noted.>®
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However, in the static case, s would be the radial coordinate of the reactants (products)
when used for the unperturbed wave function of the reactants (products), with no
possibility of having a smooth progress from one to the other. :

I have extended the customary meaning of the terms * distorted wave” and
“ classical path * for use in table 1, in that * distorted wave ” in table 1 indicates
first or higher order perturbation theory, be it Q, C or SC; classical path in table 1
indicates a zero’th-order classical treatment of the s-motion and any order Q, C or SC
treatment of the internal motions.* Conventionally, distorted wave was typically
only used for a first or higher order perturbation of the quantum mechanical static
case. The classical path approximation,?? so-called by workers in the line broadening
field 16- 17 and sometimes called semiclassical 284 by other researchers, was usually
reserved for the case where the relative motion is treated classically (and even approxi-
mated by straight-line trajectories in some instances), and where the internal motion is
treated quantum mechanically. However, the basic idea underlying * distorted
wave ” and “ classical path ” can be applied to the C and SC cases also, and so an
extended definition is useful. The * exponential approximation »,?° not listed sep-
arately in table 1, is one method for achieving a high order, in certain respects, of
perturbation.

The derivative nature of the remaining approximations in table 1 will be recog-
nized: when the static * classical path  case is further approximated by neglecting
energy differences of the internal states (and hence classically setting the frequencies of
internal motion equal to zero) one obtains a *‘ sudden ” approximation.?® Spectator
stripping 13% 3° could be regarded as a particular case of the latter approximation in
which the initial internal energy is neglected. Use of a * classical path *” model in the
exit channel of a reaction, together with specified initial conditions for motion in that
channel, leads instead to the DIPR approximation 3! (bimolecular) or to the half-
collision approximation 32 (unimolecular dissociation). (One incidental application
of table 1, by the nature of its emphasis, is the use of approximate C calculations,
readily made and tested, to make predictions about the accuracy of Q and SC cal-
culations for the same approximation.)

For the Q case, examples exist for many of the items in table 1. They include
« exact ” calculations for several three-dimensional inelastic collisions.?* and for one-
dimensional collinear reactive collisions.2® There are no three-dimensional Q
calculations of comparable accuracy for reactive systems with smooth potentials,
though less accurate two- and three-dimensional reactive calculations exist.33-33
There are static Q calculations, both with distorted wave and with classical path for
inelastic collisions.25 Adiabatic Q calculations have been made for collinear inelastic
collisions using the distorted wave 3¢ or classical path approximation,® and for
reactive collisions using distorted wave,37+ 38 or classical path.36: 38: 39

For the C case, the exact calculations are well-represented in this symposium and,
of course, currently constitute the main link between molecular beam and infra-red
chemiluminescence data and molecular properties. Examples of the C static classical
path approximation are available for collisional rotational-translational 4° and
vibrational-translational energy 4+ 42 transfer. The adiabatic classical path approxi-
mation (including nonadiabatic calculations, as emphasized earlier) has been used for
the C collinear inelastic 4 and reactive problems.** There are C examples of the
spectator stripping,13® 3° DIPR 2! and half-collision models.3?

* Thus, for the C case the distorted wave and classical path approximations differ only in that the
latter uses a zeroth order approximation for the s-motion, while the former may use higher orde:r

approximations,
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For the SC case there are now many exact calculations (and some approximate
ones). Several Discussion papers either refer to or make use of the calculations. We
comment on SC theory later.

The adiabatic type calculations are much fewer than the static due to the greater
complexity of the former. On the other hand the static calculations are sometimes
quite inaccurate, because of considerable distortions of the internal motion during
the collision. In the collinear vibration-translation problem, that static C calculation,
for the case where a light atom is sandwiched between two heavy ones, yielded an
error of as much as a factor of 4000 in the calculated energy transfer,*> whereas an
adiabatic C calculation involved only a 10 % error.*®> The static C calculation for
rotation-translation energy transfer appeared to become poorer when the reduced
moment of inertia (I/ua?, where ¢ is a Lennard-Jones distance parameter) became
small.*%¢

The physical reason for the breakdown of the static calculation is probably the
same in the two cases above : the motion of relatively light masses or molecules with a
small moment of inertia is strongly perturbed in the usual collisions and is not well-
represented by approximations which largely neglect these strong perturbations in
zero’th order. For a different reason, namely the discontinuity involved in any
“ reactant channel ” versus * product channel calculation ”, the Q static distorted
wave calculation was apparently poor for the one case tested (H+H,).45 Again, the
first order static rotational-translational calculation can be inaccurate at low impact
parameters b(b/o < 1) *° and either higher order or a hard body 4°¢ (but exact) might
be used there.

At high translational energies the adiabatic approximation itself cannot be as
good as at lower energies, because the internal state of the system does not have time
to adjust to this fast s-motion.

The adiabatic model (with nonadiabatic corrections included) for collinear reactive
collisions has been treated with the aid of natural collision coordinates in the C
classical path approximation,*¢ in the Q classical path approximation 3 and in the
distorted wave approximation.®® Both the curvature of the reaction path and the
vibration frequency along the path contributed to the change in quantum number
(classical action variable).*® 4+ The results gave quite good agreement with exact
trajectory results for the H+H, reaction.** However, the model should break down
at large energy transfers : the usual classical path approximation is not a self-consistent
one, since it doesn’t allow for energy loss of the s-coordinate and so even allows an

infinite build-up of energy in the oscillator (it is a ** forced oscillator > 28% problem).

TABLE 2.—SUMMARY OF THEORETICAL CONTRIBUTIONS*

inelastic reactive

Dynamical :

Exact quantum — —

Exact classical Ci13 A6, A7, D15

Exact semiclassical A3, A4, A5 A3

Distorted wave — —_

Classical path — —_

Curve-crossing A2
Statistical : — A6
Statistical-Dynamical —_ A6, A8, D20, D21

* The entries in this table refer to papers presented at this Discussion and are here identified by the
surname of the first author: A2—Child; A3—Marcus; A4—Miller; A5—Connor; A6é—Brumer;
A7—Bunker ; A8—Bernstein; C13—van den Bergh; D15—Ding; D20—Herschbach; D21—Lee.
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Application of the model is made in the paper by Zare and coworkers to their results
on vibrational energy distribution in this Discussion.

A number of calculations have been performed with hard-body type potentials
(dumbells, spheres, etc.,) and might typically be labelled as * exact ” though with
these idealized potentials.2 There is also, among the *“ exact ”” quantum mechanical
calculations, a recent interesting development using averaged-over-m-states potentials
to reduce the number of channels in an otherwise exact quantum calculation.4®

All of the previous discussion concerned motion on one potential energy surface
or curve, but the problem of curve crossing is an important one for chemistry.'8: 47 48
The case of multiple curve crossings is considered by Child in his Discussion paper.

The theoretical contributions in the present symposium can be roughly categorized
as in table 2.

Exact calculations are seen to predominate. A prescription for choosing between
the exact and several of the approximate ones is suggested for inelastic collisions by
Gordon in his Discussion paper. For reactive collisions, on the other hand, we have
already noted the difficulty in finding good approximate dynamical theories.

There are a number of semiclassical contributions in table 2, and several pertinent
aspects of exact semiclassical theory are considered in the next section.

(iii) SEMICLASSICAL THEORY

The ubiquitousness of exact classical calculations for reactive collisions and the
current virtual absence of exact three dimensional quantum calculations suggest that
“ exact ** semiclassical calculations 4°-5! may be helpful for reactive (or indeed for
inelastic) collisions. 52

The main quantum effects expected for collisions are (1) quantum mechanical
interferences,*® (2) penetration of classically forbidden regions,* and (3) quasi-bound
state effects.5* The first of these is well-known in elastic collisions (rainbows,
supernumeraries, superimposed oscillations on them) and also in curve crossing
problems.*® The interferences ¢ wash out ” when the phenomenon is state-dependent
and the results are averaged over the states,5% 55 but can be preserved in sufficiently
state-selected experiments.

The second phenomenon, which can also be called n-dimensional tunnelling, does
not “wash out ”. It is of particular importance for any given state being formed
either in a threshold region for formation of that state or in what we might term a
“ twilight region ”, where the formation of this once important state has almost
ceased (in a plot of probability of formation versus some parameter such as energy).
Thus, the tunnelling is not limited to regions where the given state is just becoming
energetically-allowed. In the threshold and twilight regions, one may expect semi-
classically a significant contribution from complex-valued trajectories, and so the
latter should not be neglected there.

The third phenomenon is treated semiclassically in the Discussion paper by the
present author. Previous exact semiclassical calculations for nonseparable systems
were concenrned only with direct collision trajectories,*?> 5° but in this latest paper the
quasi-bound state trajectories were calculated and matched to direct collision traject-
ories to yield the S-matrix elements. The resulting quantum effects would be ob-
served for quasi-bound complexes with sufficiently widely-spaced states. The elusive
problem of semiclassical eigenvalues for bound state systems is also treated in this
paper. An example of quasi-bound states for separable systems arises in the curve
crossing problem for diatomic molecules.*8?

A fourth quantum effect also exists: the probability distribution function of
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coordinates and momenta in the lowest quantum state(s) of an oscillator differs
sigrificantly from the classical value.

The exact semiclassical theory for direct collisions adopted in several papers of
this Discussion was developed during the past three years using both Feynmann
propagator 5° and wave function approaches.*® Calculations on a number of syst-
ems have been performed, and many problems have been investigated. They include
the following : (a) inelastic collisions: numerical calculations for vibration-translation
energy transfer in one dimension,*? 3° rotation-translation,® $1 rotation-vibration-
translation,% 5! quasi-bound states 5!'; (b) reactive collisions: one-,50-31, 56,57
two- 58 and three-dimensions,%°5! multidimensional potential energy surface-
crossings 5°; (c) other and related topics: derivations,*®: °° ranging from intuitive
to the more rigorous; uniform approximations,*?-51- 39 complex-valued trajector-
jes,51- 60 selection rules,*® Wigner 3-j coefficients,’® ! Wigner 6-j coefficients,**
spectral line broadening,! canonical perturbation theory,*® partial averaging,° and
“ exact ” bound state eigenvalues.5?

The paper by Connor in this Discussion considers the problem of a uniform
approximation for multidimensional semiclassical integrals, a problem which arises in
atom-diatomic collisions when attention is focused on formation of a given vibrational-
rotational state, or in collisions involving polyatomic molecules when, as is typically
the case with widely-spaced levels, a particular state of the several vibrations is needed.

The paper by Miller and Raczkewski describes the important method of partial
averaging °° of semiclassical results and its use in calculation of cross-sections for
inelastic collisions.

4. STATISTICAL THEORIES

The most commonly used statistical theory for reaction rate constants is, of course,
activated complex theory. Here, as is well-known, one assumes a quasi-equilibrium
between reactants and systems crossing a particular hypersurface, * the activated
complex ”, calculates the probability of finding the system near the hypersurface,
per unit length of reaction coordinate, multiplies the latter by the local velocity along
that coordinate, integrates over all velocities, and sums over all states of the activated
complexes.

Classical trajectories have been used, mainly by Karplus and co-workers, to test
the activated complex theory of bimolecular reactions.52-6®  All tests apart from the
first have compared the classical trajectory data with the classical form of activated
complex theory (as they should), instead of with the quantum form. Comparison
was made with the microcanonical form of activated complex theory,®? which in turn
is related by a Laplace transform to the usual theory. The agreement between exact
and trajectory values of the reactive flux was good in the region of thermal interest.
Breakdown in this comparison of bimolecular reaction rates occurred at the higher
translation energies, because of reflection near the curved portion of the reaction
path. The reflection led to a reduced rate both when the activated complex was in the
initial channel (highly exothermic reaction) and so was recrossed to reform reactants,
and when the activated complex was in the product channel (highly endothermic
reactions) and so was never reached.

The quantum form of activated complex theory (ACT) has also been tested,
though only for collinear systems, by comparing with the results of exact numerical
solution of the Schradinger equation for the H+H, reaction.5* The exact results
show more tunnelling in the threshold for reaction. It will be interesting to see how
much of this difference occurs in three-dimensional calculations.
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Unimolecular reaction rate theory in its RRKM form has been useful in interpret-
ing rate constant versus pressure data, using the full number of degrees of freedom.55
It has received support from trajectory calculations,®® for molecules having lifetimes
longer than an estimated intramolecular relaxation time ~10-!!s, A comparison
for another type of reaction, a four-centre reaction, appears in a paper by Brumer and
Karplus in this Discussion, where it was found convenient to divide the trajectories
into those for short- and long-lived complexes. The comparison with RRKM is
made for the latter.

An example of breakdown has recently been found for molecules with lifetimes
shorter than ~10~*2s in the reaction involving the formation of the higher energy
intermediate,

CF, CF—CF—CF,*

NSNS
CD, CH,

followed by elimination of a CF, from either ring.5? It was estimated from pressure
effect data on the vibrationally-hot intermediate that the time needed for randomiza-
tion of energy among the two rings, i.e., for random emission of CF, from either ring,
was $10-'25.57 1In general, in other systems, one would expect an even greater
intramolecular relaxation time at sufficiently low energies and correspondingly low
anharmonicities.

Activated complex theory in its usual form is essentially devoid of dynamics.
For example, it needs dynamics only in an infinitesimal interval (s, s+ds), and these
dynamics are trivial. (When the curvilinear reaction coordinate is treated quantum
mechanically, one uses dynamics over a somewhat larger s-interval, e.g., in the WKB
approximation, to avoid conflict with the uncertainty principle.)

The lack of extensive dynamics suffices for calculation of canonical or micro-
canonical rate constants and the lack of need of dynamics is, in a sense, one of the
strengths of activated complex theory. It is also its greatest weakness. For example,
apart from the cited case of the loose activated complex, activated complex theory
cannot be used to predict the dependence of reaction probability on initial state and on
initial relative translational velocity ; nor can it predict the relative formation rate of
products in given final states and with given final velocities. One can adapt activated
complex theory to make such calculations, by imposing added approximations.
Measurements of final states or velocities, therefore, do not test activated complex
theory, and hence do not test RRKM, but rather ACT (or RRKM) plus added
assumptions. This point appears later in a discussion on the most interesting data of
Y. T. Lee et al. in this Discussion.*

Sometimes this *“ strength * or * weakness * of activated complex theory has been
misunderstood in a different way: while vibrational adiabaticity 234 37.69 (or
statistical vibrational adiabaticity 7°) have been used to understand activated complex
theory under certain conditions, ACT is both more general and less powerful than
VA. Any breakdown of VA or SVA does not automatically constitute a breakdown
for ACT. Thus, the fact that an exothermic reaction yields products in highly
excited vibrational states, even though the reactants were in low vibrational states,
constitutes a breakdown of VA and SVA but not necessarily of ACT. In fact, such
reactions frequently have an activated complex which is almost loose and their reaction

* A new development in the field, involving the direct observation of the internal energy distri-
butions of these products of molecular beam systems, by measuring their infra-red chemiluminescence,
has been devised by McDonald and coworkers.5® It promises to provide much needed information,
nicely complementing the measurements of Y. T. Lee et al.
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rate constants can be calculated by ACT using an essentially loose complex. The
activated complex for the reaction rate does not necessarily, in fact usually does not,
coincide with a * transition state * region where marked dynamical excitation or de-
excitation occurs.

The phase space theory of reactions,”” unlike activated complex theory, aims at
predicting final states of reaction products without using properties of the potential
energy surface for intermediate configurations. Because of the increased density of
final rotational-orbital states with increasing energy, the common phenomenon of an
inversion in the final vibrational state population requires an at least partly-dynamical,
rather than a purely phase space, argument. The reaction cross-reaction, like the
rate constant, depends on the dependence of the potential energy surface on internal
coordinates. In the case of the loose activated complex, this dependence is simple
and the cross-section can be calculated by phase space theory, as well as by ACT.
For other complexes, a more detailed (statistical-dynamical) theory is needed. Never-
the less, the idea of counting phase space states of products, like the idea of counting
activated complex states, is a significant one for future modifications, and has had a
very stimulating effect on the field. We return to the statistical-dynamical problem
in the next section.

Recently, in a most interesting development 7374 Levine, Bernstein and coworkers
have found that the distribution of vibrational states of products of some A+BC
reactions can be presented by P.(E—E,)P(E,), where P,,(E—E,) is the density of
rotational-orbital states and for a rotational plus translational energy of E—E, and is
proportional to (E—E)% for this system. P/(E,) was found empirically to be
exp(—A,E,), where 1, is a constant. (A vibrational population inversion corresponds
to a negative 1,). Such an exponential dependence can be derived on statistical
grounds * if one allows the coordinate to take on unlimited (or almost unlimited)
values of E,, but such a situation presumably does not apply here and a different
explanation must be sought. The phenomenology has been extended to a conditional
rotational distribution.”* The general development is discussed by Levine and
Bernstein in their Discussion paper, both for product and angular distributions.

5. STATISTICAL-DYNAMICAL THEORY

A statistical-dynamical theory is one which would employ approximate dynamics
for one or more of the degrees of freedom and use a statistical approximation for the
remainder. For example, in a treatment of vibrational distribution of the products -
it might use analytic or trajectory calculations for collinear collisions to calculate an
ab initio P,(E,) in the preceding section (but caution is needed) and use the statistical
P.(E—E,) for the remaining coordinates. One simple example, not appropriate to
these highly exothermic or endothermic reactions but more appropriate to some
thermoneutral reactions without marked reaction path curvature has been given.??
It uses a vibrationally adiabatic approximation for the vibration. The remaining
coordinates are treated statistically. An integral equation for the reaction cross-
section was then solved. The results for the reaction cross-section were in reasonable
agreement with trajectory data, without introducing any unknown parameters.?2
An analogous procedure could be employed for other models for calculating P,(E,).

A classical path quantum calculation for collinear collisions has been used to
relate (E,) to reaction path curvature.® (Cf. also ref. (44), where the phase-averaged

* e.g., in ref, (73) it was derived by maximizing an entropy —kZ Py In P, subject to a condition of
n
a preassigned <E,, i.e.,Z EyP,. The derivation placed no upper limit on E.
n
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result is (E,».) Thus, in a sense the P, (E— E,)P,(E,) in ref. (72) and (74) is a form
of a statistical-dynamical theory, but only in some average way, since the form of
PE,) used 7%- 74 differed from that estimated in approximate dynamical calcula-
tions.3® We have already commented on the shortcomings of the usual classical
path forced-oscillator problem for treating large excitations.

An example of a statistical-dynamical theory which relates RRKM theory for
energy distributions in the activated complex to energy distributions of the products
has been given by Herschbach and coworkers,”S who treated the dynamics for the loose
activated complex. Their result is the same, they note, as would be obtained from
phase space theory. RRKM theory and phase space theory have been shown 7° to be
equivalent for the case of a loose activated complex (and zero potential energy barrier).
This result is not unexpected, since phase space theory 7* does not use any detailed
properties of the surface on one hand, and since the dynamics from loose activated
complex to products are simple, on the other.

As noted earlier, with other systems other models need to be considered and can
be developed in order to attempt to deduce the properties of the activated complex
from those of the products and vice versa.

6. SUMMARY

The extensiveness of references in recent reviews 2° reveals both the enthusiastic
activity in this field and the sobering fact that much remains to be done, even in the
field of inelastic collisions. Fully collinear inelastic collisions are reasonably well-
understood analytically, and substantial progress has been made in the three-dimen-
sional ones as well, at least when the interactions are not too strong. Suggestions
range from the purely dynamical to a partial use of dynamics in one regime and a use
of statistical in another.?®

The situation for reactive collisions is qualitatively fairly well-understood for
collinear collisions. There has been some progress quantitatively, both for the near-
adiabatic and, to some extent, depending on one’s willingness to accept the cited
classical path estimate, in the more nonadiabatic regime as well. For the fully-three
dimensional collisions there is again some qualitative understanding and, in the case
of rather special models (e.g., spectator stripping; hard bodies), quantitative analyt-
ical insight. The progress is slowed, in comparison with the collinear case, by the
absence of diagrams similar to the highly useful and much-studied skewed-axes plots of
potential energy contours. (To paraphrase a quite different remark of Herschbach
at an earlier Discussion, the trouble with three-dimensional systems is that they have
two dimensions too many!)

For this reason, phenomenology such as that discussed by Levine and Bernstein
for reactive collisions is a most welcome one, with its use of some statistical insight.
The possibility, too, of extending activated comples theory with the addition of
dynamical elements, i.e., of having statistical-dynamical theories is already with us.
Two examples have been given in the previous section and more and better ones will
undoubtedly be developed.

In the realm of exact calculations, exact classical theory remains the most potent
method for treating experimental data on simple chemical reactions. Moreover,
semiclassical theory may become a significant method for including the quantum
effects absent in the purely classical calculations. While individual S-matrix elements
are sometimes in error by a factor of two, the averaging that occurs when a reaction
cross-section is calculated from S-matrix elements might reduce the error further, to
the extent that some of the errors in the elements may be random.
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The present symposium touches on many of these and related questions, and
represents one more step toward answering some of the questions. At the very least,
we all enjoy it.
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