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An integral semiclassical expression for the S matrix of inelastic and reactive collisions was formulated
earlier in this series. In the present paper a uniform approximation for the expression is derived for the
case of multidimensional systems. The method is an extension of that employed in Part II for the case
of one internal coordinate. The final result, Eq. (2), is highly symmetrical, thus making some of its properties

immediately clear.

I. INTRODUCTION

In semiclassical theory for inelastic or reactive
collisions,’3 an inelastic transition from state » to
state m is associated with a particular classical tra-
jectory. The latter is one for which the (continuously
varying) “quantum number” 7 equals # before collision
and m after it. Such a trajectory corresponds to a point
of stationary phase of the phase term in the exponent
of the integrand in a semiclassical expression for the
S-matrix element Sm..!? Frequently, several such
trajectories contribute and give rise to interference
phenomena for the transition, and for scattering.
Often the stationary phase value of the integral suffices,
and one then has

Smn= Z 1 7 (1)
2

where the sum is over all stationary phase points j

of the integrand and where I; is the contribution to

Smn from the jth point,

When two or more of the stationary phase points are
close together, the effects of this proximity must be
included (the ““uniform approximation”). The case of
one dimension was treated in Part IL® by adapting a
method of Ursell, Chester, and Friedman 4 This method,
which has also been used for obtaining a uniform

approximation for the rainbow and glory effects in
elastic scattering,® involves mapping the exponent in
the integrand onto a cubic polynomial and mapping
the pre-exponential factor onto a power series.® One
then obtains a uniform asymptotic expansion. The
case of one and two dimensions has been also treated
more intuitively,” obtaining the latter by interpolating
from various limiting cases.

Apart from the collision of a rigid rotor and an
atom, inelastic or reactive molecular collisions involve
at least three internal coordinates in the integral
expression for S,... In the present paper we treat the
multidimensional case by extending the method of
Part II. We obtain

Swn= X 1O (~§35) - BiD(—05),  (2)

7

where the sum is over all stationary phase points j,
the latter’s neighbors being ji-««jnx. The points j are
put into 1:1 correspondence with the corners of a
hypercube and 7y, - - «, jv are at the corners adjacent toj.
The ®i*"’s are certain combinations of the Airy
integral and its derivative. The magnitude of ®iP
is usually close to unity and its phase rapidly decreases
toward zero as { increases (as in Table I, given later).
The ¢’s are related to phase integral differences between
adjacent points j and jx.
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II. EVALUATION OF INTEGRAL

We begin with the case of two dimensions, the
integral S, being a particular example of an integral, 7 8

I=[[g(z,y)[expif(z, y) Jdzdy. (3)

The evaluation reduces to that of one-dimensional
integrals when one can separate variables, i.e., when
f(z, y)=f(z)+f(y) and g(z, y) =g(z)g(y). However,
such an approximation cannot be made in general. A
typical situation is given schematically in Fig. 1,
where the points of stationary phase are indicated as
Py, Py, Ps, and Py, there frequently being four points of
stationary phase. Sometimes, as one sees by symmetry
arguments,’® there may be more, but the evaluation of
the integral for Sn. can then be reduced by symmetry
to the evaluation of one with this smaller number of
points.!* Sometimes, because of an unusually com-
plicated (highly nonsinusoidal) phase integral, there
may again be more points. In the separable case P; to
P, are at the corners of a rectangle in this zy plane.

We introduce in Fig. 1 curvilinear coordinates » and
2, and suppose the mapping (z, ¥)— (%, v) to be one to
one and regular. The u curves are chosen such that
along them one may map the phase f in Eq. (3) onto
a cubic expression,

flz,y) =3w¥—fu+A

Here, ¢ and A4 are constant along such a curve but
their values can vary from member to member of this
family of # curves. Two # curves are PPy and PyP;
in Fig. 1. { and 4 are real, when (4) is valid over a
sufficiently large region, since f is real for real x and y
and hence for real ».

The points of stationary phase, Py, P, P;, and Py,
are those for which

(along % curves). (4)

af/dx=af/dy=0 (5)
and thereby for which, along a % curve
df/du=0., (6)

There are two solutions to (4) and (6), occurring at
points which will be designated S and S":

u= —fssrlﬂ at S
u=+{s5M? at 5, (7

where {ss is the ¢ for the # curve joining S and S’
(Fig. 1). The set of points .S is the curve PP, and that
of S’ is curve P4P; there. Equations (4) and (7) yield
the values f(z, y) at S and %', fs and fo:

fs=%0ss®+Assr,  for=—3{ss 1+ Ass

and so

(8a)

fS—fS’:"g'g‘SS'a/z, fS+fSI= ZASSI. (8b)
According as the curve S5 is taken to be PP, or PyP;,
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the corresponding ¢ss is designated as {14 or {33, respec-
tively.

We introduce a coordinate ¢ along curves PP; and
PyPs, such that

f(@,y)=§*—m+B %)

7 and B depend on the particular v curve, e.g., P1P2 or
P,P;, and are real. The stationary phase condition (5)
implies that, along a v curve,

(along a v curve).

df/dv=0 (10)
at a stationary phase point, thus yielding solutions
v=—nee'* atQ
v=-+nee'®  at(, (11)

where Q is Py or P, in Fig. 1 and {’ is Pz or P;. Curves
PPy and P.P; are members of a family of v curves, as
in Fig. 1.

Equations (9) and (11) applied to curves PiP; and
P 4P 3 lead to

32 =fH—f2

2= fo—fs. (12)
From the foregoing it follows that
Pi(—5u?, —me'),  Po(—{'?, +ma?),
Py(4-5a'?, +nas®),  Pa(F+5d'?, —mi'?). (13)

Of these four solutions to (5) there may be four real,
or some real and some complex-valued, or four complex-
valued solutions. The case of one or more real ones
yields a classically accessible transition while that of
four complex ones yields a classically inaccessible one.!

The quantities {, 4, 7, and B have a useful property
employed later: differentiation of (8b) with respect toz,
and application of (10) when S and S’ are the stationary
phase points P; and P4 or P, and P;, shows that alonga v
curve

diss/dv=0  (at a stationary phase point) (14a)

and that dAss/dv vanishes there also. Similarly using
(8) but with .S, .5, ¢, and 4 replaced by Q, ¢/, , and B,
differentiating it with respect to # and applying (6)
shows that along a u curve

dnge /du=0 (at a stationary phase point) (14b)
and that dBgg//du also vanishes there.
The integral in Eq. (1) can be written as
I= [ fgJ[expi(3u*—fu+A)Jdudv, (15)

where J denotes the actual (rather than absolute)
value of the Jacobian for the transformation (u, v)—
(z, ¥). (This is an important point, partly because one
is working with complex variables z and v and their
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functions.)

Tu Xy
J= =TuYo—ToYu;
w Yo

throughout, the subscripts «, v, , ¥, 2°, and ® indicate
a derivative, e.g., , denotes 9z/du.

We integrate (15) along any curve SS’ in Fig. 1,
first expanding gJ there along that curve, as in the
one-dimensional analog in Part IT and as in Ref. 4.
The leading term is®

gJ = potqost, (17)

where po and g, both depend on the S8’ curve. [In an
integration along an SS’ curve, # varies and v may
also. Thus, if # is used as the integration variable along
SS’, any v in the integrand becomes a v(%).] At the
points .S and 5" in Fig. 1, « has the values in Eq. (7).
Upon evaluation of py and go, Eq. (17) yields

B =3 (1= (8 s+3(1+1) (&),

where (gJ)s denotes the value of g/ at S. |
We denote by the symbols ®@i® the following
integrals:

ai® (=)= [ (1w
X Lexpi (3= ) Jiu.

From the definitions® of the Airy function A% and its
derivative, A7, we have

Qi (—{) = Ai(—§) it 4¥ (—0).

(16)

(18)

(19a)

(19b)

Bearing in mind the asymptotic behavior of @i (—¢) .
it is convenient to introduce a function ®i® (—{)
which tends to unity at large ¢:

®iD (=) = ql2p4@ D (—¢)
X exp[Fi(3*—1m) ]

Values of the magnitude and phase of Bi™?(—{) are
given for various {’s in the range 0.01 to 3 in Table I.
(The value of ®¢® diverges when { is zero.) Its

(19¢c)

y-curves
&

(M)

Fie. 1. Curvilinear
coordinates, » and v, S
and points of stationary
phase, P;. S and S’ are
points in which f/ (%) =0

along a % curve. gl U-Curves

-~

F )
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TaBrLE I. Amplitude (p) and phase (¢) of ®™H(—¢).

(e p ¢ ¢ p ¢
0.01 1.464 -—-0.649 0.90 0.925 +0.096
0.03 1.134 —0.551 1.0 0.949 +40.100
0.05 1.016 —0.485 1.2 0.993 +40.093
0.07 0.929 —0.409 1.4 1.025 40.072
0.10 0.894 —0.368 1.6 1.044 40.044
0.20 0.821 -—-0.219 1.8 1.048 +0.015
0.30 0.807 —0.119 2.0 1.039 -—0.009
0.40 0.813 —0.048 2.2 1.020 —0.024
0.50 0.829 +0.004 2.4 0.999 —0.027
0.60 0.851 40.042 2.6 0.982 —0.017
0.70 0.874 +0.069 2.8 0.975 —0.002
0.80 0.900 -+0.086 3.0 0.980 -0.016

magnitude is seen to be fairly close to unity in the
region 0.1 to 3, and its phase changes from —0.37 at
¢=0.1 to values of 0.04 or less when { exceeds 1.6.
Ultimately, the phase becomes zero and the magnitude
becomes unity at large {. ®(—¢) is the complex
conjugate of B (—¢).

The integral in Eq. (15) can now be written as

T=w2 {8 (¢7) s[expi (s ¥+ A~3m) ]
X @i (=Sss)+ (8 expi( —Hss+ A-+)]
X®O(~gss) Jdr. (20)

Introducing (8a) into (20) and noting that S lies on
curve P1P; and that §’ lies on curve P.P;, Eq. (20)
may be rewritten as

I=7"{p ptss g ®IP (—5s) expi( f—im)dv
+ [ppiss GBI (—{ss) expi( f41m)dv.

In integrating along v curves PiP, and P,P; one may
use v as an integration variable.

When { is large, ®:® (—¢) is about unity, and so the
only significant variation in phase of the integrands
of (19) is due to f(z, ¥). However, even more generally,
(14a) shows that ¢{ss-/dv vanishes at a stationary phase
point and so ®i¥({gs) makes no contribution to
phase variation in the integrand at such a point, One
can thus treat the factors {Y2gJ®i® as in (17),
whence we may set

$ss MgI®RiF) (—tssr) = Pyt-Q
(on P1P2 and P4P3),

(21)

(22)

and evaluate Py and Q. The () sign in ®¢ is for PP,
and the (—) sign is for P.P;, according to (21), and
the values of Py and @y on the first curve differ from
those on the second. {ss is {1« at Py and {9 at Ps and
according to (1), vis —mn at P; and +me at Ps. De-
noting by g: and J; the values of g and J at point P;,
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and introducing these results into (22) to obtain
Py and @y, one finds that on curve PP

{ g ()
=56 M1 (1—omg ) R (— 1)
+%§-23_1I4g 2 ( 1 +1)1112—1I2) ®iD ( __g-%) . (23)

Similarly, using (14) and (22), one finds that on
curve P4P;

IR (=)
=3 g (1= ) B (— )
3 g T (14 v ) B (— ). (24)
We may also write the f(x, ¥) in (21) as in (9),
introduce (23) and (24) into (21), and use (19¢)
to write the resulting @i® integrals in terms of B¢,
When Egs. (9) and (11) are used to simplify the
resulting expression one obtains
I'= g1/ (mag1s) M JBIH (—m2) Bi (—{14)
Xexpi( fi—3w) +[7rgato/ (mages) 4]
X&) (—n2) B (—{a3) expife
+[rgsts/ (naages) VIR (—{28) Bi ) (— )
Xexpi( fat+3m) + gl s/ (nasf1e) V4]
X®(—$1) B (—na) expife.  (25)
This expression can be further simplified: The J/’s
can be expressed in terms of properties of f(z, ) and so
freed from those of # and ». We first note that one can
readily show that the second derivatives of f with
respect to z and vy are related to those with respect to «

and v. At a point of stationary phase one obtains the
first half of (26):

<xu yuX_:z: fz,,Xxu xu>
Lo Vv o Sy w Yo
(fuu fuu) <2u O)
= = . (26)
fuv fvv 0 2'1}

The second half of (26) is obtained by differentiating
(4) and (9) with respect to # and v at a stationary
phase point and using (14) (Appendix B).

The square matrices in (26) can be interpreted as
signed determinants. The first factor on the left hand
side then equals the third, which in turn is J, according
to (16). Thus, (26) yields

J=2F12(u) 2,

fzz fiﬂl
F= ,
lel fl"l
and the quantities are to be evaluated at the cited point
of stationary phase.

(27)

where

(28)

R. A. MARCUS

Further, the quantity gin Eq. (3) involves a (signed)
determinant of derivatives the values of  and y with
respect to initial values before the collision, 20 and y° !

Tpo z,o\ 12
g= . (29)
V=0 Yy
Equations (27) to (29) yield
gJ =2G"12(yp)\i2, (30)
where
vz fzy° —1/2 Xx" Xy“ —1/2
Gl2=gF-12= ) = ( ) .
furt fuut Voo Ve
(31)

Here, X denotes f, and ¥ denotes f,; X and ¥ are the
final momenta conjugate to the final coordinates « and
vy, respectively.l®

When the values of (uv)/? appropriate to the given
stationary phase points, namely those given by (13),
are introduced, Eq. (25) becomes

I=2rx exp(i}n)
X [Gy 2@ (— i) BiH (— 1) exp(ify)
FG 2@ (— ) BiD) (—as) exp(ife)
+G52®Bi) (— ba3) BT (—na3) exp(ifs)
+GB®RIC) (— (1) B (—mis) exp(ifi) 1. (32)

We now introduce a completely symmetrical nota-
tion for all 4 and j:

fi—fi=%8c:*2, (33)

where, therefore,
Ciflt= — {5 (34)

From these relations and from the properties of the
Airy functions, it can be shown that

B (— ) =B (—550). (35)
Equation (32) now yields
4
I=2ri 3 G @i (—{55)
Jl
X ®iM (—¢45) exp(if;), (36)

where the sum is over all stationary phase points 5 and
where 1 and 7, denote their adjacent neighbors (i.e., the
points on the adjacent corners of the deformed “‘square”
P1P2P3P4 in Flg 1) .

When the above type of derivation is used for the
case of a one-dimensional integral, fg exp(if)dz, one
obtains instead

I= (2ri) 3" GG (—83) explify), (37)
o1

there being only two stationary phase points in most
occasions (7/=2 when j=1, etc.).
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The generalization of (36) and (37) to N dimensions
is apparent from their highly symmetrical form,
and is obtained by a straightforward extension of the
above arguments. In the case of three dimensions, a
three dimensional set of curvilinear coordinates
(u, v, w) is introduced, together with the eight points P;,
and the curves P;; (i,j=1 to 8), as in Fig. 2.

For the N-dimensional case one establishes [by
induction, since the N-dimensional case is the ‘“Car-
tesian product” of the (¥—1) and one dimensional
cases | the following result

I= (2xi)V2 30 G (—§j50) + + +BED (=)
K

Xexp(ify). (38)

Since the stationary phase value is given by (38)
but with all ®i®’s equal to unity, one can rewrite
(38) in terms of the stationary phase contribution from
the j°th point, I;:

N

2
I= Zl L®ID (—Ej5) - ®iP (—Fiw),  (39)
-

where
1= (2m)NPG712 expif. (40)

There are in the sum (39) 27 stationary phase points
for the system examined, these being the number of
corners of an N-dimensional hypercube.

III. DISCUSSION

When ®: is written in terms of the Airy integral
and its derivative, and when G is expressed in terms of
g and F, it can be shown (Appendix A) that Eq. (37)
leads to the results previously obtained in Part II for
one dimension, namely Eqs. (3.20) and (3.26) there.

Again, when ®i™ is expressed as above and Eq. (38)
then specialized to the case of two dimensions it yields
an equation of Miller® for the two-dimensional case,
apart from one difference noted earlier®: Bi(—{), the
irregular Airy function appears in Ref. 2 instead of the
present {~Y244'(—¢). The difference arises from the
fact that in Ref. 2 the uniform approximation was
partly deduced from an interpolation of stationary
phase values, and that both {74244’ (—{) and Bi(—{)
have the same limiting values, and partly from a result
of Carrier,”'* which in turn omitted the second term
in (15). The difference in the two functions is, as
already mentioned in Part II, negligible when { is
large, their limiting behavior being the same. When {
is small, they do differ appreciably, but then the term
which contains them is largely dominated by one which
contains Ai(—¢).

Equation (39) has, because of its symmetry, several
useful properties. It shows immediately that I equals
its stationary phase value 3;/; when the {’s are large,
i.e.,, when the points of stationary phase are widely
separated, since the ®:*(—{)’s approach unity at
large ¢. Again, when { is not large but not so small that

Fie. 2. Curvilinear co-
ordinates, #, v, and w and
points of stationary phase, P;.

®i" becomes singular (we note, however, that because
of cancellations, I itself is not singular), one can under-
stand from (39) the interesting empirical observation®
that the quantum value for | Sma |? is sometimes closer
to the “classical value”, X ;| I;|? than it is to the
stationary phase value | Y ;7; [*: Some randomness in
the {’s in (39) leads to some randomness in the phases
of the ®i’s, leading to | I |* being closer, on such
occasions, to Y_;|I;|2. This value, X_;|I;[?, which
we have called classical, was derived earlier in Part I
of this series by classical arguments using slightly
different notation [see Eq. (2.3) and subsequent
sentence there].

To evaluate the phase of G in (34)-(38), one needs
some examination of the topography of the f surface,
and we consider it now.!

In the case of one dimension the stationary phase
point at #= —{2 has a negative value of f,; in the
classically accessible case, since f.. equals 2u(du/dr)?
there. Since f,,<0 at this point (we will call it ;) fis a
maximum there, while at the other point (P;) f is
a minimum. (Indeed, fi—f» equals ${32 and is positive.)
In (37) one has, denoting f.. by ",

Fi=f"=|fi"|expim, Fo=f"=|f"]. (41)

In the case of two dimensions, as in Fig. 1, there is a
maximum and a minimum in f along each of the curves
P;P;. Thereby, at one of the four points (Py, when {1
and {yu are positive) f is a maximum, while at the
opposite corner, P, f is a minimum. At each of the other
points, P; and P,, the f surface has a col. Thereby, the
phase of F~12is given by (42):

Fl_uz: I Fl l—-l/Z exp(—'l:‘lr),
Fy\2=| Fy |72 exp(—in/2),
Fyl2=| Fy |12,

Fir=| Fy|~V2 exp(—in/2), (42)

(e.g., when the matrix F in (28) is diagonalized in the
neighborhood of a point of stationary phase of f,
there are two negative values for the diagonal elements
at Py, leading to a phase of 2x for F; and hence to —=
for F; 12, Related remarks apply to the other Fy’s).

In the case of three dimensions, we may consider
eight points Py, -+, Ps, as in Fig. 2, with coordinates
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(u, v, w):
Pr(—=§d, =5, — '),
Py~ +E'2, —$a'l?),
Pa(+{n', +'?, —atl?),
Pa(+61?, =8, —4),
Ps(—$lf?, =52, +606M2),
Po(—(er'?, +562, +E6t%),
Pr(+a'?, +oa', %),
Py(+8e, — 552, +{a?), (43)

where all the {’s cited in (43) are positive. One can
always define the (#, v, w) coordinates so that this
condition is fulfilled.

From (43) one can see that Py is the point where the
f surface has a maximum. At diagonally opposite point
P7 f has a minimum, At the other points there are
various types of saddle points, those adjacent to Pj,
pamely Py, P4, and Ps, having maxima in two principal
directions and a minimum in a third, while those
adjacent to P; (P, Ps, Ps) have minima in two principal
directions and a maximum in the third. One can then
deduce that

Fril2=| Fy |72 exp(—3in/2),

Fi\2=| Fy |72 exp(—in),

Fi2=| F3 [~V exp(—in/2),

Fii2=| Fy |72 exp(—ix),

Fyi2=| Fy |~ exp(—ir),

Fg12=| Fg |72 exp(—in/2),

p7—1/2=| F; |—-1/2’

Fg'2=| Fy |72 exp(—in/2), (44)

in the case of classically accessible cases. Once again,
these results follow from (43) by noting that a minus
sign before a {2 indicates that f is locally a maximum
along that coordinate, while a plus sign indicates that
it is locally a minimum. The phase of F; equals 7 times
the number of such minus signs.

The phase of G712 is the same as that of F;~/2 when
the phase of (29) is zero. In the actual numerical cases
examined thus far in the rotation—translation and
vibration-translation collisions problems, the phase of
(29) has been zero at the points of stationary phase,
although it has sometimes differed from zero elsewhere.!?
Thus, for these cases, the phases in (41), (42), and
(43) may be used as the phases of G2, However,
strictly speaking, this question regarding the possible
change of phase of (29) should be checked in each
instance,

In a plot of the final collisional value of the quantum
number %; for the kth degree of freedom versus (2 ¥*),
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the local minimum or the maximum #: of such a plot
may sometimes be near a stationary phase point of
f(z, v) and hence, near an m;. In this case the stationary
phase points of at least one pair approach each other
and eventually coalesce when m; equals the local maxi-
mum or minimum 7. The pair then move in opposite
directions along an imaginary axis in a complex (%, v)
or (#, v, ++-) plane. In this case, as in the one-dimen-
sional analog in Part II, the g’s at these two points are
complex conjugates, as are the F’s. The associated {:;
value is still real but negative. With care, the change in
phase from the values given in (41), (42), and (44)
can be determined by analytic continuation arguments.
Equation (39) remains valid for this classically in-
accessible case.

Examination of Eq. (13) shows that if some P.'s
are complex-valued, the {;;s can also be complex.
Since real {;’s were assumed originally, one should
now modify the argument. Elsewhere, it will be shown
how to modify Eq. (38) for such a case.
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APPENDIX A: COMPARISONS

One can readily show that Eq. (37) is equivalent to
Egs. (3.20) and (3.26) of Part II: according to (31)
G122 equals gF—12, and so (denoting f.. by f”/) we have

I= (2x) "L ( i) 73 (expify) BiH (—{12)
+g( fi) T (expif) BiP (—fm) ). (A1)

In (3.20) one had fi”">0 and f,”’<0 for a classically
accessible transition, so that f is a minimum at P; and
a maximum at P, Since #{u equals fo—fi, {®? is
therefore positive and hence {» is also; {12 is not. Setting
®iP (—¢1) equal to Bi(—{a), as in (35), and intro-
ducing (19) one obtains

1= (20) gt { @ (/7)1 (expify)
X[Ai(—¢) —ig=1244' (=) ]
X expi (32 —1m) +g( f2'7) 2 (expife)
X[4i(=¢) +i 247 (=) Jexp—i(3*—1m) }, (A2)

where ¢ denotes {a1.

Since f” equals 2u(du/dz)?, point P; must be at
u=~+¢Y2, to have fi"’>0, and point P, must be at
u=—¢Y2, Thus, fi equals —%{324A4 and f: equals
263124 4 a result which simplifies (A2). Finally, since
fi” is | i’ | and fo” is | fo’ | expim, fo”" being negative,
one can introduce this result and the preceding one into
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(A2) and obtain (3.20) of Part II. When Eq. (3.26)
of Part II is regarded as a relabeling of points 1 and 2,
by changing the sign of the original coordinates, it
does not constitute a separate problem.

APPENDIX B: PROOF OF SECOND HALF
OF EQ. (26)

We first note that the curves labeled for convenience
as % and v curves in Fig, 1 are not the usual curvilinear
u-coordinate and v-coordinate curves. For example, on a
u curve PPy, v is given by (11) and so is not in general
constant on it. Similarly, on a v curve P1P, the quantity
u, given by (7), is not in general constant on it.!?

Along a u curve, such as PP, or P.P;, we have

df/du=9f/du+ (3f/8v) (dv/du), (B1)

where d/du will denote differentiation along a u curve,
and d/dv will denote differentiation along a v curve,
(Thereby, with this notation dv/du and du/dv are not
reciprocals.)

Differentiation of Eq. (B1) and of Eq. (4) along a
% curve shows that

_¢ _¥f
T dw ou

?%f dv
dudv du

fdv = (dv )2
t dv du? * a2 \du/ ~

(B2)

At a stationary phase point, Egs. (11) and (14b) show
that do/du vanishes. According to (5) of/dv also
vanishes there. Thus, (B2) shows that, at a stationary
phase point P;, 8%/du? equals 2u, as in (26). Similarly,
9%/8v* equals the d?/dv* computed along a v curve
at a P; and so, from (9), equals 2, again as in (26).

Differentiating (B1) along a v curve yields (B3).
Differentiating (4) first along a % curve and then along
a v curve yields (B4)

2u

d(df/dw) _ & | ¥f du_ of dl(dv/dw)]
dv T dudv | dutdv | v dv
2 2 "
o dudo | Ffdv o
0voudo du 0V du
d(df/du) du df
—_— =2y — =, B
& Yo (B4)
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Since dv/du vanishes at a P;, as already noted, and
similarly according to (7) and (14a) du/dv and dt/dv
also vanish at a P;, as also does 9f/dv, (B3) and (B4)
show that 9%f/dudv vanishes, as in (26).
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BTt is perhaps worthwhile remarking here that in Eq. (4)
one should not treat { and A as functions of v alone: { and 4
are constant along any # curve but, as already noted, » can
vary along such a curve. Thus, ¢ and 4 are functions of both
u and 7, in such a way that d¢/du and dA4 /du vanish along
curves. Similarly, » and B in Eq. (9) can be written as 4(%, v)
and B(u, v), but are constant along v curves.



