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An integral semiclassical expression for the S matrix of inelastic and reactive collisions was formulated 
earlier in this series. In the present paper a uniform approximation for the expression is derived for the 
case of multidimensional systems. The method is an extension of that employed in Part II for the case 
of one internal coordinate. The final result, Eq. (2), is highly symmetrical, thus making some of its properties 
immediately clear. 

I. INTRODUCTION 

In semiclassical theory for inelastic or reactive 
collisions,t-s an inelastic transition from state n to 
state m is associated with a particular classical tra-
jectory. The latter is one for which the (continuously 
varying) "quantum number" ii equals n before collision 
and m after it. Such a trajectory corresponds to a point 
of stationary phase of the phase term in the exponent 
of the integrand in a semiclassical expression for the 
S-matrix element Smn.l,2 Frequently, several such 
trajectories contribute and give rise to interference 
phenomena for the transition, and for scattering. 
Often the stationary phase value of the integral suffices, 
and one then has 

(1) 

where the sum is over all stationary phase points j 
of the integrand and where I j is the contribution to 
Smn from the jth point. 

When two or more of the stationary phase points are 
close together, the effects of this proximity must be 
included (the "uniform approximation"). The case of 
one dimension was treated in Part II,lb by adapting a 
method of Ursell, Chester, and Friedman.' This method, 
which has also been used for obtaining a uniform 

approximation for the rainbow and glory effects in 
elastic scattering," involves mapping the exponent in 
the integrand onto a cubic polynomial and mapping 
the pre-exponential factor onto a power series.6 One 
then obtains a uniform asymptotic expansion. The 
case of one and two dimensions has been also treated 
more intuitively,7 obtaining the latter by interpolating 
from various limiting cases. 

Apart from the collision of a rigid rotor and an 
atom, inelastic or reactive molecular collisions involve 
at least three internal coordinates in the integral 
expression for Smn. In the present paper we treat the 
multidimensional case by extending the method of 
Part II. We obtain 

(2) 

where the sum is over all stationary phase points j, 
the latter's neighbors being jl·· ·jN. The points j are 
put into 1: 1 correspondence with the corners of a 
hypercube andjl, ..• ,jN are at the corners adjacent to j. 
The CBi<+)'s are certain combinations of the Airy 
integral and its derivative. The magnitude of CBi<+) 
is usually close to unity and its phase rapidly decreases 
toward zero as r increases (as in Table I, given later). 
The r's are related to phase integral differences between 
adjacent points j and jK. 
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II. EVALUATION OF INTEGRAL 

We begin with the case of two dimensions, the 
integral Smn being a particular example of an integral, 1,8 

1 = JJg(x, y) [expij(x, y) ]dxdy. (3) 

The evaluation reduces to that of one-dimensional 
integrals when one can separate variables, Le., when 
j(x, y)=j(x)+j(y) and g(x, y)=g(x)g(y). However, 
such an approximation cannot be made in general. A 
typical situation is given schematically in Fig. 1, 
where the points of stationary phase are indicated as 
PI, P2, P3, and P 4, there frequently being four points of 
stationary phase. Sometimes, as one sees by symmetry 
arguments,1s there may be more, but the evaluation of 
the integral for Sm" can then be reduced by symmetry 
to the evaluation of one with this smaller number of 
points.ls Sometimes, because of an unusually com-
plicated (highly nonsinusoidal) phase integral, there 
may again be more points. In the separable case PI to 
P 4 are at the corners of a rectangle in this xy plane. 

We introduce in Fig. 1 curvilinear coordinates u and 
v, and suppose the mapping (x, y)---+(u, v) to be one to 
one and regular. The u curves are chosen such that 
along them one may map the phase j in Eq. (3) onto 
a cubic expression, 

(along u curves) . (4) 

Here, t and A are constant along such a curve but 
their values can vary from member to member of this 
family of u curves. Two u curves are P IP4 and P2P3 
in Fig. 1. t and A are real, when (4) is valid over a 
sufficiently large region, since j is real for real x and y 
and hence for real u. 

The points of stationary phase, PI, P2, P3, and P 4, 

are those for which 

aj/ax= aj/ay= 0 

and thereby for which, along a u curve 

dj/du=O. 

(5) 

(6) 

There are two solutions to (4) and (6), occurring at 
points which will be designated Sand S': 

u= -tss,I/2 at S 

at S', (7) 

where rss' is the r for the u curve joining Sand S' 
(Fig. 1). The set of points S is the curve P IP2 and that 
of S' is curve P4P3 there. Equations (4) and (7) yield 
the valuesj(x, y) at Sand S',js andjs': 

js = it SS,3/2+ AsS' , 

and so 
js+ jS' = 2AsS'. 

(8a) 

(8b) 

According as the curve SS' is taken to be PIP4 or P2P3, 

t?e corresponding tsS' is designated as t14 or t23, respec-
tively. 

We introduce a coordinate v along curves P IP2 and 
P4P3, such that 

(along a v curve). (9) 

1] and B depend on the particular v curve, e.g., P IP2 or 
P4P3, and are real. The stationary phase condition (5) 
implies that, along a v curve, 

dj/dv=O (10) 

at a stationary phase point, thus yielding solutions 
v= _1]QQ,I/2 at Q 

at Q', (11) 

where Q is PI or P 4 in Fig. 1 and Q' is P2 or P3. Curves 
PIP 2 and are members of a family of v curves as 
in Fig. 1. ' 

Equations (9) and (11) applied to curves P IP2 and 
P 4P 3 lead to 

= jl-h 
·h433/2=j4-j3. 

From the foregoing it follows that 

P2 ( -t23I/2, +17121/2), 

(12) 

PI (-t141/2, -17121/2), 

P3 ( +t23I/2, +17431/2), P4 ( +t14I/2, -17431/2). (13) 

Of these four solutions to (5) there may be four real, 
or some real and some complex-valued, or four complex-
valued solutions. The case of one or more real ones 
yields a classically accessible transition while that of 
four complex ones yields a classically inaccessible one.1 

The quantities t, A, 1], and B have a useful property 
employed later: differentiation of (8b) with respect to t' 
and application of (10) when Sand S' are the stationar; 
phase points PI and P4 or P2 and P3, shows that along a v 
curve 

dtss,/dv=O (at a stationary phase point) (14a) 

and that dAsS'/dv vanishes there also. Similarly using 
(8) but with S, S', t, and A replaced by Q, Q', 17, and B, 
differentiating it with respect to u and applying (6) 
shows that along a u curve 

(at a stationary phase point) (14b) 

and that dBQQ, / du also vanishes there. 
The integral in Eq. (1) can be written as 

1= JJgJ[expi(lu3-tu+A)Jdudv, (15) 

where J denotes the actual (rather than absolute) 
value of the Jacobian for the transformation (u, v)---+ 
(x, y). (This is an important point, partly because one 
is working with complex variables x and y and their 
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functions.) 

(16) 

throughout, the sUbscripts u, v, x, y, :.&, and yO indicate 
a derivative, e.g., x" denotes ax/au. 

We integrate (15) along any curve SS' in Fig. 1, 
first expanding gJ there along that curve, as in the 
one-dimensional analog in Part II and as in Ref. 4. 
The leading term is6 

gJ=po+qou, (17) 

where po and qo both depend on the SS' curve. [In an 
integration along an SS' curve, u varies and v may 
also. Thus, if u is used as the integration variable along 
SS', any v in the integrand becomes a v(u).J At the 
points Sand S' in Fig. 1, u has the values in Eq. (7). 
Upon evaluation of po and qo, Eq. (17) yields 

gJ=!(1-ur1/2) (gJ)s+!(1+ur1/2) (gJ)w, (18) 

where (gJ)s denotes the value of gJ at S. . 
We denote by the symbols ai<±) the following 

integrals: 

ai<±) ( -!;) = (211')-1 L: (1=Furl/2) 

X [expi(tuL !;u) Jdu. (19a) 

From the definitions9 of the Airy function A i and its 
derivative, Ai', we have 

ai<±) ( -!;) =Ai( -!;)± irl/2Ai'( -no (19b) 

Bearing in mind the asymptotic behavior of ai<±) (-!;) ,9 

it is convenient to introduce a function CBi l ±) ( -n 
which tends to unity at large !;: 

CBi<±) ( -!;) =1I'1/2!;1/4ai<±)( -!;) 

X exp[=Fi(i!;3/Li1l')]. (19c) 

Values of the magnitude and phase of CBi<+) ( -!;) are 
given for various r's in the range 0.01 to 3 in Table I. 
(The value of CBi{±) diverges when !; is zero.) Its 

FIG. 1. Curvilinear 
coordinates, u and v, 
and points of stationary 
phase, P;. Sand S' are 
points in whichf'(u) =0 
along a u curve. 

TABLE 1. Amplitude (p) and phase (</» of <Bi<+) ( -.I). 

.I p </> .I p </> 

0.01 1.464 -0.649 0.90 0.925 +0.096 
0.03 1.134 -0.551 1.0 0.949 +0.100 
0.05 1.016 -0.485 1.2 0.993 +0.093 
0.07 0.929 -0.409 1.4 1.025 +0.072 
0.10 0.894 -0.368 1.6 1.044 +0.044 
0.20 0.821 -0.219 1.8 1.048 +0.015 
0.30 0.807 -0.119 2.0 1.039 -0.009 
0.40 0.813 -0.048 2.2 1.020 -0.024 
0.50 0.829 +0.004 2.4 0.999 -0.027 
0.60 0.851 +0.042 2.6 0.982 -0.017 
0.70 0.874 +0.069 2.8 0.975 -0.002 
0.80 0.900 +0.086 3.0 0.980 +0.016 

magnitude is seen to be fairly close to unity in the 
region 0.1 to 3, and its phase changes from -0.37 at 
!;=0.1 to values of 0.04 or less when!; exceeds 1.6. 
Ultimately, the phase becomes zero and the magnitude 
becomes unity at large !;. CBiH ( -!;) is the complex 
con jugate of CBi<+) ( -!;) . 

The integral in Eq. (15) can now be written as 

1=11'1/2 fr1/41 (gJ) s[expi (i!;SW 3/2+A -i1l') ] 

XCBi<+)( -!;ss') + (gJ)s{expi( -i!;SW3 /2+A +i1l') ] 

XCBi<-)( -!;sw) ldv. (20) 

Introducing (8a) into (20) and noting that S lies on 
curve P1P2 and that S' lies on curve P4P3, Eq. (20) 
may be rewri tten as 

I=1I'1/2fpIPJss,-1/4gJCBi<+) ( -!;sw) expi(f-h)dv 

+ fp41'lss,-1/4gJCBi<-)(-!;ss') expi(f+i1l')dv. (21) 

In integrating along v curves P1P2 and P4P3 one may 
use v as an integration variable. 

When!; is large, CBi<±) (-!;) is about unity, and so the 
only significant variation in phase of the integrands 
of (19) is due to/ex, y). However, even more generally, 
(14a) shows that d!;ss,/dv vanishes at a stationary phase 
point and so CBi<±)(!;sw) makes no contribution to 
phase variation in the integrand at such a point. One 
can thus treat the factors rl/2gJCBi(±) as in (17), 
whence we may set 

!;SS,-1/4gJCBi<±) ( -!;sw) =Po+Qov 

(on P1P2 and P4P3) , (22) 

and evaluate Po and Qo. The (+) sign in CBi is for P1P2 
and the (-) sign is for according to (21), and 
the values of Po and Qo on the first curve differ from 
those on the second. !;sw is !;14 at PI and !;23 at P2 and 
according to (1), v is -1/12 at PI and +1/12 at P2• De-
noting by gi and Ji the values of g and J at point Pi, 
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and introducing these results into (22) to obtain 
Po and Qo, one finds that on curve P1P2 

!-l/4gJffii<+) ( -!) 
= i!14-1/4g1J1 (I-V'l/12-1/2)ffii<+) ( -t14) 

+it23-1/4gJ2(I+v'l/12-1/2)ffii<+)( -t2a). (23) 

Similarly, using (14) and (22), one finds that on 
curve P..Pa 

r 1/4gJffii<-) ( -!) 
= it14-1/4gd4( 1-V'l/4a-1/2) ffii<-) ( - t14) 

+it23-1/4gaJa(1 +V'l/43-1/2)ffiiH ( -t23). (24) 

We may also write the f(x, y) in (21) as in (9), 
introduce (23) and (24) into (21), and use (19c) 
to write the resulting ai<±) integrals in terms of ffii<±)'s. 
When Eqs. (9) and (11) are used to simplify the 
resulting expression one obtains 
1= [1I'glJ1/ ('l/12t14) 1/4]<Bi<+) ( -'l/12)ffii<+) ( - !14) 

X expi( fl-i1l') + [1I'gJd ('l/12t23) 1/4J 
Xffii<-)( -'l/12)ffii<+)( -t23) expif2 

+ [1I'gaJa/ ('l/43t23) 1I4JffiiH ( - t23)ffii<-) ( -'1/(3) 

Xexpi(ja+i1l') + [1I'gd4/ ('l/4a!14)1/4J 
Xffii<-) ( -t14)ffii<+) (-'1/43) expik (25) 

This expression can be further simplified: The J;'s 
can be expressed in terms of properties off(x, y) and so 
freed from those of u and v. We first note that one can 
readily show that the second derivatives of f with 
respect to x and yare related to those with respect to u 
and v. At a point of stationary phase one obtains the 
first half of (26) : 

(
Xu yuVfxx fXlIXxu Xv) 

Xv yvAixlI fn Yu Yv 

(
Juu fuv) (2U 0) = = . (26) 
iuv ivv 0 2v 

The second half of (26) is obtained by differentiating 
(4) and (9) with respect to u and v at a stationary 
phase point and using (14) (Appendix B). 

The square matrices in (26) can be interpreted as 
signed determinants. The first factor on the left hand 
side then equals the third, which in turn is J, according 
to (16). Thus, (26) yields 

J = 2F-l/2(UV) 1/2, (27) 
where 

F = (lxx Ix1l) , 
ix" f"" 

(28) 

and the quantities are to be evaluated at the cited point 
of stationary phase. 

Further, the quantity g in Eq. (3) involves a (signed) 
determinant of derivatives the values of X and y with 
respect to initial values before the collision, Xo and yO I: 

g= (XXo X
YO)-1/2. (29) 

YxO y"o 
Equations (27) to (29) yield 

gJ = 2G-l/2(UV) 1/2, (30) 

(31) 

Here, X denotes fx and Y denotes fy; X and Yare the 
final momenta conjugate to the final coordinates x and 
y, respectively.1,8 

When the values of (uv)1/2 appropriate to the given 
stationary phase points, namely those given by (13), 
are introduced, Eq. (25) becomes 

1=211' exp(ii1l') 

X [Gt-1/2ffii<+) ( -'l/12)ffii<+)( -t14) exp(ift) 

+G2-1/2ffii<-)( -'l/12)ffii<+)( -!23) exp(iM 

+Ga-I/2ffiiH ( -t23)ffiiH ( -'l/4a) exp(ifa) 

+G4-1/2ffiiH (-t14)ffii<+)(-'l/43) exp(ii4)]. (32) 

We now introduce a completely symmetrical nota-
tion for all i and j: 

where, therefore, 
(33) 

(34) 

From these relations and from the properties of the 
Airy functions, it can be shown that 

ffii<+) ( -tij) = ffiiH ( -tii). (35) 

Equation (32) now yields 
4 

1= 211'i L Grl/2 ffii<+) ( -tiiI) 
i-I 

X ffii<+)(-!ji2) exp(ij;), (36) 

where the sum is over all stationary phase points j and 
wherejl andj2 denote their adjacent neighbors (i.e., the 
points on the adjacent corners of the deformed "square" 
PIP2PaP4 in Fig. 1). 

When the above type of derivation is used for the 
case of a one-dimensional integral, Jgexp(if)dx, one 
obtains instead 

2 

1= (211'i)1/2 L Gr1/2ffii<+) (-tii') exp(ij;), (37) 

there being only two stationary phase points in most 
occasions (j' = 2 when j = 1, etc.). 
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The generalization of (36) and (37) to N dimensions 
is apparent from their highly symmetrical form, 
and is obtained by a straightforward extension of the 
above arguments. In the case of three dimensions, a 
three dimensional set of curvilinear coordinates 
(u, v, w) is introduced, together with the eight points Pi, 
and the curves P ij (i, j = 1 to 8), as in Fig. 2. 

For the N-dimensional case one establishes [by 
induction, since the N-dimensional case is the "Car-
tesian product" of the (N -1) and one dimensional 
cases] the following result 
1= (27ri)N/2 L Gr1l2(Bi(+)( -rjil)" • (Bi(+)( -rjjN) 

j 

Xexp(i/i). (38) 

Since the stationary phase value is given by (38) 
but with all (Bi(+)'s equal to unity, one can rewrite 
(38) in terms of the stationary phase contribution from 
thej'th point, I j : 

2N 

1= L I,-ffii(+) ( -rjil)" . (Bi(+)( -rjjN)' (39) 
;-1 . 

where 
(40) 

There are in the sum (39) 2N stationary phase points 
for the system examined, these being the number of 
corners of an N-dimensional hypercube. 

m. DISCUSSION 

When (Bi(+) is written in terms of the Airy integral 
and its derivative, and when G is expressed in terms of 
g and F, it can be shown (Appendix A) that Eq. (37) 
leads to the results previously obtained in Part II for 
one dimension, namely Eqs. (3.20) and (3.26) there. 

Again, when (Bi(+) is expressed as above and Eq. (38) 
then specialized to the case of two dimensions it yields 
an equation of Miller20 for the two-dimensional case, 
apart from one difference noted earlier2b : Bi ( - r), the 
irregular Airy function appears in Ref. 2 instead of the 
present r-I/2 Ai' ( - r). The difference arises from the 
fact that in Ref. 2 the uniform approximation was 
partly deduced from an interpolation of stationary 
phase values, and that both r-1/2Ai'( -r) and Bi( -r) 
have the same limiting values, and partly from a result 
of Carrier,1·lo which in turn omitted the second term 
in (15). The difference in the two functions is, as 
already mentioned in Part II, negligible when r is 
large, their limiting behavior being the same. When r 
is small, they do differ appreciably, but then the term 
which contains them is largely dominated by one which 
contains Ai( -r). 

Equation (39) has, because of its symmetry, several 
useful properties. It shows immediately that I equals 
it., stationary phase value LjIj when the r's are large, 
i.e., when the points of stationary phase are widely 
separated, since the (Bi(+) ( -r)'s approach unity at 
large r. Again, when r is not large but not so small that 

FIG. 2. Curvilinear co-
ordinates, u, v, and wand 
points of stationary phase, P;. 

(Bi(+) becomes singular (we note, however, that because 
of cancellations, I itself is not singular), one can under-
stand from (39) the interesting empirical observation20 
that the quantum value for I Smn 12 is sometimes closer 
to the "classical value", Lj I I j 12 than it is to the 
stationary phase value I LjIj 12: Some randomness in 
the (s in (39) leads to some randomness in the phases 
of the (Bi(+)'s, leading to I I 12 being closer, on such 
occasions, to Lj I Ij 12. This value, Lj I Ij 12, which 
we have called classical, was derived earlier in Part I 
of this series by classical arguments using slightly 
different notation [see Eq. (2.3) and subsequent 
sentence there]. 

To evaluate the phase of G in (34)-(38), one needs 
some examination of the topography of the J surface, 
and we consider it now.u 

In the case of one dimension the stationary phase 
point at u= -rlt2 has a negative value of Jxx in the 
classically accessible case, since J"" equals 2u(du/dx)2 
there. SinceJ"x<O at this point (we will call it PI) Jis a 
maximum there, while at the other point (P2) J is 
a minimum. (Indeed,ft-J2 equals -tr3/2 and is positive.) 
In (37) one has, denotingJ"", by 1", 

FI = H' = I H' I expi7r, 

In the case of two dimensions, as in Fig. 1, there is a 
maximum and a minimum inJ along each of the curves 
PiPj • Thereby, at one of the four points (PI, when rl2 
and r14 are positive) f is a maximum, while at the 
opposite corner, Pa,! is a minimum. At each of the other 
points, P2 and P4, the J surface has a col. Thereby, the 
phase of F-I/2 is given by (42) : 

FI-I/2= 1 FI 1-1/2 exp( -i7r) , 

F2-l/2= I F2 1-1/2 exp( -i7r/2), 

Fa-I/2= I Fa 1-1/2, 

Frl/2= 1 F4 1-1/2 exp( -i7r/2), (42) 

(e.g., when the matrix F in (28) is diagonalized in the 
neighborhood of a point of stationary phase of J, 
there are two negative values for the diagonal elements 
at PI, leading to a phase of 27r for FI and hence to -7r 
for F I-I/2. Related remarks apply to the other F/s). 

In the case of three dimensions, we may consider 
eight points PI, "', Pg, as in Fig. 2, with coordinates 
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(u,v,w): 
PI (-r14I/2, -rI21/2, - rI51/2), 

P2( -r2al/2, +r12112, -r261/2), 

Pa( +r23I/2, +r4al/2, -ra71/2), 

P4( +r14I/2, -r4al/2, -r4.1/2), 

P5C -r5sl/2, -r56I/2, +rI51/2), 

P6 ( -r671/2, +r56I/2, +r261/2), 

P7( +r671/2, +r87112, +r371/2), 

Ps( +r5sl/2, -rS71/2, +r4sl/2), (43) 

where all the r's cited in (43) are positive. One can 
always define the (u, v, w) coordinates so that this 
condition is fulfilled. 

From (43) one can see that PI is the point where the 
[surface has a maximum. At diagonally opposite point 
P7 / has a minimum. At the other points there are 
various types of saddle points, those adjacent to PI, 
namely P2, P4, and P5, having maxima in two principal 
directions and a minimum in a third, while those 
adjacent to P7 (Pa, P6, Ps) have minima in two principal 
directions and a maximum in the third. One can then 
deduce that 

FI-I/2= 1 FI 1-1/2 exp( -3i7r/2), 

F2-1/2= 1 F21-1/2 exp( -i7r) , 
F3-1/2= 1 Fa 1-1/2 exp( -i7r/2), 
F4-1/2= 1 F4 1-1/2 exp( -i7r) , 
Fb-l/2= 1 F5 1-1/2 exp( -i7r) , 

F6-1/2= 1 F6 1-1/2 exp( -i7r/2), 
F7-1/2= 1 F7 1-1I2, 

FS-l/2= 1 Fs l-I/2 exp( -i7r/2) , (44) 

in the case of classically accessible cases. Once again, 
these results follow from (43) by noting that a minus 
sign before a r l/2 indicates thatJ is locally a maximum 
along that coordinate, while a plus sign indicates that 
it is locally a minimum. The phase of Fi equals 11' times 
the number of such minus signs. 

The phase of Gi-I/2 is the same as that of FC I /2 when 
the phase of (29) is zero. In the actual numerical cases 
examined thus far in the rotation-translation and 
vibration-translation collisions problems, the phase of 
(29) has been zero at the points of stationary phase, 
although it has sometimes differed from zero elsewhere.12 
Thus, for these cases, the phases in (41), (42), and 
(43) may be used as the phases of G-I/2. However, 
strictly speaking, this question regarding the possible 
change of phase of (29) should be checked in each 
instance. 

In a plot of the final collisional value of the quantum 
number iik for the kth degree of freedom versus (If, yO) , 

the local minimum or the maximum iii of such a plot 
may sometimes be near a stationary phase point of 
[(x, y) and hence, near an mk. In this case the stationary 
phase points of at least one pair approach each other 
and eventually coalesce when mk equals the local maxi-
mum or minimum nk. The pair then move in opposite 
directions along an imaginary axis in a complex (u, v) 
or (u, v, ••• ) plane. In this case, as in the one-dimen-
sional analog in Part II, the g's at these two points are 
complex conjugates, as are the F's. The associated rij 
value is still real but negative. With care, the change in 
phase from the values given in (41), (42), and (44) 
can be determined by analytic continuation arguments. 
Equation (39) remains valid for this classically in-
accessible case. 

Examination of Eq. (13) shows that if some P/s 
are complex-valued, the ri/S can also be complex. 
Since real r;/s were assumed originally, one should 
now modify the argument. Elsewhere, it will be shown 
how to modify Eq. (38) for such a case. 
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APPENDIX A: COMPARISONS 

One can readily show that Eq. (37) is equivalent to 
Eqs. (3.20) and (3.26) of Part II: according to (31) 
G-I/2 equals gF-I/2, and so (denotingJXl: by J") we have 

1= (2Tri)I/2[gI(N')-1/2(expift)ffiiH)( -rI2) 

+g2(/2")-1/2(expi/2)ffii<+)( -r21) J. (A1) 

In (3.20) one had N'>O and /2"<0 for a classically 
accessible transition, so that J is a minimum at PI and 
a maximum at P2• Since tr21 equals h-/I, r21a/2 is 
therefore positive and hence r21 is also; r12 is not. Setting 
ffii<+) ( -r12) equal to ffiiH( -r21)' as in (35), and intro-
ducing (19) one obtains 

1= (2i)I/2rrl/4{gl(N')-1/2(expih) 

X[Ai( -r)-irl /2Ai'( -r)J 

X expi + g2 (H') -1/2 (expi/2) 

X[Ai( -t) +irl /2Ai'( -t) J exp-i(ira/2-!7r)}, (A2) 

where t denotes tn. 
Since 1" equals 2u(du/dx) 2, point PI must be at 

u= +tl/2, to have /1"> 0, and point P2 must be at 
u= _tl/2. Thus, h equals -it3l2+A and h equals 

a result which simplifies (A2). Finally, since 
fl" is I H' I and H' is I H' 1 expi7r, H' being negative, 
one can introduce this result and the preceding one into 
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(A2) and obtain (3.20) of Part II. When Eq. (3.26) 
of Part II is regarded as a relabeling of points 1 and 2, 
by changing the sign of the original coordinates, it 
does not constitute a separate problem. 

APPENDIX B: PROOF OF SECOND HALF 
OF EQ. (26) 

We first note that the curves labeled for convenience 
as u and v curves in Fig. 1 are not the usual curvilinear 
u-coordinate and v-coordinate curves. For example, on a 
u curve P1P4, v is given by (11) and so is not in general 
constant on it. Similarly, on a v curve P1P2 the quantity 
u, given by (7), is not in general constant on it.13 

Along a u curve, such as P1P4 or P2P3, we have 

df/du=iJf/iJu+(iJf/iJv)(dv/du), (Bl) 

where d/ du will denote differentiation along a u curve, 
and d/ dv will denote differentiation along a v curve. 
(Thereby, with this notation dv/du and du/dv are not 
reciprocals. ) 

Differentiation of Eq. (Bl) and of Eq. (4) along a 
u curve shows that 

(B2) 

At a stationary phase point, Eqs. (11) and (14b) show 
that dv/du vanishes. According to (5) iJf/iJv also 
vanishes there. Thus, (B2) shows that, at a stationary 
phase point Pi, iJ2f/iJu2 equals 2u, as in (26). Similarly, 
iJ2j/ iJv2 equals the d2f / dv2 computed along a v curve 
at a Pi and so, from (9), equals 2v, again as in (26). 

Differentiating (Bl) along a v curve yields (B3). 
Differentiating (4) first along a u curve and then along 
a v curve yields (B4) 

d(df/du) = iJ2f + iJY du + iJfd[(dv/du)] 
dv iJuiJv iJu2 dv iJv dv 

iJ2f du dv iJ2f dv 
+ iJviJu dv du + iJv2 du (B3) 

d(df/du) =2u du _ dr. (B4) 
dv dv dv 

Since dv/du vanishes at a Pi, as already noted, and 
similarly according to (7) and (14a) du/dv and dr/dv 
also vanish at a Pi, as also does iJf/iJv, (B3) and (B4) 
show that iJ2f/iJuiJv vanishes, as in (26). 
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