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We calculate semiclassical S-matrix elements Stun by numerical integration along complex-valued trajectories, by 
avoiding (simply) previously reported trajectory divergences. Now, one can numerically calculate even I Smnl ~ 10 -11 
for the Secrest-Johnson system (their lowest I Smn 12), instead of only I Smn 12 > 10 -3. Agreement is excellent. 

1. In t roduct ion 

Recently,  there has been a considerable interest in 
semiclassical theory for inelastic and reactive collisions 
[1 -11]  5". We describe in this letter a simple numerical 
solution to a formerly intractable problem in classical- 
ly non-allowed transitions. 

We first recall, for this discussion, that to any par- 
ticular initial o rb i t a l - ro ta t iona l -v ib ra t iona l  quantum 
state of  a pair of  collision partners at a given total  
energy E there corresponds, in semiclassical theory, 
(1) a particular value for each of  the action variables 
Ji for the orbital,  rotational,  and vibrational degrees 
of freedom *, and (2) all possible values of  the phases 
(in more technical terms, the angle variables wi) for 
these degrees of  freedom. These wi's are distributed 
uniformly over the interval (0,1)  in the correspon- 
dence [ 1 ] .  

We also recall, for this discussion, two classes of  

1: Acknowledgment is made to the donors of the Petroleum 
Research Fund administered by the American Chemical 
Society, and to the National Science Foundation for their 
support of this research. 

t For other examples of recent semiclassical studies, see ref. 
I121. 

* These variables are described in ref. [ 1 ]. Ji and the quantum 
number n i are related by Ji = (ni+6i)h, where 6i is frequent- 
ly 0 or 1/2, depending on the degree of freedom [ 1 ]. If one 
sets ~ = 1, as we later do in eq. (lb), Ji equals 27r(ni+Si). 

536 

transitions n ~ m in a collision [ 1 - 1 1 ] .  There are, 
firstly, transitions for which the final states m can be 
reached classically from the initial n, E and various 
initial phases, by trajectories satisfying Newton 's  laws 
of mot ion  with real coordinates and momenta.  The 
corresponding transitions n ~ m are termed "classical- 
ly-accessible" [ 1 - 5 ] .  

There are, secondly, other final states m which are, 
in themselves, energetically allowed at the given E but  
which cannot be reached with classically-allowed (i.e., 
real valued) trajectories from the given initial n and E, 
for any real value of  the initial coordinates w i. Such 
transitions n ~ m are "classically-inaccessible" for 
these conditions [ 1 - 5 ] .  They can be reached via a 
trajectory obeying Newton's  equations of  mot ion 
only when that trajectory is complex-valued. 

We consider a simple treatment of  the latter, one 
which avoids previously encountered [ 1 - I  1 ] numeri- 
cal difficulties (divergences), and calculate S-matrix 
elements S m n" 

2. Examples of classically accessible and inaccessible 
transitions 

It  is useful, first, to illustrate these classically ac- 
cessible and inaccessible transitions with a simple 
example, a linear collision of  an atom and a harmonic 
oscillator. We use a hamiltonian given by  [13],  



Volume 15, number  4 CHEMICAL PHYSICS LETTERS 1 September  1972 

N ~Ax 

" ~  ,x 0 /X 0 

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

R f ; 

o 

N4IN 

o.o oi~ oi~ o15 ola ~. 
N o 

Fig. 1. Example of  a plot o f  real ~ f  versus real w ° for a 
linear collision of  an a tom with a harmonic  oscillator (Secres t -  

Johnson  parameters,  a, # and our E are 0.3, 2/3, 6 [13] ). 

H =  ½[(p2 /#) +p2 + q21 + exp [ - a ( R - q ) l  = E , ( la )  

which we have also expressed in 

H = (p2/2U) + ( h + l )  

+ exp { - a [ R  - (2 f i+ l )  1/2 sin 2nw] } ,  ( lb )  

in terms of act ion-angle variables for the osci l la tor .  
q and p are the conventional oscillator coordinate and 
its m o m e n t u m ; R  and PR are the separation distance 
of collision partners and the conjugate momentum;  #, 

and E are parameters given later in table 1; 27r(fi+~) 
and w are the action and angle variables of  the oscilla- 
tor, repsectively, and we have set h = 1. The quantum 
mechanics of  this collision have been treated numeri- 
cally by Secrest and Johnson [13]. 

Using actual classical mechanical trajectory data, 
the final value h f of the vibrational "quantum num- 
ber" h is plotted in fig. 1 as a function of  the initial 
phase (the initial angle variable w 0) of  the oscillator, 
for the cited values of  n(=l) ,  t~, # and E. The trajec- 
tory data were obtained using real-valued w° ' s  and a 

t To make this t ransformat ion  one uses the s tandard generat- 
ing funct ion  given by eq. (C4) of  appendix C. It may  be 
noted that  the variables differ slightly from those used in 
ref. [51 and from those in ref. [7] .  

large initial real value of the separation distance of 
the collision partners, R °. 

A transition n -+ m is classically accessible for the 
(a, #, n, E) of  the collision in fig. 1 when the n f  v e r s u s  
w ° curve there intersects the (dotted) straight line ~f  
= m parallel to the abscissa. For a system with this 
(a, #, n, E) the transitions 1 ~ 1, 1 ~ 2 and 1 ~ 0 in 
fig. 1 are thus classically-accessible, but the transition 
1 ~ 3 is not, even though the state n = 3 can exist for 
the given total E: the straight line n = 3 intersects the 
n f  v e r s u s  w 0 plot only at a complex value of  w 0, 
found by  solving the equation h f ( w 0 ) - 3  = 0 for w 0. 
In semiclassical terms, the transition 1 -+ 3 occurs at 
this (a , / l ,  n, E) only as a result of  some tunnelling 
from initial to final configurations, since tunnelling 
implies, semiclassically, complex-valued rather than 
purely real-valued dynamical quantities. 

Efforts in the literature to evaluate Smn for classi- 
cally-inaccessible transitions with semiclassicat theory 
in refs. [ 1-11 ],  made indirectly via real-valued trajec- 
tories, have been successful only for transitions which 
are not too inaccessible, namely IS m n 12 > 10-  3 
[5, 7, 9] .  Efforts to use instead complex-valued tra- 

jectories for this purpose have almost entirely failed 
because of divergence of  the trajectory [9, 14]. 

This letter is intended to accomplish the following: 
(1) locate the precise source of  the earlier numerical 
divergences with complex-valued trajectories [9, 14] ; 
(2) extend the previous semiclassical numerical work 
[4, 7, 9] for the system in eq. (1) from ISmnl 2 
available in ref. [13], namely 10-3;  and (3) note 
how the modified simple numerical method also ap- 
plies to N-dimensional problems. 

3. Source of divergence of complex-valued trajectories 

To discover the source of the divergence of the 
above complex-valued trajectories and to describe the 
basic idea underlying our modification, we again con- 
sider first the linear a tom-ha rmon ic  oscillator col- 
lision for which the hamiltonian is given by eq. (1). 
At an initial large separation distance R 0 between the 
collision partners before the collision, the time- 
behavior of  the oscillator coordinate q is given by [ 15] 

q = (2n+ 1) 1/2 sin 2ray = (2n+ 1) I/2 sin 2n(w°+u° t ) ,  
(2) 
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Fig. 2. Projection of trajectory onto complex q-plane, for sys- 
tem with a, tz and o u r E  equal to 0.114, 0.5, 3.8 with and 

without the prior use of  step (1). 

where w is the angle variable of  the oscillator; w 0 is 
its initial value (value at time t = 0); u 0 is the oscillator 
frequency at large R and, one can show from the 
equations of  motion arising from eq. (1), equals (1/270 
in the present case. 

When a (dotted) line h = m in fig. 1 is greatly dis- 
placed from the curve  h f versus w 0 in fig. 1, the in- 
tersection of the two occurs in the complex w°-plane 
at a point where the imaginary part of  w 0 is large. 
Thus, if one begins a trajectory at this w 0 and at the 
given R 0, the oscillator q in eq. (2) will have a very 
large amplitude. In fact, if we write w 0 in terms of its 
real and imaginary parts, 

w ° = w' + iw", (3) 

then for real n and t eq. (2) can be rewritten as 

q = (2n+l )  l/z cosh 2nw" sin2n(w'+vOt) 
(4) 

+ i(2n+ 1) 1/2 sinh 27rw" cos 21r(w'+uOt). 

When 27rl w"i is large, one sees from (4) that the mag- 
nitude of the amplitude o f q  in this complex-valued 
space is very large (namely ca. ½(2n + 1) 1 / 2 exp 2hi w"l). 

Thus, during this complex-valued trajectory the 
oscillator undergoes, even initially, large oscillations 
in the complex q-plane, of  the type indicated by the 

538 

300 J 

150- 

0- 

-150- 

-3'o0 -fso 6 i~o 
REAL (NI 

Fig. 3. Projection of  trajectory onto complex ~-plane, for 
system in fig. 2, "without  prior use of  step (1)". 

large circles in fig. 2 (and labelled there "without  
prior use of step 1"). During the collision with the 
atom, this oscillator therefore experiences extremely 
large oscillatory forces as a result of  these large os- 
cillations in q and of the exponential repulsion in 
eq. (1). Correspondingly, the oscillator "quantum 
number"  h(t) also undergoes large fluctuations during 
the collision, as for example in fig. 3, which describes 
the mot ion in the complex F-plane. Fig. 4 depicts the 
associated tortuous behavior of  the R-mot ion in the 
complex R-plane. What is even worse, as noted earlier, 
is that for almost all trajectories, the trajectory data 
diverged. The trajectory in figs. 2 and 3 is an example 
of one which managed to converge. Those which did 
not showed even larger fluctuations in fi(t). 

4. Modified method for calculating complex-valued 
trajectories 

The equations of  motion deduced from the hamil- 
tonian in eq. ( lb )  are 

d w  OH 1(1  a H ' ~  2 n d h _  a l l '  
dt 0 ( 2 n h ~ ) - ~ ,  + 0 F ] '  dt 0 w '  

(5) 
dR PR dPR all '  
dt /1 ' dt aR ' 
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Fig. 4. Projection of trajectory onto complex R-plane, for 
system in fig. 2, "without prior use of step (I)". 

where H '  is the last term in eq. (lb). The initial con- 
ditions are 

w = w  ° , R = R  ° , 
t = 0 .  (6) 

= n , PR =pO =_[21a(E_E~n)]l/2 , 

Here, E 0 is the initial vibrational energy. 
Before describing the path which we use to inte- 

grate the equations of  motion and to avoid the diver- 
gences of  ~(t) described in section 3, some general 
remarks on the path are in order : in a Feynman path 
integral description of  wave mechanics [ 16], the sys- 
tem tends to follow a real classical dynamical path in 
classically-allowed regions and, when a classically- 
impassable potential barrier presents itself, the system 
tends to surmount the barrier by following a real but 
non-dynamical path (i.e., one not obeying the classical 
equations of  motion). It can later resume its tendency 
to follow a classically dynamical path in any subse- 
quent classically-allowed region. The semiclassical 
theory has a somewhat different point of  view [ 1 -5]  : 
the theory is based on a short wavelength approxima- 
tion for the wavefunction. The phase S of  the wave is 
found to satisfy the Hamil ton-Jacobi  equation, which 
in turn we solve by the method of  characteristics 
[ 1 - 5 ] .  These characteristics, which propagate S, are 
the trajectories satisfying the classical equations of  
motion and are real-valued in classically-allowed re- 
gions and complex-valued in classically-non-allowed 

regions. (Complex-valued trajectories have also been 
used in elastic scattering, e.g., [ 17], and in propaga- 
tion of  electromagnetic waves, e.g., [ 18] .) For the 
trajectory one may select any of  an infinite number 
of  paths, each obeying Hamilton's equations of  mo- 
tion, merely by choosing some path for the time- 
variable t in the complex t-plane. The final values of  
Pi and qi should depend only on the initial and final t, 
and so be independent of  the path of  integration, 
because of the analyticity ofPi( t  ) and q~(t) as func- 
tions of  tS". We have tested numerically this path- 
independence property on various occasions and an 
example is given later. 

We shall choose a path in the complex t-plane, and 
hence for Pi(t) and qi(t), which removes completely 
the large oscillations in q described in section 3 and, 
thereby, the resulting divergences in ~(t) and in the 
other quantities. This path is one whose initial step is 
an analytical integration over an imaginary time inter- 
val i~t", such as to reduce the imaginary part of  the 
initial w to zero. At large initial R, with H '  in eq. (5) 
therefore being zero, we use (3), (5) and (6) and 
choose At" so that 

uOiAt " = -- iw",  (7) 

where v 0 = (1/2~r). Then, the new w at the end of  this 
interval is seen from eq. (3) to be simply w'. The 
change inR calculated from (5) and (7) is - i p  0 w"/lav° 
There is no change in pO and n, as one sees from (5), 
since H '  = 0 at large R. 

Thus, denoting the new w andR by ~0 a n d S 0 ,  we 
have at t = iAt" 

w = .~0 = w ' ,  R = ~ 0  = R  0 _ i(pO w,,/lavO), 
t = iAt". 

-- n,  PR = p ° '  (8) 
We call this initial analytical integration step, step (1). 

Step 1 has served to transfer the complex value 
from the w °, where it was harmful because of  the os- 
cillations of  q, to R, where it is not harmful, since R 

t This presumed analyticity is ensured, in typical cases, by 
the analytic nature of the hamiltonian as a function of the 
conventional Pi and qi, and hence by that of the equations 
of motion themselves. One does not have, for example, Ipl 
and Iq[ in H. When, as in eq. (lb), there is a chance of ap- 
proaching the branch point at (2~+ 1) 1/2 = O, one uses 
eq. (la) for the actual integration instead of (lb). We used 
(la) throughout. 
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Fig. 5. Projection of trajectory onto complex F-plane, for 
system in fig. 2, "with prior use of step (1)". 

undergoes at large R no intrinsic oscillatory motion.  
Using eq. (8) as the new initial condit ions for the 
numerical integration and proceeding now to integrate 
with real time increments dt  in the complex t-plane, 
q now executes during the collision only the small 
oscillations labelled "with  prior use of  step 1" in fig. 
2. Correspondingly, ~(t)  also undergoes only small 
fluctuations (contrast  the magnitudes in fig. 5 with 
those in fig. 3) and, because of  the absence now of  
large oscillation forces, R(t) now has a simple in- and 
out- behavior (fig. 6, which may be contrasted with 
fig. 4). 

This numerical integration, with real dt  and with 
eq. (8) providing the initial conditions, was performed 
using the equations of  mot ion for q, p,  R and PR, 
rather than those for w, ~, R and PR~. All quantities 
were allowed to become complex-valued. The integra- 
tion was continued until  the collision was over, i.e., 
until PR reached a final constant  value, its real com- 
ponent being positive. The numerical data were then 
inserted into the equations of  Part II of  this series for 
the S-matrix element Smn for any transition n ~ m. 

There are a few technical details, given in appen- 
dices A to C: the method of  making an initial guess 

$ In this way one avoids the possibility of a singularity oc- 
curring if (~+½) vanished during the collision. (The angle 
variable w would then be ill-defined, and the differential 
equations would contain a singularity.) 
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Fig. 6. Projection of trajectory onto complex R-plane, for 
system in fig. 2, "with prior use of step (1)". 

for the w ° in eq. (6) and hence for the w' and w" in 
eq. (8), is described in appendix A, for any given 
transition n -* m. A few iterations from this initial 
choice served to obtain the desired n f  to six signifi- 
cant figures. Appendix B summarizes the equations 
for ISmn 12, taken from Par tH.  Appendix  C gives 
details for converting appropriate phase integrals from 
conventional coo rd ina t e -momen ta  data to a c t i o n -  
angle data, to have the data in a form appropriate  for 
use in appendix B. 

The semiclassical results for IS m n 12, calculated with 
initial condit ions (8), fo l lowed by  the numerical in- 
tegration1-, are given in table 1, for the hamil tonian in 
eq. (1) and for the values of  the parameters  et,/z, E 
and transitions n ~ m cited in the table. Also given 
there are the exact quantum mechanical results of  
Secrest and Johnson [13].  

The agreement is seen to be excellent, even when 
the transition probabil i ty is as low as 10 -11 .  

The program was written in FORTRAN using double preci- 
sion arithmetic and the University of Illinois IBM-360/75 
was used for its execution. A standard fourth-order Runge- 
Kutta-Gill integration subroutine having variable step size 
was to integrate Hamilton's equations. A crude Newton- 
Raphson iteration procedure, was used to find C °, using 
eq. (A2) as initial guess. The calculation took on the average 
four iterations to obtain an ~f  to 6 significant figures. The 
total computer time was roughly twice that for real-valued 
trajectories, there being twice as many differential equations. 
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Table 1 
Transition probabilities for classically forbidden transitions for linear collision in eq. (1)a,b) 

1 September 1972 

U E Transition Quantum b,c) 
Uniform 
using complex 
trajectories c,d) 

0.114 1/5 3.0 0-2 9.03(-10) 
0.114 1/5 3.0 1-0 7.06(-4) 
0.114 1/5 3.0 1-2 5.11(-6) 
0.114 1/5 7.0 1-0 1.32(-1) 
0.114 1/5 7.0 1-2 1.27(-I) 
0.114 1/5 9.0 1-3 4.08(-2) 
0.114 1/2 3.8 0-1 4.30(-5) 
0.114 1/2 3.8 0-2 1.28(-11) 
0.114 1/2 4.4 0-2 1.13(-9) 
0.114 1/2 4.4 1-2 2.23(-5 ) 
0.I 14 1/2 5.0 0-2  2.51(-8) 
0.114 1/2 6.0 0-1 2.85(-3) 
0.114 1/2 6.0 0-2  9.43(-7) 
0.114 1/2 8.0 0-2  8.12(-5) 
0.1287 1/2 6.41825 0-2  3.21(-5) 
0.1287 1/2 7.41825 1-3 9.50(-5) 
0.2973 5/4 3.47275 0-2  1.69(-7) 
0.2973 5/4 4.47275 1-3 5.29(-7) 
0.2973 5/4 4.47275 2-0  2.31(-5) 
0.2973 5/4 4.47275 2-1 5.97(-3) 
0.2973 5/4 4.47275 2-3 3.52(-4) 
0.3 2/3 4.0 0-1 1.08(-1) 
0.3 2/3 4.0 0-2  1.22(-3) 
0.3 2/3 4.0 1-2 4.18(-2) 
0.3 2/3 4.0 1-3 1.46(-5) 
0.3 2/3 4.0 2-3 1.33(-3) 
0.3 2/3 4.0 3-1 1.46(-5) 
0.3 2/3 5.0 1-2 1.82(-1) 
0.3 2/3 5.0 1-3 3.31(-3) 
0.3 2/3 6.0 1-3 3.70(-2) 

9.14(-10) 
7.59(-4) 
5.79(-6) 
1.33(-1) 
1.32(-1) 
4.12(- 2) 
4.69(-5) 
1.40(- 11) 
1.14(-9) 
2.52(-5) 
2.53(-8) 
3.03(-3) 
9.46(-7) 
8.08(-5) 
3.20(-5) 
9.84(-5) 
1.70(-7) 
5.52(-7) 
2.30(-5) 
6.50(-3) 
3.95(-4) 
1.08(-1) 
1.20(-3) 
4.41(-2) 
1.51(-5) 
1.48(-3) 
1.51(-5) 
1.87(-1) 
3.36(-3) 
3.73(-2) 

a) a, u and E are the dimensionless parameters in the model of Secrest and Johnson. (Our E is their E/2.) 
b) Exact quantum mechanical results of Secrest and Johnson [ 13]. 
c) Number in parentheses is power of 10. 
d) Results from using eq. (B1). 

5. Discussion 

There are few semiclassical data in the literature 
with which to compare the semiclassical results for 
classically-inaccessible transitions in table 1. The 
former include only values of [Smn 12 for slightly 
classically-inaccessible transitions, i.e., having proba- 
bilities not lower than ca. 10 -3  , namely ones obtained 
by analytic continuation from real-valued trajectory 
data [9], and ones obtained by direct evaluation of 

the integral [5, 7]. The agreement of these values 
with the present ones, where they overlap, is good. 
As already noted, a few complex-valued trajectories 
had been calculated (results for Stun not  given) [9], 
but most diverged [9, 14 ] t .  Thus, the present method 

t A few values of ISmn 12 from trajectories which did not di- 
verge are the following, corresponding to the conditions in 
rows 1, 2 and 25 of table 1: 9.14(-10); 7.59(-4); 1.51(-5). 
These values agree exactly with the corresponding values in 
table 1. 
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is far superior to any of  theseS. 
It is perhaps worthwhile emphasizing that  the only 

approximation used in the present work is the semi- 
classical approximation.  In spite of  the Airy integrals 
appearing in the uniform approximation for IS m n l 2 
(appendix A, or Part II) there is no linearity of  any 
potential  energy function assumed near any classical 
turning point. (Tacit use in Parts I to III o f  the method 
of Langer [20] avoids any such approximation.)  Nor, 
when there are two turning points close together, do 
we assume any parabolic approximation.  (The method 
of Chester et al., used in Part II avoids any such ap- 
proximation.)  Again, all coordinates and momenta  are 
treated numerically in the integration on the same 
basis. The "disappearance" of  one differential (dR) in 
an integral for Smn is a result of  a canonical trans- 
formation followed by an exact integration and is de- 
scribed in Part III. The reasons for prior conversion of  
all coordinates but  R into angle variables is discussed 
in Part I. 

The expression for Smn in Part III involves an in- 
tegral, with volume element ~ I  i dw 0, over a unit  
volume 0 ~< w 0 ~< 1 [ 1 - 5 ] .  As shown in Part I only 
small neighborhoods of  certain trajectories contribute 
significantly to this integral, when a stat ionary phase 
(or uniform) asymptotic  approximation is used to 
evaluate the integral. Thus, regardless of  whether this 
neighborhood is one beginning with a real w 0 or, in 
classical-inaccessible n ~ m transitions, a complex- 
valued w 0, one does not  have to "average over w0's ' ' .  

Finally, we note that the method outlined in this 
letter for making possible the integration of  these 
complex-valued trajectories is readily extended to 
higher number of  dimensionst .  In this connection, we 
also note the derivation of  the uniform approxima- 

tion of  the integral for Smn for N-dimensional sys- 
tems [4].  
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Appendix A. Procedure to obtain an initial guess for 
w0 

The real-valued data plot ted in fig. 1 could, ac- 
curately enough for the present purpose, be fi t ted by  
the first three terms of  a Fourier  series 

n f  = a 0 + a  1 cos21rw 0 + b 1 sin 2rrw 0 . (A1) 

(Frequently,  for example, the higher Fourier  coeffi- 
cients were smaller by a factor of  at least 10 -3 . )  

When m was classically inaccessible, it was set equal 
to the n f  given by  (A1), and the resulting equation 
was solved, yielding a pair of  complex conjugate solu- 
tions, D 0 

D 0 = w 0 max(min) 

+ (2rd) -1  cosh -1 [ ( m - a 0 ) / ( ~ f a x ( m i n ) - a 0 )  ] ,(A2) 
0 w 0 - f  _ - f  where Wmax(min) is the at which n - nmax(min) in 

fig. 1. I t  so happened,  for the cases in table 1, that a 0 
n, but  this approximation is not  needed. We ob- 

serve that with a 0 ~ n, C 0 - w 0 has a very large 
imaginary component  when I m-n[ >>l~ f - n [  max(min) " 

$ A procedure for ealculating complex-valued trajectories, 
quite different from the present one, has also been de- 
veloped by George and Miller [19]. After the present letter 
was submitted, we received a copy of this manuscript. 
There are certain similarities (e.g., use of a step which we 
have labelled step 1) and certain differences (e.g., we use 
the method of appendix A to locate the initial w ° and then 
integrate the trajectories in a forward direction. They, in- 
stead integrate one set of trajectories forward from state n, 
integrate another set backward from state m, and match 
the two sets in the middle by an iterative process involving 
the solution of simultaneous equations). Their five results 
agree exactly with the corresponding five results in our 
table 1. 

Appendix B. Equations for ISmn 12 

The transition probabil i ty Pmn for n ~ rn is given 
by 

t With a higher number of dimensions all w~'s would change 
during At" and some compromise At" might be used, one 
which would make only the highly oscillative w°'s be real 
or near-real. In a coUisional translational-vibrational-rota- 
tional energy transfer, for example, the orbital frequency 
at large R is zero, so its AW ° is zero. The rotational fre- 
quency is also typically relatively small, and so its Aw ° 
during iAt" is also small. 
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emn = ISmn 12 = 27r0 [(1 +sin3)l ~'11/2 Ai2(I ~'1) 

+ (1-sin/3)l~'l-~/2Ai'2(l~'l)] , (B1) 

an expression derived in Part II of  this series [2], 
wheret  

I~'1 = (~-~1A(v~0)-A(v~0)l }2/3 __ (2~11mAI )2/3 (B2) 

[since A(~ 0) = A(v~0) *] ; ~ 0  and v~ 0 are the points of  
stationary phase (the solutions of  the equation ~ f  = 
m) [1 -5 ]  ;0-1/2 and 3/2 are the amplitude and the 
phase of(d-~/dwO) 1/2 [= p-l/2 exp (i3/2)] ;Ai and 
Ai' are the Airy function and its derivative, and A is 
given by 

A = -2¢r nf wdh - RdPR + ½7r (B3) 

for a system with one internal coordinate. 

Appendix C. Conversion of a phase integral to one in 
action-angle variables in the expression for Stun 

The A in eq. (B3) is in terms of  act ion-angle 
variables but the trajectory data were in terms of  q's 
and p's.  To convert the final trajectory results from 
conventional coordinates to act ion-angle variables we 
use a standard generating function as follows. 

The phase A appearing in eq. (B3) equals ½7r plus a 
term denoted in this appendix by F4(P2, P1)/~, with 
h = 1. P1 and P2 signify initial and final values of  the 
totality of  momentum variables, e.g., P2 denotes the 
final values of  the momenta  27r(~f+~) and PfR" We 
have 

~f  P~ 

F4(P2,P1)=-2rr f wd-~- f RdPR. (CI)  
n p~ 

t Recalling eq. (3.12) of ref. [2], where ~" is negative in our 
case and where f is  our A, ~,~ is that member of the com- 
plex conjugate roots (fro, ~ )  which makes ~" negative, i.e., 
as shown below, makes Im A(~ °) positive. 
Proof: [A(~ °) - A(ff°)l 2/3 equals, on selecting the ap- 
propriate branch, [(-1)(i) Im A(ff°)] 3/2 when Im A(~,°) a/2 
is positive, and so equals - [ Im A(ff°)l 3/2, thus making ~" 
< 0. Typically, one finds 3 ~ +½7r [2]. 

F4(P2, P1), defined by (C1), is also a generating func- 
tion for a canonical transformation from the Pl 'S  to 
the P2's  [15]. When the conventional coordinate and 
momentum is used for the harmonic oscillator instead 
of these action-angle variables one first evaluates an 
integral which we shall call f4(P2,  P 1 ) 

v~ p~ 
f4(P2,Pl ) = -- f qdp - f__ Rdpg . (C2) 

Pl p~ 
A generating function transforming (q,p) into (Q, P), 
will be written as tp4(p,P ) and is given below. The os- 
cillator Q is w and i t sP  is the classical action, i.e., 
2n(~+~).  The R and PR are not changed by our 
transformation, and so it is only necessary to consider 
in the ~4 and tp 1 below the transformation from the 
oscillator (q,p) to the oscillator (Q,P). 

We note that [15] 

F4(P 2, e l  ) = f4(P2 , Pl  ) + tp4(p 1 , P1 ) - tp4(P2, P2 ) .  
(c3) 

¢4(p ,P)  can in turn be expressed in terms of  a well- 
known generating function ¢ 1 (q, Q) for transforming 
conventional to act ion-angle variables for the oscilla- 
tor [21 ] :~ 

~ol(q, Q) = ½q2 cot 27rQ, (c4)  

with p = a¢l/Oq and P = -3¢1 /~Q.  Further [ 15], 

C4(p,P) = ¢ l (q ,Q)  + QP - qp. (C5) 

Since p equals q cot 27rQ, the ~0t(q, Q) given in (C4) 
is seen to equal ~pq. 

The above equations thus yield 

p2 
F4(P2,P1) = - f qdp + ½(P2 q2 - P l  q l  ) 

pl 

+P1 Q1 - P 2  02 - f RdPR  c6) 

In these equations, we note that 

Q1 = w0 ' 02 = w f ,  
(C7) 

PI  = 2rr(n+½) , P2 = 2vr(nf+½) ' 

* Note that the to in ref. [20] is unity in our case. 
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where w f is the final value o f  w. 
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