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We calculate semiclassical S-matrix elements S,,,,, by numerical integration along complex-valued trajectories, by
avoiding (simply) previously reported trajectory divergences. Now, one can numerically calculate even | S| =~ 10711
for the Secrest—Johnson system (their lowest ISmn|2), instead of only ISmnl2 > 1073. Agreement is excellent.

1. Introduction

Recently, there has been a considerable interest in
semiclassical theory for inelastic and reactive collisions
[1-11]%. We describe in this letter a simple numerical
solution to a formerly intractable problem in classical-
ly non-allowed transitions.

We first recall, for this discussion, that to any par-
ticular initial orbital—rotational—vibrational quantum
state of a pair of collision partners at a given total
energy E there corresponds, in semiclassical theory,
(1) a particular value for each of the action variables
J; for the orbital, rotational, and vibrational degrees
of freedom¥, and (2) all possible values of the phases
(in more technical terms, the angle variables w;) for
these degrees of freedom. These w;’s are distributed
uniformly over the interval (0, 1) in the correspon-
dence [1].

We also recall, for this discussion, two classes of

f Acknowledgment is made to the donors of the Petroleum
Research Fund administered by the American Chemical
Society, and to the National Science Foundation for their
support of this research.

1 For other examples of recent semiclassical studies, see ref.
[12].

* These variables are described in ref. [1]. J; and the quantum
number #; are related by J; = (nl-+6i)h, where 8, is frequent-
ly 0 or 1/2, depending on the degree of freedom [1]. If one
sets i = 1, as we later do in eq. (1b), J; equals 2n(n;+8).
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transitions n = m in a collision [1—11]. There are,
firstly, transitions for which the final states m can be
reached classically from the initial n, £ and various
initial phases, by trajectories satisfying Newton’s laws
of motion with real coordinates and momenta. The
corresponding transitions n — m are termed “classical-
ly-accessible” [1-5].

There are, secondly, other final states m which are,
in themselves, energetically allowed at the given E but
which cannot be reached with classically-allowed (i.e.,
real valued) trajectories from the given initial n and E,
for any real value of the initial coordinates w;. Such
transitions # = m are “classically-inaccessible” for
these conditions [1—5]. They can be reached via a
trajectory obeying Newton’s equations of motion
only when that trajectory is complex-valued.

We consider a simple treatment of the latter, one
which avoids previously encountered [1—11] numeri-
cal difficulties (divergences), and calculate S-matrix
elements S,, .

2. Examples of classically accessible and inaccessible
transitions

It is useful, first, to illustrate these classically ac-
cessible and inaccessible transitions with a simple
example, a linear collision of an atom and a harmonic
oscillator. We use a hamiltonian given by [13],
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Fig. 1. Example of a plot of real 7 versus real wO for a
linear collision of an atom with a harmonic oscillator (Secrest—
Johnson parameters, o, u and our E are 0.3, 2/3, 6 [13]).

H=3[(p% /) +p* +4*] +exp [-aR—q)] = £, (la)
which we have also expressed in

H= (pg/2u) + (n+1)

+exp{—a[R — 2r+1)"? sin2mw] }, (1b)

in terms of action—angle variables for the oscillatort.
q and p are the conventional oscillator coordinate and
its momentum; R and pp are the separation distance
of collision partners and the conjugate momentum; u,
a and E are parameters given later in table 1; 2m(71+3)
and w are the action and angle variables of the oscilla-
tor, repsectively, and we have set 7 = 1, The quantum
mechanics of this collision have been treated numeri-
cally by Secrest and Johnson [13].

Using actual classical mechanical trajectory data,
the final value 7nf of the vibrational “quantum num-
ber” 7 is plotted in fig. 1 as a function of the initial
phase (the initial angle variable w0) of the oscillator,
for the cited values of n(=1), a, u and E. The trajec-
tory data were obtained using real-valued w9’s and a

+ To make this transformation one uses the standard generat-
ing function given by eq. (C4) of appendix C. It may be
noted that the variables differ slightly from those used in
ref. [5] and from those in ref. [7].
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large initial real value of the separation distance of
the collision partners, RO.

A transition n = m is classically accessible for the
(a, 4, 1, E) of the collision in fig. 1 when the nf versus
w0 curve there intersects the (dotted) straight line nf
= m parallel to the abscissa. For a system with this
(a, u, n, E) the transitions 1 > 1,1 >2and 1 > 0in
fig. 1 are thus classically-accessible, but the transition
1 = 3 is not, even though the state # = 3 can exist for
the given total £: the straight line n = 3 intersects the
nf versus w0 plot only at a complex value of w0,
found by solving the equation 72f(w0)—3 = 0 for w0.
In semiclassical terms, the transition 1 — 3 occurs at
this (o, p, n, £)) only as a result of some tunnelling
from initial to final configurations, since tunnelling
implies, semiclassically, complex-valued rather than
purely real-valued dynamical quantities.

Efforts in the literature to evaluate S,,,, for classi-
cally-inaccessible transitions with semiclassical theory
in refs. [1—11], made indirectly via real-valued trajec-
tories, have been successful only for transitions which
are not too inaccessible, namely |Smn|2 >10-3
[5,7,9]. Efforts to use instead complex-valued tra-
jectories for this purpose have almost entirely failed
because of divergence of the trajectory [9, 14].

This letter is intended to accomplish the following:
(1) locate the precise source of the earlier numerical
divergences with complex-valued trajectories [9, 14];
(2) extend the previous semiclassical numerical work
[4,7, 9] for the system in eq. (1) from ISmnl2
available in ref. [13], namely 10~3; and (3) note
how the modified simple numerical method also ap-
plies to N-dimensional problems.

3. Source of divergence of complex-valued trajectories

To discover the source of the divergence of the
above complex-valued trajectories and to describe the
basic idea underlying our modification, we again con-
sider first the linear atom—harmonic oscillator col-
lision for which the hamiltonian is given by eq. (1).

At an initial karge separation distance RO between the
collision partners before the collision, the time-
behavior of the oscillator coordinate ¢ is given by [15]

g =(2n+1)"? sin 27w = (2n+1)"'? sin 22w +001)

(2)
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Fig. 2. Projection of trajectory onto complex g-plane, for sys-
tem with «, g and our £ equal to 0.114, 0.5, 3.8 with and
without the prior use of step (1).

where w is the angle variable of the oscillator; w0 is

its initial value (value at time ¢ = 0); »? is the oscillator
frequency at large R and, one can show from the
equations of motion arising from eq. (1), equals (1/2m)
in the present case.

When a (dotted) line 7 = m in fig. 1 is greatly dis-
placed from the curve nf versus w0 in fig. 1, the in-
tersection of the two occurs in the complex w0-plane
at a point where the imaginary part of w0 is large.
Thus, if one begins a trajectory at this w0 and at the
given RO, the oscillator ¢ in eq. (2) will have a very
large amplitude. In fact, if we write w0 in terms of its
real and imaginary parts,
wl =w +iw”, 3
then for real # and ¢ eq. (2) can be rewritten as

q = (2n+1)"? cosh 27w" sin 2n(w’ +1°7)

CY)

+i(2n+1)? sinh 27w” cos 2n(w’ +v07) .

When 27| w"| is large, one sees from (4) that the mag-

nitude of the amplitude of g in this complex-valued

space is very large (namely ca. #(2n+1)/2 exp2n|w"|).
Thus, during this complex-valued trajectory the

oscillator undergoes, even initially, large oscillations

in the complex g-plane, of the type indicated by the
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Fig. 3. Projection of trajectory onto complex %-plane, for
system in fig. 2, “without prior use of step (1)”.

large circles in fig. 2 (and labelled there “without
prior use of step 1”). During the collision with the
atom, this oscillator therefore experiences extremely
large oscillatory forces as a result of these large os-
cillations in ¢ and of the exponential repulsion in

eq. (1). Correspondingly, the oscillator “quantum
number” n(t) also undergoes large fluctuations during
the collision, as for example in fig. 3, which describes
the motion in the complex 7-plane. Fig. 4 depicts the
associated tortuous behavior of the R-motion in the
complex R-plane. What is even worse, as noted earlier,
is that for almost all trajectories, the trajectory data
diverged. The trajectory in figs. 2 and 3 is an example
of one which managed to converge. Those which did
not showed even larger fluctuations in 7n(z).

4. Modified method for calculating complex-valued
trajectories

The equations of motion deduced from the hamil-
tonian in eq. (1b) are

dw_ 3H =i<1 Qi[_’) 2ndn _ 9H'

dz 9Q27n) 2w on /)’ dr ow ’
(5)

dR _Pr L)

dr o’ dr  ~ 9R’
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Fig. 4. Projection of trajectory onto complex R-plane, for
system in fig. 2, “without prior use of step (1)”.

where H' is the last term in eq. (1b). The initial con-
ditions are

w=w0, R=R0,
t=0.(6)
n=n , pp=py=-[2WE—-EH"?,

Here, E 9, is the initial vibrational energy.

Before describing the path which we use to inte-
grate the equations of motion and to avoid the diver-
gences of 7(z) described in section 3, some general
remarks on the path are in order: in a Feynman path
integral description of wave mechanics [16], the sys-
tem ftends to follow a real classical dynamical path in
classically-allowed regions and, when a classically-
impassable potential barrier presents itself, the system
tends to surmount the barrier by following a real but
non-dynamical path (i.e., one not obeying the classical
equations of motion). It can later resume its tendency
to follow a classically dynamical path in any subse-
quent classically-allowed region. The semiclassical
theory has a somewhat different point of view [1-5]:
the theory is based on a short wavelength approxima-
tion for the wavefunction. The phase S of the wave is
found to satisfy the Hamilton—Jacobi equation, which
in turn we solve by the method of characteristics
[1—-5] . These characteristics, which propagate S, are
the trajectories satisfying the classical equations of
motion and are real-valued in classically-allowed re-
gions and complex-valued in classically-non-allowed
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regions. (Complex-valued trajectories have also been
used in elastic scattering, e.g., [17], and in propaga-
tion of electromagnetic waves, e.g., [18].) For the
trajectory one may select any of an infinite number
of paths, each obeying Hamilton’s equations of mo-
tion, merely by choosing some path for the time-
variable ¢ in the complex #-plane. The final values of
p; and q; should depend only on the initial and final ¢,
and so be independent of the path of integration,
because of the analyticity of p,(¢) and q(¢) as func-
tions of . We have tested numerically this path-
independence property on various occasions and an
example is given later,

We shall choose a path in the complex #-plane, and
hence for py(t) and g(r), which removes completely
the large oscillations in g described in section 3 and,
thereby, the resulting divergences in n(¢) and in the
other quantities. This path is one whose initial step is
an analytical integration over an imaginary time inter-
val iAt", such as to reduce the imaginary part of the
initial w to zero. At large initial R, with H' in eq. (5)
therefore being zero, we use (3), (5) and (6) and
choose At” so that

Wiar” = —iw" | @)

where v0 = (1/27). Then, the new w at the end of this
interval is seen from eq. (3) to be simply w'. The
change in R calculated from (5) and (7) is —ip% w"/u®.
There is no change in p% and n, as one sees from (5),
since H' = 0 at large R.

Thus, denoting the new w and R by w0 and RO, we
have at ¢ = iAt”

w=w9=w', R=RO=RO _ i(pg w' ),
t=iAt".
b =p§)g , (8)
We call this initial analytical integration step, step (1).
Step 1 has served to transfer the complex value

from the w0, where it was harmful because of the os-
cillations of g, to R, where it is not harmful, since R

n=n,

+ This presumed analyticity is ensured, in typical cases, by
the analytic nature of the hamiltonian as a function of the
conventional p; and q;, and hence by that of the equations
of motion themselves. One does not have, for example, |pl
and Iq| in H. When, as in eq. (1b), there is a chance of ap-
proaching the branch point at 27r+ l)”2 = (, one uses
eq. (1a) for the actual integration instead of (1b). We used
(la) throughout,

539



Volume 15, number 4

1.01

0.81
0.64

0.4+

IMAG (N]

0.2

0.0+

~-0.21

CHEMICAL PHYSICS LETTERS

T r r —
REAL (N

Fig. 5. Projection of trajectory onto complex 7i-plane, for
system in fig. 2, “with prior use of step (1)”.

undergoes at large R no intrinsic oscillatory motion.
Using eq. (8) as the new initial conditions for the
numerical integration and proceeding now to integrate
with real time increments dt in the complex #-plane,
q now executes during the collision only the small
oscillations labelled “with prior use of step 1” in fig.
2. Correspondingly, n(¢) also undergoes only small
fluctuations (contrast the magnitudes in fig. 5 with
those in fig. 3) and, because of the absence now of
large oscillation forces, R(¢) now has a simple in- and
out- behavior (fig. 6, which may be contrasted with
fig. 4).

This numerical integration, with real d¢ and with
eq. (8) providing the initial conditions, was performed
using the equations of motion for g, p, R and pyg,
rather than those for w, n, R and p g §. All quantities
were allowed to become complex-valued. The integra-
tion was continued until the collision was over, i.e.,
until pp reached a final constant value, its real com-
ponent being positive. The numerical data were then
inserted into the equations of Part II of this series for
the S-matrix element S,,,, for any transition n - m.

There are a few technical details, given in appen-
dices A to C: the method of making an initial guess

1 In this way one avoids the possibility of a singularity oc-
curring if (ﬁ+%) vanished during the collision. (The angle
variable w would then be ill-defined, and the differential
equations would contain a singularity.)
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Fig. 6. Projection of trajectory onto complex R-plane, for
system in fig. 2, “with prior use of step (1)”.

for the w0 in eq. (6) and hence for the w’ and w"” in
eq. (8), is described in appendix A, for any given
transition n > m. A few iterations from this initial
choice served to obtain the desired 7nf to six signifi-
cant figures. Appendix B summarizes the equations
for ISmnIZ, taken from Part'Il. Appendix C gives
details for converting appropriate phase integrals from
conventional coordinate—momenta data to action—
angle data, to have the data in a form appropriate for
use in appendix B.

The semiclassical results for (S, , 12, calculated with
initial conditions (8), followed by the numerical in-
tegrationt, are given in table 1, for the hamiltonian in
eq. (1) and for the values of the parameters o, u, £
and transitions #n - m cited in the table. Also given
there are the exact quantum mechanical results of
Secrest and Johnson [13].

The agreement is seen to be excellent, even when
the transition probability is as low as 1011,

+ The program was written in FORTRAN using double preci-
sion arithmetic and the University of Illinois IBM-360/75
was used for its execution. A standard fourth-order Runge—
Kutta—Gill integration subroutine having variable step size
was to integrate Hamilton’s equations. A crude Newton—
Raphson iteration procedure, was used to find w0, using
eq. (A2) as initial guess. The calculation took on the average
four iterations to obtain an 7" to 6 significant figures. The
total computer time was roughly twice that for real-valued
trajectories, there being twice as many differential equations.
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Table 1
Transition probabilities for classically forbidden transitions for linear collision in eq. (1) &b)

Uniform
a I E Transition Quantum b:¢) using complex
trajectories ¢.d)
0.114 1/5 3.0 0--2 9.03(-10) 9.14(-10)
0.114 1/5 3.0 1-0 7.06(—4) 7.59(-4)
0.114 1/5 3.0 1-2 5.11(-6) 5.79(-6)
0.114 1/5 7.0 1-0 1.32(-1) 1.33(-1)
0.114 1/5 7.0 1-2 1.27(-1) 1.32(-1)
0.114 1/5 9.0 1-3 4.08(-2) 4.12(-2)
0.114 1/2 3.8 0-1 4.30(-5S) 4.69(-5)
0.114 1/2 3.8 0-2 1.28(—11) 1.40(-11)
0.114 1/2 4.4 0-2 1.13(-9) 1.14(-9)
0.114 1/2 4.4 1-2 2.23(-5) 2.52(-5)
0.114 1/2 5.0 0-2 2.51(-8) 2.53(-8)
0.114 1/2 6.0 0-1 2.85(-3) 3.03(-3)
0.114 1/2 6.0 0-2 9.43(-7) 9.46(-7)
0.114 1/2 8.0 0-2 8.12(-5) 8.08(-5)
0.1287 1/2 6.41825 0-2 3.21(-5) 3.20(-5)
0.1287 1/2 7.41825 1-3 9.50(-5) 9.84(-5)
0.2973 5/4 3.47275 0-2 1.69(-7) 1.70(-7)
0.2973 5/4 4.47275 1-3 5.29(-7) 5.52(-7)
0.2973 5/4 4.47275 2-0 2.31(-5) 2.30(-5)
0.2973 5/4 4.47275 2-1 5.97(-3) 6.50(-3)
0.2973 5/4 4.47275 2-3 3.52(-4) 3.95(-4)
0.3 2/3 4.0 0-1 1.08(-1) 1.08(-1)
0.3 2/3 4.0 0-2 1.22(-3) 1.20¢-3)
0.3 2/3 4.0 1-2 4.18(-2) 4.41(-2)
0.3 2/3 4.0 1-3 1.46(-5) 1.51(-5)
0.3 2/3 4.0 2-3 1.33(-3) 1.48(-3)
0.3 2/3 4.0 3-1 1.46(-5) 1.51(-5)
0.3 2/3 5.0 1-2 1.82(—1) 1.87(-1)
0.3 2/3 5.0 1-3 3.31(-3) 3.36(-3)
0.3 2/3 6.0 1-3 3.70(-2) 3.73(-2)
a) o, p and £ are the dimensionless parameters in the model of Secrest and Johnson. (Our E is their £/2.)
b) Exact quantum mechanical results of Secrest and Johnson [13].
¢) Number in parentheses is power of 10.
d) Results from using eq. (B1).
5. Discussion the integral [5, 7]. The agreement of these values
with the present ones, where they overlap, is good.
There are few semiclassical data in the literature As already noted, a few complex-valued trajectories
with which to compare the semiclassical results for had been calculated (results for S,,,,, not given) [9],
classically-inaccessible transitions in table 1. The but most diverged [9, 14]t. Thus, the present method
former include only values of ISmn[2 for slightly
classically-inaccessible transitions, i.e., having proba- t A few values of |S,,,)|2 from trajectories which did not di-
bilities not lower than ca. 10~3 , namely ones obtained verge are the following, corresponding to the conditions in

rows 1, 2 and 25 of table 1: 9.14(—10); 7.59(-4); 1.51(-5).
These values agree exactly with the corresponding values in
table 1.

by analytic continuation from real-valued trajectory
data [9], and ones obtained by direct evaluation of
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is far superior to any of thesef.

It is perhaps worthwhile emphasizing that the only
approximation used in the present work is the semi-
classical approximation. In spite of the Airy integrals
appearing in the uniform approximation for |S,, n|2
(appendix A, or Part II) there is no linearity of any
potential energy function assumed near any classical
turning point. (Tacit use in Parts I to III of the method
of Langer [20] avoids any such approximation.) Nor,
when there are two turning points close together, do
we assume any parabolic approximation. (The method
of Chester et al., used in Part II avoids any such ap-
proximation.) Again, all coordinates and momenta are
treated numerically in the integration on the same
basis. The “‘disappearance” of one differential (dR) in
an integral for S,,,, is a result of a canonical trans-
formation followed by an exact integration and is de-
scribed in Part III. The reasons for prior conversion of
all coordinates but R into angle variables is discussed
in Part I.

The expression for S,,,, in Part I1I involves an in-
tegral, with volume element idw?, over a unit
volume 0 < w,(-) < 1 [1-5]. As shown in Part I only
small neighborhoods of certain trajectories contribute
significantly to this integral, when a stationary phase
(or uniform) asymptotic approximation is used to
evaluate the integral. Thus, regardless of whether this
neighborhood is one beginning with a real w0 or, in
classical-inaccessible n - m transitions, a complex-
valued w9, one does not have to “average over w®’s”.

Finally, we note that the method outlined in this
letter for making possible the integration of these
complex-valued trajectories is readily extended to
higher number of dimensionst. In this connection, we
also note the derivation of the uniform approxima-

I A procedure for ealculating complex-valued trajectories,
quite different from the present one, has also been de-
veloped by George and Miller [19]. After the present letter
was submitted, we received a copy of this manuscript.
There are certain similarities (e.g., use of a step which we
have labelled step 1) and certain differences (e.g., we use
the method of appendix A to locate the initial w® and then
integrate the trajectories in a forward direction. They, in-
stead integrate one set of trajectories forward from state n,
integrate another set backward from state m, and match
the two sets in the middle by an iterative process involving
the solution of simultaneous equations). Their five results
agree exactly with the corresponding five results in our
table 1.
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tion of the integral for §,,,,, for N-dimensional sys-
tems [4].
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Appendix A. Procedure to obtain an initial guess for
0
w

The real-valued data plotted in fig. 1 could, ac-
curately enough for the present purpose, be fitted by
the first three terms of a Fourier series

nf= a, ta; cos 2mw0 + b, sin 2mw0 . (A1)

(Frequently, for example, the higher Fourier coeffi-
cients were smaller by a factor of at least 10—3.)

When m was classically inaccessible, it was set equal
to the nf given by (A1), and the resulting equation
was solved, yielding a pair of complex conjugate solu-
tions, w0

0
max(min)

£ (2m) ! cosh™! [(m—ag)(7if iy —90)) AA2)

where w?nax(min) is the w0 at which 71f = ﬁ;ax(min) in
fig. 1. It so happened, for the cases in table 1, that
= pn, but this approximation is not needed. We ob-
serve that with gy ~ n, w0 — w0 has a very large

imaginary component when |m—n| > Iﬁrfnax(min)—nl.

w0 =w

Appendix B. Equations for |S,,,,, 2

The transition probability P,,,, for n - m is given
by

+ With a higher number of dimensions all w?‘s would change
during At" and some compromise At” might be used, one
which would make only the highly oscillative w9’s be real
or near-real. In a collisional translational—-vibrational—rota-
tional energy transfer, for example, the orbital frequency
at large R is zero, so its Aw® is zero. The rotational fre-
quency is also typically relatively small, and so its Aw®
during iAt” is also small.
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Py = 18,17 = 2mp[(1+sinB) 512 AT (1))

+(1—sinB)[ {172 AI2(151)] (B1)

an expression derived in Part II of this series [2],
wheret

151 = (31ABY—ADI1? = (3IImAl}¥* (B2)

[since A(Wg) =A(W])*] ;W(l) and Wg are the points of
stationary phase (the solutions of the equation nf =
m) [1-5];0""'?* and B/2 are the amplitude and the
phase of (d77/dw9)!/2 [=p~"'2 exp(i8/2)] ; Ai and
Ai’ are the Airy function and its derivative, and A is
given by

f pR

A——217fwdn—<f deR> (B3)

PR

for a system with one internal coordinate.

Appendix C. Conversion of a phase integral to one in
action—angle variables in the expression for S,,,,,

The A in eq. (B3) is in terms of action—angle
variables but the trajectory data were in terms of ¢’s
and p’s. To convert the final trajectory results from
conventional coordinates to action—angle variables we
use a standard generating function as follows.

The phase A appearing in eq. (B3) equals 47 plus a
term denoted in this appendix by F,(P,, P,)/#, with
A =1. P, and P, signify initial and final values of the
totality of momentum variables, e.g., P, denotes the
final values of the momenta 2n(7if+}) and plfq. We

have
af ok

F,(Py,P))=~2n [ wdn— [ Rdp, . (C1)
" %

1 Recalling eq. (3.12) of ref. [2] where { is negative in our
case and where fis our A, WY is that member of the com-
plex conjugate roots (wl, Ol) which makes ¢ negative, ie.,
as shown below makes Im A(wo) positive,

Proof: [A(WY) — A(WIN?3 equals on selecting the ap-
propriate branch [(-=1D)() Im A(WO)] 32 when Im A(wo):"/2
is positive, and so equals —[Im A(wo)] 32 thus making ¢

< 0. Typically, one finds g ~ +71r [2].
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F4(P,, Py), defined by (C1), is also a generating func-
tion for a canonical transformation from the P’sto
the Py’s [15]. When the conventional coordinate and
momentum is used for the harmonic oscillator instead
of these action—angle variables one first evaluates an
integral which we shall call f4(p2 ry)

P2
J4(pyspy) = fqdp f Rdpp . (€2)

A generating function transformmg (q,p) into (Q, P),
will be written as ,(p, P) and is given below. The os-
cillator Q is w and its P is the classical action, i.e.,
2n(n+3). The R and PR are not changed by our
transformation, and so it is only necessary to consider
in the p4 and ¢ below the transformation from the
oscillator (g, p) to the oscillator (Q, P).

We note that [15]

F4(P2’P1) =f4(p2:p1) +994(p1aP1) —«p4(p2,P2) .
(€3

¢4(p,P) can in turn be expressed in terms of a well-
known generating function ¢, (g, Q) for transforming
conventional to action—angle variables for the oscilla-
tor [21]#

¢,(q,0) =4q* cot2nQ (C4)
with p = 3¢, /dq and P = —9¢,/0Q. Further {15],
0, (0. P)=¢,(q.0)+QP —qp . (C5)

Since p equals q cot 2nQ, the (g, Q) given in (C4)
is seen to equal pgq.
The above equations thus yield

P2
Fy(Py.P) =~ [ adp +4(pya, — Py 4)
131
rk
+PQ, —P,0, ~ [ Rdpg. (C6)
rk

In these equations, we note that

Ql = w0 s Q2 = Wf s
)

P =2n(n+}),  P,=2n(n'+}),

* Note that the w in ref. [20] is unity in our case.
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where wi is the final value of w.
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