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A canonical transformation is described for uniformizing the coordinates used in Paper I of this series. 
For comparison with the results of Paper III, which based a uniformization on exact trajectories, the 
present article describes one based on elastic collision trajectories. The question of invariance of S-matrix 
elements with respect to semiclassical unitary transformations is also discussed. 

I. INTRODUCTION 

In an earlier paper,1 hereinafter referred to as 
Paper III, we showed that all coordinates, including 
the radial motion, could be uniformized by a canon-
ical transformation of the coordinates of Paper J.2 
It led to new coordinates, one of which was time 
and the others were constants of the motion. When 
this canonical transformation was of a symmetrical 
form it led to an integral expression for Smn satis-
fying microscopic reversibility. The canonical trans-
formation was made using exact classical trajectories. 

Prior to that work and leading to it, we had in-
vestigated the possibility of generating a transforma-
tion using trajectories for elastic collisions. The results 
for Smn are presented here for comparison purposes. 
In this comparison we employ a transformation which 
parallels that termed "TVR" in Paper III. An analo-
gous derivation can be given paralleling the trans-
formation labeled "FVR," but is omitted in the 
interests of brevity. 

II. CANONICAL TRANSFORMATION AND 
THE WAVEFUNCTION 

Again, in the interests of brevity, a familiarity 
with the methods employed in Paper III will be as-
sumed. The symbols used there will be employed here. 
The equations of Paper III will be indicated by a 
prefix III. 

Instead of the generating function G2(q, fJ) used in 
(III.4.6) to relate new variables (ij, fJ) to the vari-
ables (q, p) of Paper I [a G2( q, fJ) based on the exact 
trajectoriesJ, we use now a G2 (q, p) based on any 
elastic collision. The properties of the latter are de-
noted by a tilde, and the turning point of the R mo-
tion in this elastic collision (for the instantaneous E 
and ii) is 

G2(wR, iiE) = t iiihwi+1R PR(R, ii, E)dR, (2.1) 
i:=l 'iF 

where E is obtained from the instantaneous PR, R, 
and iii by 

trifugal potential (nl+!)2fi2/2J.LR2. (iil describes the 
orbital motion.) V (R) is the potential energy for an 
elastic collision. The integral in (2.1) is evaluated 
along the elastic collision trajectory passing through 
(wR), PR(R, ii, E) being 

PR(R, ii, E) = ± {2).1[E-Hoint(ii, R) - V(ll) J)1/2, 

PR(RT, ii,E) =0. (2.3) 

The minus sign in (2.3) refers to the ingoing portion 
of the trajectory. 

Using the Eq. (III.4.2) for the transformation, 
Eqs. (2.1)-(2.3) yield the new coordinates (1h): 

aG2 jR ( ).IlIio )_ 
U;'i= a(iii/i) =Wi- 'RT PR(R, ii, E) dR, (2.4a) 

aG2 jR( ).I )_ 
T= aE = 'RT pR(R, ii, E) dR, (2.4b) 

where lIio is aHoint(ii, R)/a(iiih) , the mechanical fre-
quency for the ith degree of freedom. Equation (2.1) 
also yields, from (III.4.2), 

(2.4c) 

Since dT equals ().I/PR) dR, (2.4a) can be rewritten 
suggestively as 

Wi=Wi- fT IIPdT, 
o 

(2.4d) 

where T is given by (2.4b) as a function of the in-
stantaneous w, R, ii, and E. (R? is a function of w, 
R, ii, and E.) Equation (2.4d) shows that for an 
elastic collision Wi is a constant of the motion, equal 
to the value of Wi at the turning point.3 For the same 
elastic collision trajectory, T is the time, measured 
relative to the time at the turning point of that 
trajectory. 

From (2.4c) it follows that PR equals the instan-
taneous value of PR along the classical collision tra-
jectory of the system. From (2.2) and (2.4c) it then 
follows that only at large R does E reduce to the 
total energy E. 

In summary, the canonical transformation resulting 
(2.2) from the generating function (2.1) utilizes the clas-

Hoint(ii, R) is the "internal coordinate" Hamiltonian sical trajectory for an elastic collision to relate (q, p) 
for the elastic collision, but it also includes any cen- to (ij, fJ), and the transformation equations are given 
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by (2.4). One can verify from these equations that 
at large R along the trajectory of the actual system, 
Wi is a constant (unlike Wi or R) and that 1 is, apart 
from an additive constant, the time variable at large R, 
along each arm of the actual trajectory. 

Equations (III.4.3)-(III.4.5) for the wavefunction 
l[;nE(+) (WT) in the new representation remain appli-
cable here: 

l[;nE(+) (WT) = Aexp[iS(WT, nE)/n], (2.5) 
where 

r+l 
G1(q, ij) =G2(q, p) - L i]iP;, (2.7) 

i=l 

but now G2 is given by (2.1). pO denotes 

(nIh, '.', nTh, E). 
Using these equations and a line of argument par-

alleling that employed in Paper III one finds that S is 
nE) =2rr ± (iiiWi_jiii Widii i) + (ET) 

fi ,=1 ni fi 

-lk Rdk+jk R (£,ii,k)dk+!n1rr+(!rr) (2.8) 
-kn 0 

instead of by Eq. (III.4.12). The +(trr) term is 
present if (wR) is on the outgoing arm of a trajec-
tory. The integrals over iii and k are along the exact 
trajectory passing through (wR) , while that over k is 
along the indicated elastic collision trajectory passing 
through (wR) and having a constant iii equal to the 
instantaneous iii of the actual trajectory and a PR at 
(wR) equal to the instantaneous PRo 

The relation between the total energy E and the 
variables iii and £ is seen from (2.2) to be 

The expression for the phase S of l[;nE(+) is given by 
(2.8). Using the time-reversal arguments in Paper III 
the phase SH (WT, mE') is given by 

S(-)(WT mE') ( r'o; ) 
fi' = 2rr miwi- J

mi 
widmi 

(3.2) 

instead of (III.6.4). A H is given by an equation 
similar to (2.10) but referring to the time-reversed 
m trajectory. 

Equations (3.1), (3.2), and (2.8) yield 

Smno(E- E') = J AA (-) expill'dT II dWi, (3.3) 

where 
1l'=S(WT, nE)-S(-)(WT, mE'). (3.4) 

Whereas in Paper III the T integral could be eval-
uated exactly, yielding a 0 function, this is no longer 
the case for (3,3), since now the mi and k in the 
upper limits in (2.8) and (3.2) vary with T. We give 
two approximate evaluations, which preserve the mi-
croscopic reversibility obeyed by (3.1): 

(1) Apart from the (£-£')r/fi term in 11', the 
remaining portion of 11' has only a slight dependence 
on T, attaining constant values at T= ± 00. AA (-) also 
attains constant values at T= ± 00. If one integrates 
over T the term involving (E- E')r/fi, using a result4 

relating 0(£-£') to o(E-E'), one finds 

Smn= J I aWi(n)/aiJJll-I/21 aWi(m)/awll-I /2 

X(expill)IIdwi, (3.5) 
i 

E=E+H1, (2.9) where 
where HI is the perturbation energy, i.e., the part of 
Hamiltonian not present in (2.2), and is expressed as 
a function of (wTiiE) using the transformation of 
variables given by (2.4). 

Using Eq. (III.5.2) to obtain the amplitude A 
from S, or using flux conservation, one finds that 

A = I aWi/awll-l/2(aE/aE)-1/2h-I/2, (2.10) 

where w/ is the initial value of Wi and where A can be 
complex valued and so I I does not denote absolute 
value. Because of (III.5.2) the present l[; satisfies the 
same conditions of normalization, orthogonality, and 
completeness as those given there. 

III. S MATRIX 

The expression to be evaluated for the S-matrix 
Smn is, as in (III.2.4), 

Smno(E-E') = fl[;mE'(-)* (WT) l[;nE(+) (WT) dT IIdwi. (3.1) 

l k (n) f.km jk(n) jk(m) 
- Rdk- Rdk+ Rdk- Rdk 

-kn kIm) 0 0 

+!(nl+ml+1)rr, (3.6) 

where the (n) and (m) have been introduced, as in 
Paper III, to indicate the nand m trajectories. The iii, 
mi, k(n), and k(m) are the values of these variables 
at the given T. 

If one uses the value of the integrand at T=O, the 
elastic collision integrals in (3.6) vanish, since ken) 
and k(m) vanish at T=O. Equations (3.5)-(3.6) are 
then the same as (III.7.S) and (III.7.6). 

(2) An alternative approximation is to replace the 
integral over IIi dWi by its value at T = + 00, when 
T is positive and by its value at T= - 00, when Tis 
negative. We denote these values by Bmn and Bn'm', 
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respectively, Bmn being 

Bm", = f I aw;jaWjO 1-1/2 ( II dWi, (3.7) 
i 

where now 

[ jn' ] lk L;: (ii;-m;)wi- . widii i - Rdk 
t n1. -kn 

(3.8) 

since the integrals over iii; and k in (3.6) vanish as 
r---7+ 00. (When T-4+ 00 there is no collision for the 
time-reversed system, and so iii; and k(m) tend to 
their initial values, m; and km .) The values of iii and 
k in (3.8) now refer to the postcollision values for 
the n trajectory. Bn'm' is obtained from Bmn by time 
reversal. We now have 

100 [exp 

+Bmn (3.9) 

Upon integrating (3.9) over E' one obtains" 

( 3.10) 

A numerical test of (3.10) is given in Ref. 6. When 
the elastic collision used in G2 is based on a zero-
interaction Hamiltonian, the if, integrals in (3.8) equal 

and respectively. Equation 
(3.10) then reduces to (III.7.9), apart from an added 
factor in the integrand of Bmn , expHii1-m1)7ri, and 
apart from one in that of Bn'm', expHnl-iii1)7ri. 
These factors become unity in the stationary phase 
approximation to the respective integrals, noted below. 

The points of stationary phase in (3.6) or (3.8) 
are the solutions of 

aAjaW;= ii;-iii;= 0, 

alljaw;=iii-mi=O, 

(for 3.6) 

(for 3.8). (3.11) 

In the stationary phase approximation, it can readily 
be shown that Smn equals Bmn and, in turn, Bn'm', 
and that it also equals the Smn in Paper III, both 
the (TVR) there and the (FVR). Thus, just as the 
exact Smn is invariant to unitary transformations of 
the wavefunction; the asymptotic expression (e.g., 
stationary phase approximation) to Smn is invariant 
to semiclassical unitary transformations of the semi-
classical wavefunction. (This invariance, pointed out 

previously,? was also seen in Paper III.) The integral 
expression for the semiclassical Smn is not, however, 
invariant, as one sees both in Paper III and in com-
paring (3.9) with (III.7.6) or (III.7.9). Nevertheless, 
it is interesting that an integral expression is sometimes 
the more accurate,S probably when the phase of the 
integrand is only slowly varying. 

In balance, the derivation of an integral expression 
for Smn given in Paper III, e.g., Eqs. (III.7 .6) or 
(IIL7.9), is preferable to that in the present paper, 
since no approximation was needed in evaluating the 
T integral there. The results are nevertheless of com-
parable accuracy6 and, in the stationary phase ap-
proximation, are identical. 
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