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A canonical transformation is described for uniformizing the coordinates used in Paper I of this series.
Ifor comparison with the results of Paper III, which based a uniformization on exact trajectories, the
present article describes one based on elastic collision trajectories. The question of invariance of S-matrix
elements with respect to semiclassical unitary transformations is also discussed.

I. INTRODUCTION

In an earlier paper,! hereinafter referred to as
Paper III, we showed that all coordinates, including
the radial motion, could be uniformized by a canon-
ical transformation of the coordinates of Paper 1.2
It led to new coordinates, one of which was time
and the others were constants of the motion. When
this canonical transformation was of a symmetrical
form it led to an integral expression for S,. satis-
fying microscopic reversibility. The canonical trans-
formation was made using exact classical trajectories.

Prior to that work and leading to it, we had in-
vestigated the possibility of generating a transforma-
tion using trajectories for elastic collisions. The results
for Sam. are presented here for comparison purposes.
In this comparison we employ a transformation which
parallels that termed ‘“TVR” in Paper III. An analo-
gous derivation can be given paralleling the trans-
formation labeled “FVR,” but is omitted in the
interests of brevity.

II. CANONICAL TRANSFORMATION AND
THE WAVEFUNCTION

Again, in the interests of brevity, a familiarity
with the methods employed in Paper IIT will be as-
sumed. The symbols used there will be employed here.
The equations of Paper III will be indicated by a
prefix III.

Instead of the generating function Gs(g, §) used in
(I11.4.6) to relate new variables (g, p) to the vari-
ables (g, p) of Paper I [a Gy(g, §) based on the exact
trajectories], we use now a G:(g, ) based on any
elastic collision. The properties of the latter are de-
noted by a tilde, and the turning point of the R mo-
tion in this elastic collision (for the instantaneous E
and 7) is RT(E, @i, w, R):

r R
Go(wR, 7E) = 3" it [ pr(R, 7, B)dR, (2.1)
=1 BT

where E is obtained from the instantaneous pz, R,
and 7; by
E=(pr*/2u)+V(R)+Hs"(7, R).  (2.2)

H¢* (72, R) is the “internal coordinate” Hamiltonian
for the elastic collision, but it also includes any cen-

trifugal potential (m+3)24%/2uR? (7, describes the

orbital motion.) V(R) is the potential energy for an

elastic collision. The integral in (2.1) is evaluated

along the elastic collision trajectory passing through

('ZDR), ﬁR(R) n, E) being

pr(R, 7, B) =+ {2u[ E—Ho™ (7, B) — V (B) ]},
pr(RT, 7,E)=0. (2.3)

The minus sign in (2.3) refers to the ingoing portion
of the trajectory.

Using the Eq. (II11.4.2) for the transformation,
Egs. (2.1)-(2.3) yield the new coordinates (i)

¢
Myi

_ 3G /R (

Wi= ———7" =w;i— —— = =_
a(ﬁill) BT ﬁR(R, i, E)
oG k -

)
ok BT [)R(R, n, 1’1)
where »® is 0H,™* (A, R)/d(7i;k), the mechanical fre-

quency for the ith degree of freedom. Equation (2.1)
also yields, from (I11.4.2),

)dﬁ, (2.4a)

(2.4b)

pr=0G,/dR=pr(R, %, E). (24c)

Since dr equals (u/pr)dR, (2.4a) can be rewritten

suggestively as

u')i=wi—/ ViodT, (24d)

0

where 7 is given by (2.4b) as a function of the in-
stantaneous w, R, 7, and E. (BT is a function of w,
R, @, and E.) Equation (2.4d) shows that for an
elastic collision w; is a constant of the motion, equal
to the value of w; at the turning point.? For the same
elastic collision trajectory, = is the time, measured
relative to the time at the turning point of that
trajectory.

From (2.4c) it follows that Pr equals the instan-
taneous value of pr along the classical collision tra-
jectory of the system. From (2.2) and (2.4c) it then
follows that only at large R does E reduce to the
total energy E.

In summary, the canonical transformation resulting
from the generating function (2.1) utilizes the clas-
sical trajectory for an elastic collision to relate (g, p)
to (g, p), and the transformation equations are given
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by (2.4). One can verify from these equations that
at large R along the trajectory of the actual system,
W; is a constant (unlike w; or R) and that 7 is, apart
from an additive constant, the time variable at large R,
along each arm of the actual trajectory.

Equations (I11.4.3)-(111.4.5) for the wavefunction
YagP (@) in the new representation remain appli-
cable here:

Fne P (07) = Aexp[iS(wr, nE) /%], (2.5)

where _
S(g, ") =S5(q, 1) —Gi(g, D, (2.6)
Gile, D) =Golg, D)~ > @i (21)

=1
but now G: is given by (2.1). p° denotes
(rah, =+, nsh, E).

Using these equations and a line of argument par-
alleling that employed in Paper III one finds that S is

Q (47 r i E
ﬂf"l’LEZ =2r Z (‘flﬂl_),—/ w,dﬁ,) + ( T)
ﬁ =1 ni ﬁ

k k
- / Rik+ / R(E, 7, By df+ina+ () (2.8)
ki 0

instead of by Eq. (II1.4.12). The + (}r) term is
present if (wR) is on the outgoing arm of a trajec-
tory. The integrals over 7i; and %k are along the exact
trajectory passing through (wR), while that over £ is
along the indicated elastic collision trajectory passing
through (wR) and having a constant 7; equal to the
instantaneous 7; of the actual trajectory and a pg at
(wR) equal to the instantaneous pg.

The relation between the total energy E and the
variables 7; and E is seen from (2.2) to be

E=E+H, OE/0E=1+4+0H,/0E, (2.9)

where H, is the perturbation energy, i.e., the part of
Hamiltonian not present in (2.2), and is expressed as
a function of (wrAE) using the transformation of
variables given by (2.4).

Using Eq. (IIL.5.2) to obtain the amplitude A
from S, or using flux conservation, one finds that

A= | aw;/ow, [T2(OE/IE)~1ep 12, (2.10)

where " is the initial value of 1; and where A can be
complex valued and so | | does not denote absolute
value, Because of (II1.5.2) the present ¢ satisfies the
same conditions of normalization, orthogonality, and
completeness as those given there.

III. S MATRIX

The expression to be evaluated for the S-matrix
Smn 1, as in (II1.2.4),

Smnd(E—E') = f&,,.E,<—>*(wT)¢,.E<+>(wr)drI_Idu';i. (3.1)
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The expression for the phase S of J,z™ is given by
(2.8). Using the time-reversal arguments in Paper ITI
the phase S‘7(wr, mE’) is given by

S (1 ’ e
Mé’_”@ =y (n‘nu')i—/ waiﬁi>
't k Koo
+< - >_/ de+/ Rdk—3mm— (37) (3.2)
km 0

instead of (II1.64). A« is given by an equation
similar to (2.10) but referring to the time-reversed
m trajectory.

Equations (3.1), (3.2), and (2.8) yield

Smd(E—E') = [ AA© expitdr [ dwws, (3.3)

where _
A'= 8 (wr, nE) — 8 (wr, mE'). (34)
Whereas in Paper IT1 the 7 integral could be eval-
uated exactly, yielding a & function, this is no longer
the case for (3.3), since now the 7; and % in the
upper limits in (2.8) and (3.2) vary with 7. We give
two approximate evaluations, which preserve the mi-

croscopic reversibility obeyed by (3.1):

(1) Apart from the (E—E’)r/f term in A’, the
remaining portion of A’ has only a slight dependence
on 7, attaining constant values at r=4 0. AA also
attains constant values at == . If one integrates
over  the term involving (E— E’)r/#, using a resultt
relating §(E—E’) to 6(E—E’), one finds

Smn= [ | 9D:(n) /30 [ | dwi(m) /o, [
X (expid) H dw;, (3.5)

where

A=21r2 l:(ﬁi—mi)u-)i—f ‘widﬁ;—/ l‘wi(lﬁli]

i mi

k(n) ke k(n) k(m) _
" Rak— / Rik+ / Rafi— / Rdi
k\m) 0

—kn 0
+%(7L1+m1+ 1)7";

where the (z) and (m) have been introduced, as in
Paper III, to indicate the # and m trajectories. The 7,
s, k(n), and k(m) are the values of these variables
at the given 7.

If one uses the value of the integrand at =0, the
elastic collision integrals in (3.6) vanish, since k(#n)
and k(m) vanish at r=0. Equations (3.5)-(3.6) are
then the same as (II11.7.5) and (IIL.7.6).

(2) An alternative approximation is to replace the
integral over II; dw; by its value at 1=, when
7 is positive and by its value at r=—co, when 7is
negative. We denote these values by B,. and B/,

(3.6)
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respectively, B,.. being

Bun=[| 0;/b |712(expiA) H dw:;,  (3.7)
where now
A=Y [(m— )i / widﬁi]— kk Rik
k ko
+ /0 Rk~ fo Rik+3(m+m+1)x  (3.8)

since the integrals over #i; and k in (3.6) vanish as
7>+ o, (When r—+ o there is no collision for the
time-reversed system, and so #; and k(m) tend to
their initial values, m; and k,.) The values of 7; and
k in (3.8) now refer to the postcollision values for
the # trajectory. B, is obtained from B, by time
reversal. We now have

0 - - - -
(E—=E)r\ B\ dr
mna E_E’ an’m’] (_‘Q>J(_'> -
SublE~E) . [eXp % oE) h

°° W(E—E)r\(oFE\" dr
t B | [CXP 7 ag) w9

Upon integrating (3.9) over E’ one obtains®
Smng% (Bn’m’+an) . (3.10)

A numerical test of (3.10) is given in Ref. 6. When
the elastic collision used in G is based on a zero-
interaction Hamiltonian, the k integrals in (3.8) equal
$(+3)7 and —3(m+3)w, respectively. Equation
(3.10) then reduces to (I11.7.9), apart from an added
factor in the integrand of Bu., expg(di—mm)wi, and
apart from one in that of By, expy(m—mi)wi.
These factors become unity in the stationary phase
approximation to the respective integrals, noted below,

The points of stationary phase in (3.6) or (3.8)
are the solutions of

aA/aU_)i=ﬁi—77Li=0, (fOI‘ 36)

A/ dWi=T;—m;=0, (for 3.8).  (3.11)
In the stationary phase approximation, it can readily
be shown that S, equals B,, and, in turn, B,
and that it also equals the S,. in Paper III, both
the (TVR) there and the (FVR). Thus, just as the
exact Smn is invariant to unitary transformations of
the wavefunction, the asymptotic expression (e.g.,
stationary phase approximation) to S.. is invariant
to semiclassical unitary transformations of the semi-
classical wavefunction. (This invariance, pointed out
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previously,” was also seen in Paper II1.) The integral
expression for the semiclassical S,. is not, however,
invariant, as one sees both in Paper III and in com-
paring (3.9) with (II1.7.6) or (II1.7.9). Nevertheless,
it is interesting that an integral expression is sometimes
the more accurate® probably when the phase of the
integrand is only slowly varying.

In balance, the derivation of an integral expression
for S.. given in Paper III, eg., Eqgs. (II1.7.6) or
(II1.7.9), is preferable to that in the present paper,
since no approximation was needed in evaluating the
7 integral there. The results are nevertheless of com-
parable accuracy® and, in the stationary phase ap-
proximation, are identical.
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