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A canonical transformation of coordinates in Part I is made using exact trajectories. The transforma-
tion tends to uniformize all coordinates including that for the radial motion, thus removing the singularities
in the simple semiclassical exponential wavefunction in typical cases. The new coordinates are “time”
and certain constants of the motion. A symmetrical choice for the transformation then yields an integral
expression for the S matrix satisfying the principle of microscopic reversibility. Topics discussed include
semiclassical unitary transformations and time-reversal properties of action-angle variables and of semi-
classical wavefunctions. Applications and numerical tests of the integral expression for Sn, are in progress.

I. INTRODUCTION

In Part I we described a method for obtaining a
semiclassical expression for the § matrix for inelastic
and reactive collisions, using data on exact classical
collision trajectories and a semiclassical wavefunction.!
In a different approach Miller? has used instead a
semiclassical form of a Feynman propagator? Both
treatments have been shown to give similar results
for the asymptotic approximation for S-matrix ele-
ments Syt

In the present paper we turn our attention to
finding for S.. an integral expression which, like its
asymptotic approximation, satisfies the principle of
microscopic reversibility, We first show that a suitable
canonical transformation of the results for Part I!
leads to a uniformization of all coordinates, with at-
tendant advantages noted below, and leads thereby
in a systematic way to an integral expression for the
semiclassical S matrix. A symmetrical choice for the
transformation makes the expression satisfy the desired
principle.

As in other recent work,'** we employ action-angle
variables to describe all coordinates but the radial
one.! These variables were used many years ago in
celestial mechanics and later in old quantum theory.
Subsequently, apart from a few isolated applications,’
they were largely unused in molecular collisions until
our work some years ago.® One of their advantages
is that they provide a more physical description of
the actual motions in the system.

A second useful property of these coordinates, espe-
cially useful from the semiclassical viewpoint, is the
uniformized description they give for the motion of
all internal coordinates, including rotational and or-
bital motion. This uniformization, for a molecule with
N vibrational coordinates, permits the use of a single
semiclassical term instead of a sum of 2V terms and,
unlike the sum, is valid in all domains and so need
not be replaced by Airy functions in certain regions.
In a system undergoing collision there are also the
orbital, rotational, and radial motions of the collision

partners to be considered. The first two are uniform-
ized by the action-angle variables but the radial mo-
tion is not, since it does not have an ‘‘action-angle”
counterpart in the strict sense of the term, just as
translational degrees of freedom differ from internal
coordinates in that they are not “quantized.” The
canonical transformation introduced in the present
paper uniformizes this radial motion also and so com-
pletes the uniformization of all coordinates. In Eq.
(4.18) of Part I a uniformized R coordinate (‘“‘wz”)
was suggested, and the present paper describes the
elaboration of that idea.

II. SUMMARY

Some familiarity with either of the two articles in
Ref. 1, referred to collectively as Part I, will be sup-
posed for brevity, We recall that in Part I the Schro-
dinger wavefunction was obtained in semiclassical form
by determining its phase and amplitude. The former
was found by solving the Hamilton-Jacobi partial
differential equation by the method of characteristics.
Such a solution involved the integration of Hamilton’s
equations of motion, the exact classical trajectories
being the characteristics. From a knowledge of the
initial wavefunction, the initial phase was known as
a function of all the coordinates. The increment in
phase was then obtained along the trajectories by
means of the integration, so yielding the phase of the
final wavefunction as a function of all coordinates.
The amplitude was obtained from the flux conserva-
tion equation. It can also be obtained from the phase
using the “van Vleck determinant,” as in Sec. V
later,

We denote by ¢.z™ (wR) the semiclassical wave-
function obtained in Part I for a system in the initial
quantum state # (=my, +++, #n,) and energy E. The
coordinates are transformed in the next section from
(wy, ***, w,, R) to (W, *+*, b, 7). Various operations
in the present paper are summarized in (2.1)-(2.5),
where Swma is an on-the-energy shell S-matrix element
for a transition from state # to state m. The w; are angle
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variables and R is a radial coordinate:

Smnd (E— E') = (mE'O | g ED) (2.1)
= [(mE'"™ | wR )dwdR{wR | nE®) (2.2)
= [{mE'® | wr)dbdr @br | wR)

XdwdR(wR | nE®) (2.3)

= [(mE'® | br)dbdr(ir | nED )  (2.4)
=8(E—E") [{mE® | )dw{i | nE™).
(2.5)

Equation (2.1) is a standard expression’ involving
outgoing waves (—sign) in a state mE’ and ingoing
waves (-+sign) in a state #E. Equation (2.2) intro-
duces an identity operator [ | wR)wdR{wR |, as does
(2.3). The element (wR|nE®) is s (wR), and
has a phase S(wR, nE). Equations (2.1)-(2.2) could
not be used in Part I because those semiclassical
wavefunctions were not valid near the classical turn-
ing point of the R motion. (Instead a method which
calculated Swm. from wavefunctions at large R was
devised.) The transformation element (&r|wR) ap-
pears later, apart from a preexponential factor, as
exp[ —iG1(wR, wr) /h]. The wavefunction in the or
representation, (7 | nE®), is denoted later by
$ox® (10r) and has a phase S(wr, nE); (mE'® |r)
appears as YmgT*(1r), with a phase — SO (wr, mE’).
Equations (2.4) and (2.5) yield an integral expression
which is evaluated in the present article.

In Sec. ITI the phase of semiclassical wavefunction
of Part T S(wR, »nE) is given. The method of trans-
forming this wavefunction to one in a new representa-
tion (r) is described in Sec. IV, together with a
specific form which makes r a time coordinate and
makes the 1; constants of the motion. The amplitudes
of the original and of the transformed wavefunction
are given in Sec. V. Time reversal and its conse-
quences for action-angle variables are described in
Sec. VI and in detail in Sec, IX. The expression for
the .S matrix is derived in Sec. VII [Egs. (7.2)~(7.4)].

Several specific forms of (7.2)-(7.4) are then con-
sidered. The first, a “turning-point value representa-
tion,” (TVR), appropriate for inelastic rather than
reactive collisions, is based on one symmetrical form
of the transformation and the resulting Sm. obeys
the principle of microscopic reversibility. Another rep-
resentation considered is a “final-value representation”
(FVR). The resulting Sn. is based on an unsym-
metrical transformation and does not satisfy micro-
scopic reversibility (a fact which does not eliminate
its numerical usefulness). Finally, a symmetrical rep-
resentation for reactive collisions can also be con-
sidered. Apart from several = terms, the FVR is the
same as one obtained by Miller® on more heuristic
grounds..Only in the stationary phase approximation
are the TVR and FVR expressions for S». equal.
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The two representations are compared in Sec. VIII.
Some concluding comments on the topics of uniform-
ization of coordinates and on invariance properties of
Eqgs. (7.5)-(7.6) for Sn,. are made in Sec, X,

III. SEMICLASSICAL WAVEFUNCTION OF PART I

To simplify the notation it will be useful to employ
throughout the n,’s defined, through their relation to
the action variables J;, by Eq. (4.27) of Ref. 1(b).
The n# can be regarded as momenta p;, with initial
values n5. They are canonically conjugate to the
angle variables w;? There is also the radial coordi-
nate R.

The wavefunction for the actual system, Y.zt (wR)
in the wR representation in Part I, is a semiclassical
solution of the time-independent Schrédinger equation
and is given by
YngP (wR) ~ (Rogl/2)—

R

—> 00

Xexp[2wi Z nw;— ik R+% (imr) ]

+ (RoM2) 71 | dw;/dw |7V expiS(wR, nE) /h,

where

(3.1)

1

S(wR, nE)=Y. (/ ;"-)lidwi"i‘niwi(]) h

R
+ | prdR4pr°Ro+-5 (m+1)xh, (3.2)
Ro

as in Egs. (4.25), (4.26), and (4.17b) of Ref. 1(b).
The integrals in (3.2) are evaluated along the actual
classical trajectory, from an initial point (%°R,) to
the turning point of the R motion and thence to the
point (wR). n; and pg® are the initial values of 7;
and pr (the values at w'R;). As is clear from the
discussion in Part I, Eq. (3.2) also serves to extend
the term containing exp(—,R) in (3.1) to smaller R.
Thus, the wavefunction ¥,z (wR) is the sum of two
terms, each of the form A expiS/#:

Ve (wR) = ¥ A expiS(wR, nE)/h.  (3.3)

Integration of (3.2) by parts yields (3.4), on writing
kh for pr and noting that pg° is negative and equal
to —k.h:

S(wR, nE i -
_(W_ﬁ,n_) =27 Z (’;I:,'w,—/ widni)

k

+kR— | Rdk+3imm+(3m), (34)

_k"

where the +1r term is omitted for the ingoing term
in (3.3). In (3.4) % denotes pr/f and so can be posi-
tive or negative in the present paper, unlike %, which
is defined as positive. Computation of 35 from (3.4)°
verifies that .S is a function only of the arguments
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cited (wRnE) and that

BS/awi='ﬁ,-h,
3S/0R = pr=Fkh, (3.5a)
and
BS/an,- =wlh— (p,Rollio/pRo) + %Wﬁﬁu,
0 R
95 _Ru / (i) iR, (3.5b)
E  p&° Ro \PR

where 8y, is the Kronecker delta and #° is the initial
value of 3H/3(n:k) at large R. The trajectories along
which (3.2) and (3.4) are integrated satisfy Eq. (4.15)
of Part I, which are in the form of Hamilton’s equa-
tions, dg;/dt=38H/dp., dp:/dt=—0H/dg;, ! in our case
being a monotonically increasing parameter (e.g.,
“time”) measuring position along the trajectory, For
the present variables these equations in Part I read

dw;/dt=08H/d(n.h), dR/dt=0H/0pr=pr
d(n:h)/dt=—0H/dw;, dpr/di=—0H/3R.  (3.6)

In performing the integrals over n and % in (3.4)
it should be noted that these variables do not usually
vary monotonically along a trajectory, and so cannot
themselves be used as integration variables. Instead
a monotonically varying quantity [the ¢ in (3.6)] is
introduced and then the relevant integrals become
[wi(dn;/dt)dt and [ R(dk/dt)dL.

IV. CANONICAL TRANSFORMATION

The angle variables w; ({=1 to 7) and radial co-
ordinate R are denoted by ¢; (¢=1 to r4-1) and the
conjugate momenta of the latter by pi;. The new
coordinates and momenta are represented by §; and p;.
We set

q.‘=’l.l-),' (1,=1 to f),

Qr+l=7', ﬁf+1=E; (41)

where 7 will prove to be the “time” variable since
Prya is chosen as E.

We seek a canonical transformation via a generating
function Gy(g, p), the transformation being given by®

§i=0Gs/3p:,  pi=03Gs/dgs. (4.2)

The generating function G. serves to transform the
instantaneous variables (w, R) of a trajectory to new
variables (#, v), by matching the instantaneous mo-
menta (p;) to the partial derivatives of G.. From a
knowledge of (wi, «++, wy, R, M, *++, fiy, pr) it yields
a knowledge of (wy, -+, %y, 7, P1, * -, Pra1).

In the wr representation the wavefunction can be
written, except near any possible singularities of A, as

Fnx™ (1) =A expiS (r, nE) /f, (4.3)

where # and E are the initial values of # and E. By
the rule of classical canonical transformations, and
thereby of semiclassical unitary transformations of the

II1 313
¥’s we may write!!
8, 1) =S(g, " —Gilg, D), (44)
where
r+1
Gi(g, ) =Gu(q, P) — _21@:171' (4.5)

according to the usual Legendre transformation.® Be-
cause of (4.2) a differentiation of this expression for
Gi(q, §) with respect to f; shows that Gi(g, §) is
independent of 7, as indeed it must be,

We shall employ a G, based on exact trajectories.
One which we have devised to yield a new convenient
set of coordinates can be written as

Go(wR, WhE)= % ( f ;ﬁidwi+ﬁiTw;T)

R
+ [ pndR+paTRE, (4.6)
RT

where the rhs of (4.6) depends on E implicitly; w,”
and RT remain to be assigned; %7 and pgr” are the
values of n; and pr at (wTRT); and, as the notation
on the lhs of (4.6) implies, we have chosen in ad-
dition to (4.1),

Di=n;Th (i=1 to r). (4.7)
G: has, from (4.2), the properties that
6G2/0w,«=7'1,,~h, aGQ/aR = PR. (48)

Differentiation of (4.6) with respect to n;7% and to E,
using (4.2), yields the new coordinates w; and 7.
Details of the proof are given in Appendix A:

W= 662/ a”-l:,'Th = w,'T - RTMV,'T/ PRT

(when prT5#0) (4.9a)
or=w.T (when $pT=0), (4.9b)
L 1) uRf
™ OE RT<PR aR+ pET
(when prT#0) (4.9¢c)
R “)
=/ (£)ar
o -LT< R
(when prT=0). (4.9d)

;T is the partial derivative of H with respect to n;7h,
holding E, w;, R, and #n;7( j#4) constant, and is the
mechanical frequency of motion of the 7th degree of
freedom at that point. dr, calculated from (4.9c) and
(4.9d) equals udR/pg for a given (prT, RT), and so
equals the “time increment” dt in (3.6). In (4.9d)
7 is thus the time for the system to go from a point
(wTRT) to the point (wR) along a trajectory.
Equation (4.5) now reads

Gr(wR, 1br) =Gy(wR, #TE) — ¥ #Tbh—Er. (4.10)
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Actually, one should have replaced the #, 7,7, p&7,
and E in (4.6) and (4.10) by other symbols (e.g.,
n*, nT* pgT*, and energy E¥) and then verify by
application of (4.8) that

ﬁi*hE 6Gg/aw.~= 6G1/6w1= GS(ZUR, nE) /6w5= ﬁ,h
Pr*=0G,/0R=0G,/0R=0S(wR, nE)/OR=pr, (4.11)

and hence that #n,™* and E* equal %, and E. One
would again thus obtain (4.6), (4.9), and (4.10).
From (3.4), (44), and (4.6) we now may write,

finally,
S(wr, nE E -
‘&viﬁ’"—) =2 ¥ AT+ ?T —ay [ wid;

T

k
[ Rabtimrt G, (412)
ko
where 2T and k, are the values of k£ at (wTRT) and
(#PRp). The (3w) is omitted if, at the given point
(wR), the system has not reached the turning point
of the R motion.

From (4.12) one may verify by differentiation, as
in Appendix A, that

aS/ow,=nTh, 38/9r=E (4.13)

One also notes from (4.4) that 85/8p° equals 8.5/9p"
and, hence, from (3.5b), that

aS/an, = ’U_)ioh-l'%ﬂ'ﬁau,

BS B uRo

— dR 4.14

0E  Ju, (m) Rt o e’ (414)
where

’Ll_)io= 'wio— (;LV,'O/PRO) . (4.15)

Equation (4.14) can also be obtained directly from
(4.12), as in Appendix A.

V. SEMICLASSICAL WAVEFUNCTION.
AMPLITUDE OF ¢

The amplitude A can be evaluated by the flux con-
servation argument used in Part I, noting that the
volume element is now dr]].dw; and that the velocity
along the  coordinate is dH (4, §)/0E, by Hamilton’s
equation since E is conjugate to 7. Since Gi(g, §) is not
explicitly time dependent, A equals H, which in turn
equals E. Thus, the velocity is dE/JE, i.e., unity. A re-
gion enclosed by a family of trajectories (the ‘““charac-
terlstlcs”) has a cross section []:di;, and the flux at any
W is | A P0E/OE [.dw;. Since ;, defined by (4.9), is
constant along a trajectory, conservation of flux shows
that A is also constant along the trajectory. To place
the normahzatlon of A on a similar basis as the

“phase space” one described below, we shall set

A= | /w0 |~V2h1e, (5.1)
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a result which can also be motivated on different
grounds.? The phase of A can now be chosen by
allowing these factors to be complex valued, i.e., by
not regarding | | as denoting absolute value only
| A |2 entered into the above or following derivation.
The w2 in (5.1) is defined in (4.15).

It is useful to verify from (4.3), (4.13), and (5.1)
that ¢,z satisfies orthonormality and completeness.
We omit subscripts for brevity and first remark that
Eq. (5.1) for A can be rewritten, using (4.13)-
(4.14) 3 in the concise form for an (r+1) X (r+1)
determinant

A= | 8°8/0pedq |V2h112, (5.2)

where § denotes the @; and 7, while po denotes the
n:h and E.

- Expanding the phase in a Taylor series and re-
taining only the leading term,''1%2 we have (on
omitting for brevity in the remainder of this section
the subscripts and the summations over 1)

J ¥ * (@ P P (9) dg

=J 1 A 2 exp[i(95/9po) (ps'— po) /AJdG  (5.3)
(dg denotes dr []:dw: and the exponent is a sum of
r+1 terms) Noting that | (3/97) (85/3ps) | 4§ equals
d(38/dpo) in this (r+1)-dimensional space, (5.2) and
(5.3) lead to
f ‘Zpo’ (+)*(Q) ';po(-” (Q) dq: 6(170_ po') /hr

=5(E—E) [T o(mi=n/). (54)

Normalization to []:8(n;—#n;/) becomes a normaliza-
tion to JI:nn:, when discrete #,’s are employed.
Again, since dpo denotes dE [].d(n.h),

[ 5P (@Pn® (@) dET] dns

{ |t exp[(38/09) (§'~ §) /h]dpo. (5.5)

Since | 8/3p0(35/84) | dpo equals 2(35/dg), Eq. (5.2)
for A converts this equation to the completeness
relation,

J ¥ (@) (@) AE]] dni=38(3—7)

=§(r—1') H S(w;—ws’).

(5.6)

VI. TIME-REVERSED WAVEFUNCTION

In the state described by the wavefunction
Yng™D (10r), the system consists of an ingoing partial
wave in state # and of outgoing partial waves in
various states %, as in Fig. 1. The time-reversed state
Yme' " (0r) needed for the evaluation of Sm. via Eq.
(2.1), consists of ingoing partial waves in various
states /m and of an outgoing wave in state m (Fig. 1).

A time-reversal operator changes the sign of all
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conventional momenta (p,, pr, *+*), leaves unchanged
the sign of all conventional position coordinates, and
so changes the sign of angular momenta (rXp).! Since
action-angle variables arise from canonical transfor-
mations, which frequently mix conventional momenta
and coordinates, the time-reversal behavior of each
(m:h, w;) pair needs to be studied individually, and
we describe this behavior later in Sec. VIII, to avoid
a lengthy digression at this point.

We may write microscopic reversibility in the form¥

(6.1)

where the primes designate properties for the time-
reversed system, the prime bearing no relation to
that in E’, of course. It can be shown, as in Sec.
VIIL* that

Sﬂm= nlm!’y

Ymir O (r) = Ko (a07),

where K denotes the time-reversal operator. Using
this result and Eq. (4.12) the arguments in VIII
show that

(6.2)

Fmpr O () =4O expiS©) /i, (6.3)
where
I ’ il
S_(";f’:_,lvzl = 21!‘ Z (’rﬁiTu'J,-— f" w.id'r'fz,)
Er ¥
42T / Rik—3ma— (3r). (6.4)
h £0(m)

The w.’s appearing in (6.4) are such that the w; for
each time-reversed m trajectory equals that for an
n trajectory. The k%(m) in (6.4) is ks, rather than
—km, since it is the value at (w'Ry) of & for this
time-reversed system.
The amplitude A in (6.3) is, from Sec. VIII and
in (5.1), given by
AC*= | g, /om0 [V2h12, (6.5)

the w’s referring, of course, to the m trajectory. Rela-
tions analogous to (4.13)—(4.14) are obeyed, but with

LN l /ﬁ m\ T /F\
N—— —7N Mee— —Mm
od ! n 4 l\m
n m
@ (b

F1c. 1. (a) Pictorial description of J,z™. Lines represent
partial wave ingoing in state » and partial waves outgoing in
state 7. (b) Pictorial description of time-reversed wavefunction
¥me). Lines represent partial waves ingoing in state M and
partial wave outgoing in state m.
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F1c. 2. (a) Plot of w
vs 71 for n trajectory and
w vs i for m trajectory.
Shaded areas describe m
and » integrals in Eq.
(7.3) for TVR.B® (b
Plot of R vs k for n
trajectory and for m
trajectory. Shaded areas
describe & integrals in
Eq. (7.3) for TVR.

S, w’s, E’s, and 7™’s replaced by 8©, m’s, E’s,
and 77,
VII. S MATRIX

On introducing (4.3) and (6.3) into (2.4), Sms is
Sund(E—E") = [ AAD* exp (i/h) [ S (wr, nE)

— 8O (wr, mE”) Jdr IIdw. (7.1)

The only term depending on 7 in the integrand is

expi(E—E’)r/h. Integration over r yields a delta
function 8(E—E’). Thus,

Smn=hJ AA*(expia) I dwb;, (7.2)
where from (4.12) and (6.4)
_T m;
A=21rz [(ﬁiT-—miT)u'),-——/ w,dﬁ,,—/ w,-dr'r‘zi]
% ni mi T
7 (n) )
— " Rak— f Rib-+3(mt+m+)r, (1.3)
¥%) & T (m)

and from (5.1) and (6.5)
RAAC*= | 3w,/ 9w (n) |2 | 9D/ 0b,0(m) |12, (7.4)

Here, the (%) and (m) emphasize that the properties
are those of m and # trajectories; 2°(n) and %°(m)
equal —k, and +kn, respectively.

Specific representations of (7.2)—(7.4) are obtained
by choosing R”. The first representation we consider
is one appropriate to inelastic collisions: We let RT
denote the turning point of the R motion.

In this turning-point value representation (TVR),
Eq. (4.9b) shows, @ equals w7, the value of w at the
turning point. Since % is the same for the » and m
trajectories in (7.3), w? is also and, hence, in a plot
containing m and # trajectories as in Fig. 2(a), w itself
varies continuously from #°(n) to w®(m). The sum of
a pair of m and # integrals in (7.3) might be rep-
resented in area in a typical case by the shaded re-
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E 3

Fic. 3. (a) Plot of w
vs 7 for a complete »
trajectory. Shaded area
describes 7 integral in
Eq. (7.8) for FVR.®
(b) Plot of R vs k for a
complete m trajectory.
Shaded area describes k&
integral in Eq. (7.8) for
FVR.

gions in Fig. 2(a).®® The pair of % integrals in (7.3)
might be similarly represented by the shaded area in
Fig. 2(b). There can be a sizeable discontinuity in 7
and R (i.e., in m7—#7 and in RT) in Figs. 2(a) and
2(b), as indicated, as in any “Fourier analysis.”
[Smn can be regarded as a Fourier coefficient in an
expansion of Y,z (1r) in terms of a complete set
of Yme ) (1r)’s. 1

To underline the Fourier component nature of Spx
one can rewrite (7.3) as

~T

A=2r3 [(m— mi)wi"/ (wi—1;)dn;

i

k(n) Km
Rdk— / Rdk
k

—kn (m)
+%(n1+m1+1)1r, (75)

where k(n) and k(m) denote the values of % at (w”RT)
and are zero in the TVR. Equation (7.2) may also
be written explicitly for later reference as

expid [] aw;,

S = /0 t o
(7.6)

&, (n)

where in the TVR, &; is w7. In (7.5) A can be re-
garded as the sum of two terms: 2w 2 (n;—m,;)w; and
the remaining portion of A. The Fourier component
nature of (7.6) is thus clear. When | Sma |? is very
small for large | m—=n |, it usually is so because of
large oscillations in the integrand due to the 27 (z— m)w
term, not compensated by oscillations in the remain-
ing factor when the latter is slowly varying with @.

The integrals in Figs. 2(a) and 2(b) for the m half
of the trajectories have the values they would have
if one integrated an m trajectory beginning at (wTRT),
with m=mT and k=k(m) and ending at w’(m) and
an Ry, and with m=m and k=*k,.. (The results for
| Swn |? are independent of this R;.) From a numerical
integration point of view one doesn’t know in ad-
vance the M7, w”, and RT with which to begin the
integration in the m part of the trajectory in Figs.

'—f i (w,—u'),)dﬁ,]—
miT

—1/2 -1/2

ow;
0w,*(m)
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2(a) and 2(b). However, one can perform the inte-
gration by starting at the right end (i.e., at  and k)
and integrating Hamilton’s equations backwards in
time, i.e., using Eqs. (3.6) with df replaced by —dt.
Another method can also be derived for obtaining
these m-trajectory integrals.®

A second representation would be one where RT is
chosen to be a large R and where pgr” is chosen to
be positive. In this case, the (wTRT) are points at
large R on the outgoing arm of the # trajectories
and on the incoming arm of the m trajectories. Thus,
here m,” and k(m) equal their values in this region,
m; and kn. The integrals over dm and dk(m) in (7.3)
then vanish and A becomes unity. Equations (7.2)~
(7.4) now become

Smn=[| 3w,/ |72 expiA]] dub;, (7.7)
where 0 is given by (4.9a), in which pgT is the final
value of pr for this particular # trajectory; A is

oy k
A=2r Z (’ﬁq'— m,-)u')i— / 'wl'dfbi_ Rdk

—kn
+% (n1+m1+ 1) .

This equation for S.. no longer obeys the principle
of microscopic reversibility, unlike (7.5)-(7.6) in the
TVR. The difference in this respect is due to the
fact that the semiclassical unitary transformation is
unsymmetrical when RT is chosen to be at the end
of an arm of a trajectory rather than at its turning
point. In fact, as one sees by setting M7 and %7 in (6.4)
equal to m and &, and setting a7 and &7 in (4.12)
equal to a final # and to a final %, this transforma-
tion serves to transform ¥me' ™ (wR) to ¥meL(Wr) and
Ung (wR) to some final g™ (107), thus giving rise
to an asymmetry. For later comparison the # and &
integrals in (7.8) are sketched in Figs. 3(a) and 3(b).

In the case of reactive collisions, the second repre-
gentation is still meaningful® but the first is not
since there is no “turning point” in this case. For
this situation one can also elect another symmetrical
representation, with the aid of conventional coordi-
nates, We intend to consider the topic in a later
communication.

Apart from the = terms Egs. (7.7)-(7.8) for the
FVR have been given by Miller, who used a different
approach.?? In the available tests of (7.7)-(7.8), its
accuracy has been reasonable, though becoming poor
at low transition probabilities. Large deviations from
microscopic reversibility also begin to occur there.
To be sure, the fact that expressions, such as those
in the TVR for inelastic collisions, satisfy microscopic
reversibility by no means ensures their accuracy.

One can attempt to improve the FVR in this re-
spect by setting

Son= % (Smn+ Sntme) = LSmnFVR+_%S”,m,FVR7

(7.8)

(7.9
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where the first half of the equation is exact and where
the FVR superscript denotes the FVR approximation.
This modified FVR satisfies microscopic reversibility
and some tests of it have been reported elsewhere?
It will be interesting to compare the relative accuracy
of the TVR and of this modified FVR.

VIII. COMPARISON OF TWO REPRESENTATIONS

We have already noted that the turning-point value
representation (TVR) obeys microscopic reversibility
while the final-value representation (FVR) does not,
and we have noted the reason. It is instructive, never-
theless, to compare the two representations more
closely and see how they agree in their stationary
phase approximation,

To this end we first rewrite their pre-exponential
factors as follows: Noting that @; equals w,T in TVR
and using the rules for multiplication of determinants
and for relating volume elements by Jacobians, we
have from (7.4)

hAA* I1 dw;
= | owT/ow (n) [ | ow™/aw 0 (m) |72 ]] dw”
= | 0w (m) /0w, (n) |‘1/2H dwf(m) (TVR). (8.1)

For the final value representation we have, instead,

RAA*T] dibi= | o/ 315, (n) (2] dw; (FVR).

(8.2)

It is useful to compare the two representations
using the stationary phase approximation. The point
of stationary phase of the integral (7.2) for Smn
occurs at

A/ b =0, (8.3a)
that is, at

=T,

(8.3b)

In the TV representation this equation states that
the 7T and nT are equal at the R turning point, for
those trajectories (a discrete number) satisfying the
stationary phase condition. In the FV representation
the equation means that the final value of n equals m,
for the trajectories satisfying the stationary phase
condition. One may then verify using the methods
in Part T or Part II that the values of the integral
for Sms are identical for TVR and FVR, when cal-
culated in the stationary phase approximation,

The relation of the two representations can also be
seen by comparing Figs, 2 and 3 and comparing the
pre-exponential factors (8.1)-(8.2), for trajectories
satisfying the stationary phase condition (8.3). In the
TVR this condition means that there is no discon-
tinuity in #7 or in R7, i.e., the # trajectory continues
smoothly onto the m trajectory. A consists now only
of the integrals in (7.3) and the = terms. In the FVR
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the condition (8.3) means that the final 7 equals m
and thus that Figs. 3(a) and 3(b) become identical
with Figs. 2(a) and 2(b). The A in (7.8) now con-
sists only of the integrals and the = terms and be-
comes equal to that in (7.3). The pre-exponential
factors (8.1) and (8.2) also now become equal. In
summary, when the most important trajectories con-
tributing to the integral for S are in a neighborhood
of the discrete number of trajectories satisfying the
stationary phase condition (8.3), the two representa-
tions become equivalent,

In the case of classically inaccessible trajectories,
it may be noted the stationary phase condition (8.3)
is not satisfied by any real-valued trajectory. Instead,
by analytic continuation one finds the complex-valued
trajectories (in several-dimensional complex variable
space) which satisfy (8.3) and then evaluates the
integral by analytic continuation (in principle at least)
or by the stationary phase method in Part T or II,

IX. TIME REVERSAL IN DETAIL

We consider the time-reversal operation at greater
length in the present section.

Let ¥.5°(Q) denote an unperturbed wavefunction
in any representation Q. It is convenient to define
the time-reversal operator K with the aid of 0 :

K" (Q) =¥ns°(Q), (9.1)

where ' designates the time-reversed state, i.e., the
state where all momenta, angular momenta, and spins
are reversed from their values in state #. Usually a
phase factor of magnitude unity is present on the
right, but for simplicity of notation we adopt (by
suitable choice of the phase of ) a phase conven-
tion which makes it unity. K, an antiunitary operator,
also has the property that it converts all constants
to their complex conjugates, and K2 equals the iden-
tity operator,
The wavefunctions ¢»zg® (Q) are given by

1l/nE(:|:) (Q) =[1+ (E—H:l:ié)_l V]‘ano(Q)r (9-2)

where V is the perturbation (in the given channel)
and ¢ is an infinitesimal positive quantity which is
made to vanish only after the integral operation im-
plied in the integral operator (E—Hzte)™! has been
performed. (Previously we had placed a bar over the
¥®’s when the representation was wr, and we return
to this practice later in this section.)

Application of K to (9.2) and insertion of the
identity operator KK yield!®

Kne®(Q)
=K[1+ (E— H=ie) ' VIKK¢pnr*(Q)
=[1+(E-HFie) 7 V]¢ws'(Q) =¢nzP(Q) (9.3)

for H’s and V’s invariant to the time-reversal operator,
Thus, on replacing #» and E by m' and E’ in (9.3).
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we may calculate Yme ™ (Q) from

Yme' O (Q) =Kme®(Q). (94)

The antiunitary property of K makes {1 |y2) equal
to {(Ky» | K¢1), for any scalar product.”® Using (9.4),
Eq. (2.1) immediately leads to the principle of micro-
scopic reversibility (6.1).

In the wR representation ¥nz°(Q) is of the form

Vs (wR) =fu(R) T exp(2mingsy),

=1

(9.5)

where f,(R) is real. Away from the R turning point
fo(R) is a sinusoidal function of 2R but near that
point is an Airy function. The f,(R) is unaffected by
the operator K.

To investigate the time reversal it will be con-
venient to divide the w wvariables into two classes.
In the first class the canonically conjugate variable,
action,® may be positive or negative. In the second
class the action is always positive.

An example of a class I w is the angle conjugate
to the z component of angular momentum. (This is
the angle between a space-fixed x axis and the line
of intersection of the instantaneous rotational plane
and the space-fixed xy plane.)* Class I w’s are un-
changed by time reversal, just as conventional Car-
tesian coordinates are unchanged, but the sign of the
n’s is changed (e.g., time reversal means reversal of
the angular momentum vector). This sign change in
an #n, converts the corresponding factor in the wave-
function exp2wxinw in (9.7) to its complex conjugate,
so the operator K in (9.1) for these variables amounts
to complex conjugation.

An example of a class II w variable is that de-
scribing a vibrational motion. Another is the w con-
jugate to the total angular momentum. To illustrate
the nature of time reversal in this case it is useful
to consider the harmonic oscillator. In dimensionless
units the action-angle variables for this degree of
freedom can be defined by®

z=(2n+1)"2 cos2rw, p.=(2n+1)"2sin2rw, (9.6)

where 2n+1 is always positive. With this choice, a
time reversal (z—z, p—~>—p,) implies

Wo—w, n—n.

(9.7)

This time reversal causes the wavefunction exp2wrinw
to be transformed to its complex conjugate and so,
for this choice of w, the operator K in (9.1) again
amounts to complex conjugation.

We turn now to the @r representation. Here, the
unperturbed wavefunction is now completely complex
valued:

Ine® (7)) = [h—m exp (d%r)] ﬁ exp(2miwm;). (9.8)

j=1

[The first factor is normalized to 6(E—E’).] The
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variable % is merely a constant for the trajectory
(e.g., w at the R turning point) and the previous
remarks regarding the two classes of action-angle
pairs apply to % and need not be repeated. The 7 in
(9.8) is changed to —7 by the time-reversal opera-
tor K, and so K again is the same as complex con-
jugation.

According to (9.4), ¥me(Q) can be obtained by
first time-reversing all the degrees of freedom (as
implied by the m' on the rhs) and then applying the
operator K. Considering the terms in (4.12) in the
order given (with n, n7, n, E replaced by m, n?, @, E’),
we thus find: The mTw and E'r are changed by the
prime to —7™ and —E’r and then by the K in
(9.4) back to m™p and E’r. We omit the next two
integrals for the moment. The final term, which ap-
pears as +3mmi+ (37)i in the exponent of Yme™,
is unaffected by the prime in (9.4) but is changed
to its complex conjugate by the K operator. If the
two integrals are regarded as constants? they are
similarly affected. Thus, Eq. (6.4) for S© follows.

Another view of the two integrals, leading to the
same result, is the following: The # and % integrals
in the exponent for Ym g begin with integrands =7
and RT and read, when one includes the 7’s,

m -
—2ni [ wim—i[ " Rak.
mT 0
VYmg/ ™ is obtained in (9.4) by applying K to Ym e
and so converts these integrals to their complex
conjugates

m ko
omi f wdin i f Rk,
mT 0

and thus yields the pair of integrals in (6.4). _

Regarding the amplitude A; the amplitude A
of Yue™ is | 38,/01 |72 k2 and is unaffected by
the prime operation (e.g., w; and w,° are constant
along a trajectory and the prime operation would at
most change the sign of each). Application of the
operator K as in (9.4) then converts this factor to
its complex conjugate and thus yields (6.5).

X. CONCLUDING REMARKS

In this concluding section we comment first on the
uniformijzation of coordinates, and then on some in-
variance properties of Smn.

Uniformization leads to a removal of any singu-
larities in the simple exponential semiclassical wave-
function by transformation to suitable coordinates.
These singularities arise, it will be recalled, because
of the presence of p~!/? terms [e.g., the v™/2 in (3.1)]]
in the pre-exponential factor, p being the momentum.
This factor becomes infinite at p=0, i.e.; at a clas-
sical turning point. Examples of this behavior are
given in several figures in a recent article,”? where
trajectories are plotted for various sets of coordinates.
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Intersection of adjacent trajectories means zero cross-
sectional area between them and, hence, for flux con-
servation, infinite amplitude of the simple exponential
semiclassical wavefunction.

Using conventional coordinates there were numerous
intersections in the problem examined (linear collision
of an atom and an oscillator) for a given number of
trajectories.?? When wR coordinates were used instead,
with the same number of trajectories, there were
many fewer intersections.?® Those that remained were
largely in the vicinity of the R turning point and
there were a few at large R. It was the latter set,
the intersections at large R, which necessitated that
the integral expression in Part I be evaluated by an
asymptotic method (stationary phase), as in Part I
or II. When the coordinates wr were used (either
those in the present paper or those in a companion
paper) there were no intersections.”” Their absence
permits the integral in the present paper to be eval-
uated both by asymptotic and nonasymptotic methods.
The question arises as to whether the uniformization
of the coordinates is complete, that is, whether the
relevant pre-exponential factors are nowhere infinite.
When the distortion of the angle variables from their
unperturbed motion is unusually great it is possible
that a singularity of the pre-exponential factor in (7.5)
could develop. Thus far we have not yet uncovered
one, but the comparison of (7.5)-(7.6) with exact
quantum mechanical results has just begun in this
laboratory.

It is instructive to examine (7.5)—(7.6) in the TVR
with respect to some invariance properties. In the
TVR we set w;=w,T and k(m) =k(n) =0in (7.5)-(7.6).
The angle variables are multivalued functions of the
conventional coordinates and momenta: each w; is
undetermined to an additive integer in that trans-
formation, Thus, when w; (and hence w,T) is changed
in (7.5)~(7.6) by an integer one would expect Sma
to be unchanged. Such is indeed the case: 7T and nT
are unaffected; the integrals over n and # are also
unaffected since w;—w;” is unchanged; the 2x(n,—
m;)w.T is changed by an amount 27 (n;—m,) N, where
N is an integer. Since exp[2xi(n;—m;)N] is unity,
and since the derivatives in (7.6) are unchanged Spa
is also. In fact, if only the w and T associated with
the m trajectory were changed by an integer Samn
would again be unaltered.

We next consider microscopic reversibility, Spm can
be obtained from (7.5)-(7.6) by interchanging all m’s
and n’s (including m’s and #’s and m™s and 7”’s)
and adding primes to all quantities (including ’s)
to indicate the prime operation. For example, instead
of the first term in (7.5) we shall have (omitting
the ¢ subscripts and the summation) 2x(m’'—n’)w'T
in the TVR. Regardless of whether the angle variable
is of class I or II, this term equals, with our previous
choice for w’s, —2r(mT—nT)w?, ie., 2r(n?—m?)w?,
and so is the same as the corresponding term in (7.5).
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The sum of % integrals in (7.5) is changed to the
time-reversed value (with m and # trajectories inter-
changed)

L2 0
~["rar- [ Ra,
0 —kn
which is the same as the expression in (7.5). The n

and 7 integrals, with their negative signs, in (7.5)
are changed to

/ﬁi '
mil

For class II variables this expression equals

ng
(wi’—-wi’T) d‘fr_l.'—/ (‘Zl)1l—w,'lT) d’ﬁ,
ay T

ﬁ.T n;
+/ (w;—w,-T) dﬁi,—l—[ (wi—w.-T) dﬁ,’,
ms AT

which, on interchanging the upper and lower limits
and multiplying by a compensating (—1), yields the
same result as in (7.5). A similar remark applies,
using a modified reasoning, to class I w variables,
and to the calculation of the derivatives in (7.6).
Thus, (7.5)-(7.6) in the TVR obey microscopic
reversibility.

APPENDIX A: DERIVATIVES OF G; AND §
IN SEC. IV

In Eq. (4.6) G: depends on E via the integrand pr
and via peT:

pr==x[2u(E—H") ', (A1)

where H’ denotes all the terms in H apart from
pr*/2u. The sign in (A1) depends on whether (wR)
is on the ingoing or the outgoing arm of the tra-
jectory. Taking variations of (4.6) one obtains

R
5Ga= T (fbwi-twdon®) b+ pedR+ REspaT+ f 5prdR,
i RT

(A2)
where
R _ R » ]
fR _ 6pndR— [ /; T(PR) dR |sE (A3)
and
Spr” = (u/prT)SE—2 (wi/ pr")on:Th
(if prT0) (Ada)
or
8prT=0 (if PRTEO). (A4b)

In these equations »,T is 0H’/3(nTh), i.e., 0H/d(n.Tk),
the mechanical frequency for the ith degree of freedom,
evaluated at RT,

Equations (4.8) and (4.9) in the text follow from
these equations.

Turning next to S(ir, nE) given by (4.12) and
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computing 68, after first integrating the k integral
by parts, we have

8= T [(0i— ) ST +10%n,+ i 600] b+ Ebr-+7oE

T
- RT5PRT+R03PRO+ f 5[)3dR+ %Wﬁ&ﬂl. (AS)

R

The equation for dpg? is the same as (Ada) with T
superscripts replaced by °® ones and with .7 replaced
by &n;. Introduction of (4.9) and (A3)-(A4), with R
in (A3) set equal to Ry, yields

8= % {[wd— (wd/ps’) 1oni+nTo:} h+Edr

R
+3nhdm+ (/ M—;RE + :—S—o) 3E. (A6)

Ro

The coefficients of #n,, ér, 60, and 6E give the cor-

responding derivatives of S in (4.13)-(4.14).
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