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Uniformized coordinates and an integral expression for the semiclassical § matrix, derived elsewhere,
are described and applied to vibrational transition probabilities. The expression obeys microscopic re-
versibility. The numerical results are compared with the exact quantum mechanical results of Secrest and

Johnson.

INTRODUCTION

Recent advances in the semiclassical treatment of
molecular collisions are beginning to yield results of
useful accuracy, in addition to providing added phys-
ical insight. One recent formulation! is to construct
the WKB wavefunction of the #-dimensional scatter-
ing system in the asymptotic regions, using exact classi-
cal mechanical trajectories to determine the phase and
amplitude of the wavefunction. The elements of the
S matrix, Sma, are then obtained by projecting the
system wavefunction onto the final channels. In the
stationary phase-type approximation, this expression is
equivalent® to that obtained by Miller,® whose for-
mulation was based on a semiclassical approximation
of Feynman’s propagator.t

These semiclassical approaches can be applied either
in the form of their asymptotic approximations or in
the form of integral expressions. When the plot of final
“quantum number” 7 vs initial phase ©#° of the vibra-
tional motions is a relatively simple sinusoidallike func-
tion, the asymptotic method can be applied fairly
readily, at least in one dimension.!? In other situations

many points of stationary phase may occur for some
transitions and an integral expression is easier to apply,
for the one-dimensional integral at least.

An example of a simple 7A-vs-w® plot occurs in the
linear collision of an atom and a harmonic oscillator
interacting via an exponential repulsion potential en-
ergy. The same system, but interacting via a Lennard-
Jones potential, is an example of the more complicated
Ai-vs-w? plot, according to our preliminary classical tra-
jectory results.®

Miller has tested an integral expression for the linear
collision of an atom and a harmonic oscillator (expo-
nential repulsion)®: The integral gave quite good re-
sults for | Sm, |?, except at low transition probabilities,
where major deviations from the principle of micro-
scopic reversibility and from the correct answer began
to occur. Recently, canonical transformation theory
has been applied® to the wavefunction in Ref. 1 and
has been used to derive two integral expressions, both
obeying microscopic reversibility:

(a) The first expression (which was derived first)
used any elastic collision to uniformize all coordinates
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(i.e., to remove all singularities from the WKB wave-
function) and then introduced an approximation in the
integral to evaluate it.

(b) The second expression, whose development was
prompted by first, used the exact classical trajectories
to uniformize all coordinates and was then able to
avoid the subsequent approximation.

In the present paper we present several figures illus-
trating the uniformization of all coordinates and de-
scribe numerical tests of (a). Numerical tests of (b)
will be given in a second paper.” The tests are made by
comparing with the exact quantum mechanical results
of Secrest and Johnson® for the linear collision of an
atom with a harmonic oscillator (exponential repulsion).

CANONICAL TRANSFORMATION AND THE
S MATRIX

In this section, we summarize the essential features
of the canonical transformation adopted in method (a)
and briefly describe the derivation of the integral ex-
pression for the S matrix. For the details of the argu-
ments, one should refer to Refs. 1 and 6.

The coordinates g are the radial coordinate R and
the angle variables w; for all other degrees of freedom.
Conjugate variables are the radial momentum pz and
“quantum numbers in units of 4, 748 A canonical
transformation was introduced via a generating func-
tion Ga(g, ) to convert these coordinates to new co-
ordinates w; and 7. In method (a), G» was based on
the properties of an elastic collision (this step in itself
is no approximation) and yielded w; which were con-
stants initially and constants finally, while + was a
timelike variable. The p conjugate to w proved to be
7k, and so that symbol can be retained for such p
without loss of generality. For the case of one internal
coordinate we had®

- R -~ - -~
G2(w, R, 1k, E)=ﬁhw—|—f Pr(R, AiE)IR, (1)

where the integral involving the tilde quantities is
evaluated along the elastic collision trajectory having
instantaneous values of 7 and (at R=R) pg of the real
trajectory; 7o and E are the distance of closest approach
and instantaneous energy of an elastic collision whose
interaction potential energy is Vo(R):

E=pg2/2u+Vo(B)+Ho(nh), (2)
where H, is the Hamiltonian for the internal motion.

The new coordinates were then obtained by the stand-
ard procedure,?

w=0Gy(wR, 7E) /3 (k)

B uy ~
v | oham (32)
and
9G, R m ~
" 8E / e (R, 7E) (3b)
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where 7 is the instantaneous frequency of the internal
motion in the elastic collision, dH,/d(Ak). The mo-
menta conjugate to w and R in the actual system are
3G./dw and 0Gy/dR, namely 7k and pr. They are seen
from (1) to equal the § conjugate to w, i.e., Ak, and
the Pg, respectively. Thus

PR=ﬁR(R, 7, E) at R=R. (4)

The essence of this transformation is to relate each
point of the real trajectory to a point of an elastic
collision trajectory having instantaneous momentum
components at that point equal to those of the real one.
When R is outside the range of interaction, the inelastic
and elastic trajectories coincide completely. The new
w reaches a constant value, as is readily seen by dif-
ferentiating (3a) with respect to time in the non-
interacting region where # is constant.

The application of a canonical transformation of the
coordinates provided a unitary transformation of the
semiclassical wavefunction®!® which then became®

Fus™® (@, 7) =A exp[iS (wr, 7K) /7], (5)

where the amplitude A, a Jacobian relating the initial

flux at the initial w (w=uwy) and r=— o, to the flux
at w and 7, was given by (6) and the phase S by (7),
A=[(0w/ow) (0E/9E)h ]2, (6)

S(IZJT, ﬁE) ) (_- /ﬁ d_>+ET

——— =2r|Aw— | wdh —

i i ; A

* ko

— [ Rar+ [ Rak+yn. (1)

—kn 0

[Both in (2) and (7) the orbital contribution present
in Ref. 6 is omitted here since the formulation is applied
in the present paper to collinear collisions. ] The time-
reversed wavefunction, Jmg”, also needed for the
S matrix calculation in Ref. 6, is constructed with
extreme care because of the subtleties involved in the
time-reversal behavior of the action-angle variables.
The detailed discussion on this aspect is given there.
When both ¢ and ¢ were introduced into a stand-
ard expression for the on-the-energy-shell S-matrix
element Sopx,

Sund(E—E") = [{mp O*Fng™drdw, (8)

one obtained
Sun=2% (Bmn+Bam), (9a)
where
Bopn= [(81w0/8w,) V2 (expiA) dw (9b)
and

A=2r [(ﬁ—m)d)— fﬁ wdﬁ] -

k

Rdk

—kn
k - . K - .

+ ] Rdfi— f Rdf+3r. (9¢)
0 0

The upper limits 7 and % in (9c) were those for the
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actual trajectory beginning at (wo, #). The expression
for B, 1s similar to (9b) and (9¢), but with suitable
change of subscripts. The S,, thus obtained satisfied
microscopic reversibility.

The 8E/4F appearing in (6), not needed for (9) but
used to examine the amplitude 4 of ¢, is

0 /0E=1+0H,/dE, (10)

where H, is the perturbation, expressed in terms of the
new coordinates and momenta.

Equations (9) would be independent of the elastic
collision used, had there been no approximations. When
the elastic collision is chosen to be, in the limit, that
for a hard-sphere interaction potential [i.e., Vo=0,
except at the actual R-turning point, where Vo= o],
Egs. (92) and (9b) are unaffected, but (9¢c) simpli-
fies to

7 %
A=27r(ﬁ—m)w—f wdr‘z~/ Rdk+%r (11)
—ky

n

and Eq. (3a) for w reduces to
w=w— (Ruw/pr). (12)

For this case, 7, given by (3b), becomes meaningless
in the immediate vicinity of =0, but is not needed
for Spn.

Equations (9a) and (9b) together with (9¢) plus
(3a) or (11) plus (12), are tested in the next section.
Equations (9b), (11), and (12), with S.. equal to
Bun, instead of to % (Bmn+Bam), had previously been
given by Miller.?

COLLINEAR COLLISION BETWEEN AN ATOM .

AND A HARMONIC OSCILLATOR

In terms of action-angle variables (72, w) and in dimen-
sionless units of Secrest and Johnson,3-81! the oscillator
displacement coordinate Q equals (27-+1)V2 cos2rw,
and the interaction potential is exp[ —a(R—Q)]. The
classical mechanical Hamiltonian for the system of a

collinear collision of an atom and an oscillator is then
H=(pr*/2u)+ (7+3)

Fexp[ —aR+a(2A+1)12 cos2rw], (13)

where p and @ are the two parameters of this model
system. Hamilton’s equations are given by ¢; and p;
equal to dH/dp; and —3dH/dq;, respectively (i=1, 2).
When the elastic collision potential ¥V, is taken to be
exp(—aR), the instantaneous momentum along the
elastic trajectory, == { 2u[Pr"/2u— Vo(R) 1}, is readily
found to be

Pr=7Pr" tanhg, (14a)

where

6= sech™'[ (2u/Pr") exp(—aR) ]2  (14b)

and P is the initial momentum of the elastic trajectory
having an instantaneous gz at R. The plus sign in
(14b) occurs at R’s before the turning point.

Substituting these expressions into (3a) and (3b),
we obtain the new variables along the trajectory. To
illustrate the uniformizing properties of these variables,
we trace out a set of trajectories in three sets of coordi-
nates. The trajectories shown in Fig. 1 were made
using the conventional Cartesian coordinates, R and
Q, for the system. The numerous crossings of adjacent
trajectories imply, by arguments of flux conservation,
infinite amplitude of the simple exponential (or sum
of exponentials) form of the semiclassical wavefunction
at these points.

In Fig. 2, trajectories are drawn using the (w, R)
coordinates. At the crossings of these trajectories at
the R turning-point region and at large post-collisional
separation, the Jacobian, dw/dwp, vanishes and the
amplitude of the wavefunction again becomes infinite
at these points, but now there are many fewer such
points. Wherever crossings occur in Figs. 1 and 2 it
would be necessary to use for the semiclassical wave-
function an Airy function instead of a simple exponen-
tial or sum of exponentials. The crossings at large R in
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Fic. 2. Collisional trajectories in (w, R) representation; param-
eters same as in Fig. 1. '

TaBLE I. Transition probabilities calculated with
Vo=exp(—aR).8

Transitions | Buan |2 | S 12 Exact

u @, E=(3,0.3,6)°

1-1 0.973 0.973 (0.977)e

124 1.4X107%3.4X10" 7.3X10%¢  8.98X107¢

22 0.99 0.999 (0.999)
oy, E=(3,0.3,8)°P

1-1 0.822 0.822 (0.856)

124 5.3X107%,4.3X10? 4.9%X102  4.18X107

1-3d 2.5X1074,1.8X107¢ 5.5X1078 1.46X107%

22 0.953 0.953 (0.956)

23 1.7X107%,4.6X10 0.90X107  1.33x 1072
By, E= (%y 031 12)1)

2-2 0.315 0.315 (0.348)

2-3 0.258,0.234 0.246 0.233

2-4d 7.0X1073,6.8X 1073 6.4X1073 6.00X1073

u b, e, E=(1/13,0.1287, 16.8364)"

2-2 1.910 1.9x10™ e

2-3 0.322,0.299 0.305 0.321

2-4 0.181,0.168 0.174 0.167

2-54 1.7X1072,1.8X102 1.7X1072 1.70X1072

& The second value in the second column is | Bam |2

b These are the dimensionless parameters in the model of Secrest and
Johnson.

¢ The values in parentheses were obtained by difference.

d Classically inaccessible transitions.

€ Too small (0.002 or less) to be determined accurately by difference.
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Fig. 2 had as a consequence the fact that the integral
for Smn in Ref. 1 needed to be evaluated by an asymp-
totic approximation as K— o2, as in Refs. 1 and 2.
Using the (w, 7) coordinates, as in Fig. 3, the tra-
jectories do not cross even in the turning-point region
and hence the system’s semiclassical wavefunction is
well-defined throughout. A consequence is that the in-
tegral (9b) need not be evaluated by asymptotic meth-
ods as R— . In fact, it is independent of R. The
amplitude A in Eq. (6) also contains a factor (4E/9E)1?
which, for the trajectories in Fig. 3, varied between
1.3 and 0.6 and so did not cause A to become singular.
In summary, when the new coordinates (wr) in Fig. 3
are used no Airy functions are needed. Not shown in
these figures are trajectories described in terms of co-
ordinates wr obtained using the method (b) mentioned
in the Introduction and based on the exact Hamilton-
ian.® These new trajectories are parallel to the 7 axis.
For computing the transition probabilities, Hamil-

22

10

-35 15 65
T

Fi6. 3. Collisional trajectories in (1r) representation; parameters
same as in Fig. 1.

-85

ton’s equations of the collisional system were first
solved in terms of the w and R,? and the results were
then transformed into the new coordinates by Egs. (3).
For an elastic collision potential of exp(—aR) the
integrals involving elastic trajectories which appear in
the transformation expressions (3) and in the phase
of the matrix element of (9c) were then obtained in
closed form when 7— . The relevant integrals were
found to be

E oy 5 vRu Vi I
/m " dR = e e nZﬁRUZ (15a)
and
PR _ ﬁRO i
fo Ripe=— = [Z-I-ln (215302)] , (15b)

where —Pr’= pr at large separation after the turning
point.
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When expressions (15) and the trajectory data were
substituted into (9¢), the values of B,.. and B.. were
obtained by integrating (9b) with a standard 41-point
Newton—Cotes formula. Test runs with 81-point inte-
gration altered the results by less than 0.3%, except
for the highly improbable transitions. Two mass ratios
were used for calculations. The one with parameter
w=2 is in the region where the ‘“‘static approximation”
fails badly, and the other with y=1/13 is the case
in which this approximation holds within 5%,.% The
calculated transition probabilities, | Sn. 12, and the val-
ues of | Bun |2 are tabulated together with the exact
quantum results in Table I. Reasonably good agreement
is observed, except when the probability is exceedingly
small.

Values of | Bms |2 and of | S, [* based on (9) and
(11) are given in Table II. The | B.. |? equals the ex-

TasLE IT. Transition probabilities calculated with hard sphere Vy.2

Transitions | Buan | | Swn | Exact

s a, E= (%) 0.3, 6)b

11 0.972 0.972 (0.977)

1-20 1.6X107%,3.1X10™  7.2X10™* 8.9810~

2-2 0.998 0.998 (0.999)
My oy E= (%1 037 S)h

-1 0.827 0.827 (0.856)

1-2e 5.1X1072,4.4X1072  4.8X107? 4.18Xx1072

1-3¢ 2.6X1074,2.2X10%  8.4X10°® 1.46X1075

2-2 0.951 0.951 (0.956)

2-3¢ 2.0X1073,4.5X10*  0.93x10°% 1.33X1073
uoa, E=(3,0.3,12)>

2-2 0.320 0.320 (0.348)

2-3 0.250,0.233 2.44 0.233

2-4e 5.0X107%,6.9X107*  5.8x10 6.00x1072

4, @, E=(1/13,0.1287, 16.8364)®

2-2 2.3X10™ 2.3X10 d

2-3 0.315,0.303 0.309 0.321

2-4 0.183,0.167 0.174 0.167

2-5¢ 2.0X107%,1.6X102  1.7X10? 1.70x 102

2 Footnote a, Table I.
b Footnote b, Table I.
¢ Footnote d, Table I.
d Footnote e, Table I.
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pression given by Miller® for | Sus |2, but the present
| Spn 2 is symmetrical. The agreement with the exact
results of Secrest and Johnson is seen to be comparable
with that in Table I. As noted earlier, if the expressions
were exact, the numbers in Tables I and II would be
identical. Thus, it is encouraging that the value of
| S |2 given by Eq. (9) is not, in these cases at least,
sensitive to the choice made for the elastic collision.
The simplest choice for such a collision is, of course,
the one leading to (9a), (9b) and (11), (12).
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