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Uniformized coordinates and an integral expression for the semiclassical S matrix, derived elsewhere, 
are described and applied to vibrational transition probabilities. The expression obeys microscopic re-
versibility. The numerical results are compared with the exact quantum mechanical results of Secrest and 
Johnson. 

INTRODUCTION 

Recent advances in the semiclassical treatment of 
molecular collisions are beginning to yield results of 
useful accuracy, in addition to providing added phys-
ical insight. One recent formulation' is to construct 
the WKB wavefunction of the n-dimensional scatter-
ing system in the asymptotic regions, using exact classi-
cal mechanical trajectories to determine the phase and 
amplitude of the wavefunction. The elements of the 
S matrix, Smn, are then obtained by projecting the 
system wavefunction onto the final channels. In the 
stationary phase-type approximation, this expression is 
equivalent2 to that obtained by Miller,3 whose for-
mulation was based on a semiclassical approximation 
of Feynman's propagator.4 

These semiclassical approaches can be applied either 
in the form of their asymptotic approximations or in 
the form of integral expressions. When the plot of final 
"quantum number" fi vs initial phase WO of the vibra-
tional motions is a relatively simple sinusoidallike func-
tion, the asymptotic method can be applied fairly 
readily, at least in one dimension. I - 3 In other situations 

many points of stationary phase may occur for some 
transitions and an integral expression is easier to apply, 
for the one-dimensional integral at least. 

An example of a simple fi-vs-wo plot occurs in the 
linear collision of an atom and a harmonic oscillator 
interacting via an exponential repulsion potential en-
ergy. The same system, but interacting via a Lennard-
Jones potential, is an example of the more complicated 
fi-vs-wo plot, according to our preliminary classical tra-
jectory results.s 

Miller has tested an integral expression for the linear 
collision of an atom and a harmonic oscillator (expo-
nential repulsion)3b: The integral gave quite good re-
sults for I Smn 12 , except at low transition probabilities, 
where major deviations from the principle of micro-
scopic reversibility and from the correct answer began 
to occur. Recently, canonical transformation theory 
has been applied6 to the wavefunction in Ref. 1 and 
has been used to derive two integral expressions, both 
obeying microscopic reversibility: 

(a) The first expression (which was derived first) 
used any elastic collision to uniformize all coordinates 
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(i.e., to remove all singularities from the WKB wave-
function) and then introduced an approximation in the 
integral to evaluate it. 

(b) The second expression, whose development was 
prompted by first, used the exact classical trajectories 
to uniformize all coordinates and was then able to 
avoid the subsequent approximation. 

In the present paper we present several figures illus-
trating the uniformization of all coordinates and de-
scribe numerical tests of (a). Numerical tests of (b) 
will be given in a second paper.7 The tests are made by 
comparing with the exact quantum mechanical results 
of Secrest and Johnson8 for the linear collision of an 
atom with a harmonic oscillator (exponential repulsion). 

CANONICAL TRANSFORMATION AND THE 
S MATRIX 

In this section, we summarize the essential features 
of the canonical transformation adopted in method (a) 
and briefly describe the derivation of the integral ex-
pression for the S matrix. For the details of the argu-
ments, one should refer to Refs. 1 and 6. 

The coordinates q are the radial coordinate Rand 
the angle variables Wi for all other degrees of freedom. 
Conjugate variables are the radial momentum PR and 
"quantum numbers in units of h," fiih.6 A canonical 
transformation was introduced via a generating func-
tion G2 (q, p) to convert these coordinates to new co-
ordinates Wi and T. In method (a), G2 was based on 
the properties of an elastic collision (this step in itself 
is no approximation) and yielded Wi which were con-
stants initially and constants finally, while T was a 
timelike variable. The p conjugate to W proved to be 
fih, and so that symbol can be retained for such p 
without loss of generality. For the case of one internal 
coordinate we had6 

Gz(w, R, fih, E) =fihw+ jR PReR, fiE)dR, (1) 
TO 

where the integral involving the tilde quantities is 
evaluated along the elastic collision trajectory having 
instantaneous values of fi and (at R =R) PR of the real 
trajectory; ro and E are the distance of closest approach 
and instantaneous energy of an elastic collision whose 
interaction potential energy is Vo(R): 

E=PRz/2p.+ Vo(R) +Ho(fih) , (2) 
where Ho is the Hamiltonian for the internal motion. 
The new coordinates were then obtained by the stand-
ard procedure,9 

w=aGz(wR, fiE)/a(fih) 

j R p.v _ 
=w- _ dR 

TO PR(R, fiE) 
(3a) 

and 
aGz r= -- = 
aE j R P. _ 

_ - dR, 
TO PR(R, fiE) 

(3b) 

where v is the instantaneous frequency of the internal 
motion in the elastic collision, aHo/a(nh). The mo-
menta conjugate to wand R in the actual system are 
aGz/aw and aGz/aR, namely fih and PRo They are seen 
from (1) to equal the p conjugate to W, i.e., fih, and 
the PR, respectively. Thus 

PR=PR(R, fi, E) at R=R. (4) 
The essence of this transformation is to relate each 

point of the real trajectory to a point of an elastic 
collision trajectory having instantaneous momentum 
components at that point equal to those of the real one. 
When R is outside the range of interaction, the inelastic 
and elastic trajectories coincide completely. The new w reaches a constant value, as is readily seen by dif-
ferentiating (3a) with respect to time in the non-
interacting region where v is constant. 

The application of a canonical transformation of the 
coordinates provided a unitary transformation of the 
semiclassical wavefunction6 •10 which then became6 

fnE(+)(W, T) =A exp[iS(WT, fiE)/h], (5) 

where the amplitude A, a Jacobian relating the initial 
flux at the initial W (w=wo) and r= - 00, to the flux 
at wand T, was given by (6) and the phase S by (7), 

A = [(aw/awo)(aE/aE)h]-I/Z, (6) 

nE) = 211" (fiW- t wdn) + 

-t Rdk+ t Rdk+h. (7) 
-kn 0 

[Both in (2) and (7) the orbital contribution present 
in Ref. 6 is omitted here since the formulation is applied 
in the present paper to collinear collisions.] The time-
reversed wavefunction, fmE' (-), also needed for the 
S matrix calculation in Ref. 6, is constructed with 
extreme care because of the subtleties involved in the 
time-reversal behavior of the action-angle variables. 
The detailed discussion on this aspect is given there. 
When both f(+) and fH were introduced into a stand-
ard expression for the on-the-energy-shell S-matrix 
element Smn, 

one obtained 

where 
Bmn= J(aw/awo)-l/Z 

and 

211" [(fi-m)W- fi WdfiJ - L:
n 

Rdk 

+ t Rdk- tm 
o 0 

(9a) 

(9b) 

(9c) 

The upper limits fi and k in (9c) were those for the 
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2·4 

FIG. 1. Collisional trajectories in (Q, R) 
representation; E=8, a=O.3, Q 
n= 1. 

o 

actual trajectory beginning at (Wo, n). The expression 
for Bnm is similar to (9b) and (9c), but with suitable 
change of subscripts. The Smn thus obtained satisfied 
microscopic reversibility. 

The 8E/8E appearing in (6), !lot needed for (9) but 
used to examine the amplitude A of l/i, is 

(10) 

where HI is the perturbation, expressed in terms of the 
new coordinates and momenta. 

Equations (9) would be independent of the elastic 
collision used, had there been no approximations. When 
the elastic collision is chosen to be, in the limit, that 
for a hard-sphere interaction potential [i.e., Vo=O, 
except at the actual R-turning point, where Vo= 00 J, 
Eqs. (9a) and (9b) are unaffected, but (9c) simpli-
fies to 

n k 

t1=27r(ii-m)w-j wdii-l Rdk+t7r (11) 
n -kn 

and Eq. (3a) for W reduces to 

w=w- (RJJ.l'/PR). (12) 

For this case, T, given by (3b), becomes meaningless 
in the immediate vicinity of T=O, but is not needed 
for Smn. 

Equations (9a) and (9b) together with (9c) plus 
(3a) or (11) plus (12), are tested in the next section. 
Equations (9b), (11), and (12), with Smn equal to 
Bmn, instead of to had previously been 
given by Miller.3 

COLLINEAR COLLISION BETWEEN AN ATOM. 
AND A HARMONIC OSCILLATOR 

In terms of action-angle variables (ii, w) and in dimen-
sionless units of Secrest and Johnson,3b,8,1l the oscillator 
displacement coordinate Q equals (2ii+ 1 )112 cos27rw, 
and the interaction potential is exp[ -a(R-Q)]' The 
classical mechanical Hamiltonian for the system of a 

2 
R 

3 4 

collinear collision of an atom and an oscillator is then 

H = (pR2/2J.l.) + (ii+t) 

+exp[ -aR+a(2ii+l)1/2 cos27rwJ, (13) 

where J.l. and a are the two parameters of this model 
system, Hamilton's equations are given by qi and Pi 
equal to 8H/8pi and -8H/8qi, respectively (i= 1, 2). 
When the elastic collision potential Vo is taken to be 
exp( -aR), the instantaneous momentum along the 
elastic trajectory, ± {2J.l.[PRo2/2J.l.- Vo(R) JPI2, is readily 
found to be 

(14a) 
where 

(14b) 

and PRo is the initial momentum of the elastic trajectory 
having an instantaneous PR at R. The plus sign in 
(14b) occurs at R's before the turning point. 

Substituting these expressions into (3a) and (3b), 
we obtain the new variables along the trajectory. To 
illustrate the uniformizing properties of these variables, 
we trace out a set of trajectories in three sets of coordi-
nates. The trajectories shown in Fig. 1 were made 
using the conventional Cartesian coordinates, Rand 
Q, for the system. The numerous crossings of adjacent 
trajectories imply, by arguments of flux conservation, 
infinite amplitude of the simple exponential (or sum 
of exponentials) form of the semiclassical wave function 
at these points. 

In Fig. 2, trajectories are drawn using the (w, R) 
coordinates. At the crossings of these trajectories at 
the R turning-point region and at large post-collisional 
separation, the Jacobian, 8w/8wo, vanishes and the 
amplitude of the wavefunction again becomes infinite 
at these points, but now there are many fewer such 
points. Wherever crossings occur in Figs. 1 and 2 it 
would be necessary to use for the semiclassical wave-
function an Airy function instead of a simple exponen-
tial or sum of exponentials. The crossings at large R in 
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32 

24 

8 

R 

FIG. 2. Collisional trajectories in (w, R) representation; param-
eters same as in Fig. 1. ' 

TABLE I. Transition probabilities calculated with 
Vo=exp(-lXR).· 

Transitions 

1-1 
1-2d 
2-2 

1-1 
1-2d 
1-3d 
2-2 
2-3d 

2-2 
2-3 
2-4d 

2-2 
2-3 
2-4 
2-5d 

1 Bmn 12 

IL, lX, E= (j, 0.3,6) b 

0.973 0.973 
1.4XlO-3,3.4X10-4 7.3X10-4 
0.999 0.999 

p., a, E= (j, 0.3,8) b 

0.822 0.822 
5.3X10-2,4.3X10-2 4.9X1Q-2 
2.5XlO-4,1.8XlO-s 5.5X10-5 

0.953 0.953 
1. 7XlO-3, 4.6XlO-4 0.90X10-3 

IL, lX, E= (j, 0.3, 12)b 

0.315 0.315 
0.258,0.234 0.246 
7. OX 10-3, 6.8X 10-3 6.4X10-3 

IL, b, lX, E= (1/13, 0.1287, 16. 8364)b 

1. 9X 10-4 
0.322,0.299 
0.181,0.168 
1. 7X 10-2, 1.8X1Q-2 

1. 9X 10-4 

0.305 
0.174 
1. 7XlO-2 

a The second value in the second column is I Bnm 12, 

Exact 

(0.977) c 

8.98X10-4 

(0.999) 

(0.856) 
4.18X 10-2 

1. 46X 10-5 

(0.956) 
1. 33X 10-3 

(0.348) 
0.233 
6.00XlO-3 

e 
0.321 
0.167 
1. 70X1Q-2 

b These are the dimensionless parameters in the model of Secrest and 
Johnson. 

C The values in parentheses were obtained by difference. 
d Classically inaccessible transitions. 
e Too small (0,002 or less) to be determined accurately by difference. 

Fig. 2 had as a consequence the fact that the integral 
for Smn in Ref. 1 needed to be evaluated by an asymp-
totic approximation as R--'> <Xl, as in Refs. 1 and 2. 

Using the (w, r) coordinates, as in Fig. 3, the tra-
jectories do not cross even in the turning-point region 
and hence the system's semiclassical wavefunction is 
well-defined throughout. A consequence is that the in-
tegral (9b) need not be evaluated by asymptotic meth-
ods as R--'> <Xl. In fact, it is independent of R. The 
amplitude A in Eq. (6) also contains a factor (aEjaE) 1/2 
which, for the trajectories in Fig. 3, varied between 
1.3 and 0.6 and so did not cause A to become singular. 
In summary, when the new coordinates (wr) in Fig. 3 
are used no Airy functions are needed. Not shown in 
these figures are trajectories described in terms of co-
ordinates wr obtained using the method (b) mentioned 
in the Introduction and based on the exact Hamilton-
ian.6 These new trajectories are parallel to the r axis. 

For computing the transition probabilities, Hamil-

22 

18 

14 

FIG. 3. Collisional trajectories in (wr) representation; parameters 
same as in Fig, 1. 

ton's equations of the collisional system were first 
solved in terms of the wand R,12 and the results were 
then transformed into the new coordinates by Eqs. (3). 
For an elastic collision potential of exp (-OI.R) the 
integrals involving elastic trajectories which appear in 
the transformation expressions (3) and in the phase 
of the matrix element of (9c) were then obtained in 
closed form when T--'> 00. The relevant integrals were 
found to be 

j R VfJ. _ vRfJ. VfJ. fJ. 

ro PR dR = PRO - OI.PRo In 2PRo2 (lSa) 

and 

RdpR= _ P:
o 
[2+ln (2;R02 )] , (lSb) 

where -PRo= PR at large separation after the turning 
point. 
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When expressions (15) and the trajectory data were 
substituted into (9c), the values of Bmn and Bnm were 
obtained by integrating (9b) with a standard 41-point 
Newton-Cotes formula. Test runs with 81-point inte-
gration altered the results by less than 0.3%, except 
for the highly improbable transitions. Two mass ratios 
were used for calculations. The one with parameter 

is in the region where the "static approximation" 
fails badly, and the other with ,1.1= 1/13 is the case 
in which this approximation holds within 5%.13 The 
calculated transition probabilities, 1 Smn 12, and the val-
ues of 1 Bmn 12 are tabulated together with the exact 
quantum results in Table 1. Reasonably good agreement 
is observed, except when the probability is exceedingly 
small. 

Values of 1 Bmn 12 and of 1 Smn 12 based on (9) and 
(11) are given in Table II. The 1 Bmn 12 equals the ex-

TABLE II. Transition probabilities calculated with hard sphere Vo.-

Transitions 

Il, a, E= (i, 0.3, 6)b 

1-1 0.972 0.972 
1-2" 1.6XI0-3,3.1XlO-4 7.2XlO-4 
2-2 0.998 0.998 

Il, a, E= (i, 0.3, 8) b 

1-1 0.827 0.827 
1-2" 5.1XlO-2,4.4XlO-2 4.8XlO-2 
1-30 2.6XlO-4,2.2XlO-5 8.4XI0-6 

2-2 0.951 0.951 
2-3c 2 .OX 10-3,4. 5XlO-4 0.93Xlo-a 

Il, a, E= (i, 0.3,12) b 

2-2 0.320 0.320 
2-3 0.250,0.233 2.44 
2-4c 5.0XlO-a,6.9XIo-a 5.8XIo-a 

Il, a, E= (1/13, 0.1287, 16.8364)b 

2-2 2.3XlO-4 
2-3 0.315,0.303 
2-4 0.183,0.167 
2-50 2.0XlO-2, 1. 6X 10-2 

- Footnote a. Table I. 
b Footnote b. Table I. 
c Footnote d. Table 1. 
d Footnote e. Table I. 

2.3XIo-4 
0.309 
0.174 
1. 7XlO-2 

Exact 

(0.977) 
8. 98X 10-4 

(0.999) 

(0.856) 
4. 18XlO-2 

1.46XlO-s 
(0.956) 
1.33Xl0-a 

(0.348) 
0.233 
6.00XlO-a 

d 
0.321 
0.167 
1. 70XIo-2 

pression given by Miller3b for 1 Smn 12, but the present 
1 Smn 12 is symmetrical. The agreement with the exact 
results of Secrest and Johnson is seen to be comparable 
with that in Table 1. As noted earlier, if the expressions 
were exact, the numbers in Tables I and II would be 
identical. Thus, it is encouraging that the value of 
1 Smn 12 given by Eq. (9) is not, in these cases at least, 
sensitive to the choice made for the elastic collision. 
The simplest choice for such a collision is, of course, 
the one leading to (9a), (9b) and (11), (12). 
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