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In some bimolecular reactions, for example, certain low potential-energy barrier reactions, the saddle-
point choice for the position of the activated complex is vague and sometimes incorrect. In these and in
some others a different choice is needed. The concept of minimum state density for this purpose, its rela-
tion to adiabatic transition state theory and to the maximum free energy criterion, are discussed. It is
shown how it may be applied to bimolecular reactions using microcanonical activated complex theory

for these reactions.

I. INTRODUCTION

Some time ago, microcanonical activated complex
theory for bimolecular reactions was described by one
of us,! and the resulting expressions have been applied
in a number of problems.?® A recent series of numerical
tests'+® of activated complex theory using Monte
Carlo calculations and exact classical mechanical tra-
jectories make use of the expression or, in the collinear
collision case, of its one-dimensional analog.* One prob-
lem which arises in activated complex theory in general
and of low activation energy reactions in particular
concerns the position of the activated complex along
the reaction coordinate. In the present paper this posi-
tion is discussed for bimolecular reactions, both for use
in the Monte Carlo tests and for potential application
to experimental rate constants.

When the potential-energy barrier for a reaction is
sufficiently high and the saddle point on the potential-
energy surface is sufficiently well defined, the position
of the activated complex is clear: It is usual saddle-
point choice. In calculations of rate constants for other
surfaces the position of maximum local free energy of
the system along the reaction coordinate has been sug-
gested for choosing the activated complex.” In the case
of a microcanonical ensemble, on the other hand, in a
theoretical study testing RRKM unimolecular reaction
rate theory using Monte Carlo trajectory data, Bunker
and Pattengill® proposed a minimum state density cri-
terion for choosing“the position of the activated com-
plex.

We first consider, in Sec. II, a relation between the
minimum state density criterion and ‘“‘adiabatic’® 1
transition state theory. In Secs. III and IV we show
how the minimum energy density criterion can be used
in numerical tests of bimolecular activated complex
theory using microcanonical ensembles and Monte
Carlo trajectory data. The use of different subsets of
this ensemble (e.g., with constant total angular mo-
mentum™) for certain tests is also noted. Using the
Cl4+HI—-HCI4I reaction, some of the pitfalls which
would arise in some cases if consideration were re-

stricted to a harmonic-oscillator approximation, are
illustrated.

In the concluding section the relation between the
minimum state density criterion for microcanonical en-
sembles and the maximum free energy criterion’ for
canonical ensembles is described. In applications to ex-
periment, the latter is somewhat simpler to use, but
in some recent detailed tests of various aspects of acti-
vated complex theory with trajectory data the micro-
canonical level of detail has been investigated.

II. RELATION OF MINIMUM STATE DENSITY TO
ADIABATIC TRANSITION STATE THEORY

In reactions having low activation energy the posi-
tion of the activated complex along the reaction coordi-
nate s is not as obvious as it is for those of higher acti-
vation energy. In the latter it is at the top of a potential-
energy barrier. In the former the “bottleneck” for the
quasiequilibrium flow of systems from a configuration
of reactants to one of products may occur elsewhere as
a result of dynamical or “entropic” factors.

Regarding the use of an effective rather than actual
potential-energy barrier it is useful to recall first “adi-
abatic” transition state theory.®' In that theory each
quantum state # of the system is associated with its
own effective barrier (Fig. 1). The barrier occurs at
some s, s¥(n), and is the maximum of the adiabatic
potential-energy curve for motion along s for the quan-
tum state. The energy spacing of these curves for
adjacent quantum states 7 varies with s, since the local
vibration frequencies and moments of inertia for the
vibrational and rotational degrees of freedom of the
system vary with s. Thus, s*(n) will vary with #» and
need not be close to the position of the maximum of the
actual potential-energy maximum, particularly when
that barrier is low (Fig. 1).

To incorporate such effects one approach would be
to use the adiabatic transition state theory?!%? for
every single state and sum the contribution from each
state to the reaction rate or ensemble-averaged cross-
section. However, in many-dimensional systems this
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F16. 1. Schematic plot of energy Ex*(s) of adiabatic states
vs reaction coordinate. Dotted line indicates position of maximum,

procedure would be cumbersome. (The procedure could
not in any event be used to calculate individual cross
sections for various quantum states, because deviations
from adiabaticity affect individual more than ensemble-
averaged cross sections.)

Instead, a second approach would be to find some
st(n) suitably averaged over all states # in the en-
semble and use this {s*(n)) to define the position of
the transition state. We shall do so in the present paper,
utilizing an expression for a microcanonical bimolecular
activated complex theory.!

The equation for this mocrocanonical ensemble is
given by!

(1
Nt

where N and N+ denote an internal quantum state of
the reacting pair and of the activated complex, respec-
tively. ony is the reaction cross section of a pair react-
ing from state N and having initial relative transla-
tional momentum p; x(E, N*) is the probability of
passage over or through the barrier for a system in
state N* in the vicinity of the activated complex re-
gion; 2, a wavenumber, equals p/#; and the total en-
ergy E of the reactants is

- E=E,+En= (¥#*/2u)+En, (2)

where E, and Ey are the initial relative translational
energy ($%/2¢) and the initial rotational-vibrational
energy of the reactants, respectively.

Ordinary (i.e., canonical) activated complex theory
is obtained by multiplying both sides of (1) by a
Boltzmann factor, [exp(—E/kT)]dE/k, integrating
over all E, and dividing by Q, the partition function
of the reactants. The left-hand side then becomes the
usual rate constant and the right-hand side becomes,
on interchanging order of summation and integration,
a “generalized activated complex theory” expression
for it, namely that in Ref. 9, Eq. (14). For brevity we
have omitted from Eqg. (1) and from the present dis-

2 (k’/ﬂ)zm,,= E k(E, N+),
N
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cussion a reaction path degeneracy operator I' present
in Eq. (4) of Ref. 1 and in Ref. 9. It offers no difficulty
and can also be made to allow for competitive paths.”®
A natural choice of the activated complex would be
one which accurately treats the « terms in a simple
way, for example by replacing the right-hand side by
some sum over states N+, Zy+ 1, at a given valueof s, s+:
2 x(Ey, N2 > 1

Nt N* (EN*SE)

at some s*, (3)

where Ey+ is the energy of state N+ at the given s*,
There are many more states in the sum on the left
side than those on the right, since there are many
states on left for which « is negligible. Here, we may
refer again to Fig. 1 which describes the energy Ex+(s)
of various adiabatic states N+ along the reaction co-
ordinate s. Clearly, too large a negative choice for s
(too large a separation distance of reactants) yields
many terms for which « would be zero and so is not
acceptable. Too large a positive choice for s would
again include many states not accessible from the left,

"since « would again be too small.

The states for which the maximum of the Ey+ max-
imum is below E have =1 when diffraction effects
are neglected near the top of each effective barrier.
In deciding which s* to introduce into (3) we may
consider the density of states N+t in the vicinity of
En+=E. Too negative or too positive an s yields, at
least for several-dimensional systems, too large a den-
sity of states. (This density increases rapidly with
excess energy for such systems.) Thus, an s is picked
which minimizes this density, i.e., for which the de-
rivative of the density with respect to s is zero.

This criterion was used by Bunker and Pattengill® in
their theoretical study of the RRKM theory of uni-
molecular decomposition. The latter theory of uni-
molecular reactions makes use of a microcanonical
ensemble. The microcanonical form of bimolecular ac-
tivated complex theory, described by Eq. (1), permits
us to explore this criterion for bimolecular reactions
also. The preceding discussion describes a relationship
between this criterion and an adiabatic activated com-
plex theory.

IOI. THEORY

One may define, for brevity of notation, an ensemble-
averaged cross section at a given energy, ¢(£),

_ 2w (B/m)ony
“(E) % (k"/‘zr) ’ (4)

where the sums are over all states for which Ey<E.
[This function is the same as the one denoted by 8,(E)
in Ref. 4.] From Egs. (1)-(4) we then have

g+ (E)

“B)= ey’
N

(5)
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where

NHE)= > L (6)

N* (BEN+<E)

That is, T+(E) is the number of states of the activated
complex with rotational-vibrational energy equal to or
less than E. The other sum in Eq. (5) can be written
as an integral using (2), since the trajectory data with
which comparison will be made were classical,

R

where % (Ey) is the number of rotational-vibrational
states of the reactants with initial rotational-vibrational
energy equal to or less than Ey.

The numbers U+(E) and N (Ey) are readily obtained
by various methods, allowing for or neglecting an-
harmonicity and formulated by various authors for use
with RRKM unimolecular reaction rate theory.’ Sev-
eral formulas are collected in Appendix A, by way of
illustration.

Using the minimum state density criterion for the
position of the activated complex, s* is that s for which

(8/3s)[dn+(E)/dE]=0 (s=s1). (8)

For s one might use the “reaction path” (path of min-
imum potential energy) discussed by Johnston.!

In some reactions the centrifugal potential becomes
a significant quantity determining the position of the
activated complex (e.g., as in loose activated com-
plexes) and, for such reactions, has to be taken into
account in computing 9t+(E). In this case one can use
Eq. (5) or (6) of Ref. 1 instead of Eq. (3) there. The
centrifugal potential played a role in the unimolecular
study of Refs. 8 and 16, for example.

In the next section we give for concreteness, a specific
example of Egs. (4)-(8) for the reaction of an atom
with a diatomic molecule, using for ease of presenta-
tion a harmonic-oscillator approximation for the vi-
brations of the molecule and of the activated complex.

IV. REACTION OF AN ATOM AND A
DIATOMIC MOLECULE

When the diatomic molecule is treated as a rigid
rotor—harmonic oscillator and when the activated com-
plex is linear and treated as having one symmetric
stretching and one doubly degenerate bending vibra-
tion (harmonic oscillators) and as being a rigid rotor,
the equations in the Appendix yield

B _ (2u/nH2) (82 /1) E?
3hv)eo ’

(8w2I+/h?) (E— V+)4
41(hvg*) (hvgt) 2ot

where I, v, and o are the moment of inertia, vibration

9

NT

wt(E) = (10)
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frequency and symmetry number of the diatomic re-
actant; V+, I*, and o* are the potential energy, mo-
ment of inertia, and symmetry number for the activated
complex at the given s*; vs* and vpt are the symmetric
stretching and the bending frequencies of the activated
complex at that s.

When needed one can operate on (10) with the reac-
tion path degeneracy operator I referred to earlier.!

The density of states d+(E) /dE is found from (10)
by differentiation with respect to E, and this density
can be calculated as a function of s. A normal mode
analysis can be made along the reaction path to obtain
the local values of V*, vst, vp*, and I,

Recently, extensive trajectory studies on the reaction
Cl4+HI—-HCI4+1I have been made by Polanyi and
Wong."” From these studies ¢(E) is about 7 A? at a
total translational-vibrational-rotational energy E of
5 kcal mole~! (the E of thermal interest) and about
9 &2 at an E of 10 kcal mole™". Since the saddle point
on this surface occurred at a separation distance of
reactants of about 4.7 &, the “hard sphere” ¢(E) that
would be calculated if there were no steric restrictions
would be 7(4.7)? or about 70 A2. (The potential-energy
barrier for this surface is only 0.1 kcal mole™.)

As an example of the errors that can occur if the
harmonic-oscillator approximation were employed for
the very low bending frequencies that prevail for
Cl-H-If for this surface the o(E) calculated from
Egs. (4), (9), and (10) for a saddle-point configura-
tion is about 210 A? at an E of 5 kcal mole~!. It is re-
duced to about 20 A? when the minimum state density
criterion is used (for then vzt is higher), and one could
expect further reductions if the correct strongly an-
harmonic density of states were used in UH(E). An
example of the use of the latter density appears in
Appendix II of Ref. 2(b).

V. RELATION BETWEEN MINIMUM STATE
DENSITY AND MAXIMUM FREE
ENERGY CRITERIA

We comment finally on the relation between the min-
imum energy density criterion and the maximum free
energy criterion for the position of the activated com-
plex. :

The reaction rate constant &, equals'®

b= /w > Kaony exp(_E/kBT)dE. (11)

hQ !
where Q is the partition function of the reactants and

kp is the Boltzmann constant. Using (4) and (5) this
k. becomes .

B=~0 N T

b /‘” 9t+(E) exp(—E/ksT)dE

v W0 . (12)

E=0
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Integration by parts yields
_ kT = exp(— E/ksT)dN*(E)
h Je=o Q
since 9U+(0) is zero; k£ now denotes kp.
The integral in (13), which is a Stieltjes integral
when 9t+(E) is quantized, is the partition function of

the activated complex (measured relative to the zero
of energy) Q*(st),

()= 3 e (- 1)

v O\ kT

k, , (13)

- fE :) exp (— ;BE?) dHE).  (14)

Thus (13) becomes the (canonical) activated complex
theory expression

T +
p FL/MQH(T) (15)
Q
The local free energy for these states is F*(s%),
Ft+(st) =—kT InQ*(s*). (16)

At the point s* of maximum local free energy we have
dF+(st) /ost=0, (17)
and thus, from (14) and (16), this point occurs at
©gd doUt(E) ( E
0 as dE knT

)dE=0 (at s=s%).

(18)

It follows that the maximum free energy criterion is a
Boltzmann-factor-weighted minimum state density cri-
terion.

If a subset of the microcanonical ensemble had been
used, say a subset of constant total angular momentum,
or with some other variable held constant, the &, ob-
taining by multiplying in (1) by

(—E/kpT)dE
p IIQ b

using an appropriately restricted Q, would have repre-
sented the rate constant for the corresponding subset
in the canonical ensemble. The condition (17) would
have beea that derived for this restricted ensemble
and so, ance again, the two criteria for the position of
s+ would have been similarly related.

ex

APPENDIX: EQUATIONS FOR NUMBER
OF STATES®

We :ollect here several formulas useful for computing
9+ (Er) and 91(E). Each of these quantities can be re-
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garded as convolutions for the corresponding quantities
for rotations and vibrations when rotation-vibration
interaction is neglected. For example, when Q*(8))
the partition function of the activated complex (8=
1/kT), is the product of a vibrational factor Q*(6)
and a classical rotational partition function, 4r*/8",

0+ (8) = (Ar*/B7)Qv*(8), (A1)

inversion via a Laplace transform and use of the con-
volution theorem yields

E-V* (E—E;*t— V*) "N,"‘(E;*’)dE,"'
N+(E) = Ag* ,
(E) =4z /o O]

(A2)

where N,+(E,*) is the number of vibrational states
with energy equal to or less than E,*. When a quantum
expression is used for 9+ (E.*), RN.*(E,) is zero for
E.+ less than the zero-point energy Egt of the acti-
vated complex and consists of a sum of delta functions
centered at each energy level. A frequently used semi-
classical expression for 91,*(E.;*) (when the oscillators
are harmonic) is

(Ev+_ E0++an+)M M

() = o };Il hvit,  (A3)

where M is the number of vibrational degrees of free-
dom of the activated complex. E,* is the total vibra-
tional energy including the zero-point energy Eqt. The
constant ¢ is unity in the classical limit. In a quantum
treatment it equals unity at higher temperatures and
is a known function of E;* at lower temperatures.

The expression Y_n (¥3/) is given by Eq. (7). The
expression for 9L(Ex) to be used there is identical with
(A1), but with V+, Agt, E;*, and ¢ replaced by the
values appropriate to the pair of reactants. In this
way Egs. (8) and (9) are readily obtained.

A convenient collection of results for specific classical
cases is also given by Morokuma, Eu, and Karplus in
Ref. 4.
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