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The asymptotic evaluation of the integral representation for an S matrix element in a previously de-
veloped semiclassical theory of molecular collisions is considered. The integral representation is evaluated
asymptotically by the method of Chester, Friedman, and Ursell to give a uniform approximation for the
S matrix element which is valid for classically accessible and classically inaccessible transitions. The re-
sults unify and extend those previously derived, which were restricted to the simple semiclassical and
Airy function cases. A comparison is made with the simple, Airy, and uniform semiclassical approxima-
tions that occur in Miller’s semiclassical theory of molecular collisions. Although the starting point of
the two theories is different, it is concluded that their asymptotic results are essentially identical. In addi-
tion, a simpler derivation of the integral representation for an .S matrix element from the semiclassical
wavefunction is given, one which avoids the use of Green’s theorem.

I. INTRODUCTION

There has been considerable interest recently in the
way classical mechanics may be incorporated into the
description of atomic and molecular collisions, 12

One approach'™ applies the WKB (semiclassical)
approximation directly to the Schrédinger equation,
obtaining thereby a wavefunction that consists of an
incoming and outgoing term. This method avoids the
resolution of the Schrodinger equation into an infinite
set of coupled differential equations. The phase of the
wavefunction satisfies the Hamilton—Jacobi equation
of classical mechanics, whilst the amplitude satisfies
an equation of continuity of flux.!'? The characteristics
of the Hamilton—Jacobi equation are the classical equa-
tions of motion. This paper presents a further develop-
ment in the theory of this semiclassical approach to
collision problems.

One step in the theory developed in Refs. 1 and 2, was
the derivation of an integral representation for the
elements of the S matrix, from the semiclassical wave-
function mentioned above. The method previously
used!? involved a lengthy calculation using a multi-
dimensional form of Green’s theorem. However a
shorter derivation of the .S matrix is possible, and this
is described in Sec. IT. The method avoids the use of
Green’s theorem.

The integral representation for the S matrix was
evaluated in Refs. 1 and 2 by means of asymptotic argu-
ments. Results were obtained when the points of sta-
tionary phase were well separated (‘‘simple” semi-
classical analysis) or when they were close together
{Airy function analysis). In this paper, we present a
more extensive discussion of the asymptotic evaluation
of the S matrix integral, one which unifies the previous
treatment and extends it. For this purpose, Sec. 11T is
devoted to a discussion of uniform asymptotic integra-

tion by the method of Chester, Friedman, and Ursell.®
We give a general discussion because we feel this is
clearer than if a special case had been considered, and
because we have other applications of the results in
mind.?

In Sec. 1V, the general results of Sec. ITI are applied
to the integral representation for the § matrix of Sec.
II. A uniform semiclassical approximation is derived
which is valid for both classically accessible and classi-
ically inaccessible transitions and which reduces, in
the appropriate limit, to the simple semiclassical and
Airy function results.

Miller*® has presented a semiclassical theory of in-
elastic collisions in which he evaluates the classical
approximation to the quantum mechanical propagator’
in various representations.’ He has demonstrated by
numerical application to several model problems that
his theory provides a feasible quantitative approxima-
tion scheme for the analysis of inelastic molecular col-
lisions. In Sec. IV, we compare in some detail our results
for the simple, Airy, and uniform semiclassical approxi-
mations with those of Miller. Although the starting
point of the two theories is different, we conclude that
their asymptotic results are essentially equivalent,

II. CALCULATION OF THE S MATRIX

In this section, we present a derivation for the ele-
ments of the S matrix which is shorter and more direct
than that used previously.?

In Refs. 1 and 2, the asymptotic form of the wave-
function was found to be

U ~ R (Y /va"?) exp(—iknR-+i4mm)

Ro>w

— v | dwi/ow,® |V exp(ig*/A) ], (2.1)
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where

¢* r i R
LA f” [7ss(103) — i Jdwi+ [ kiR
ﬁ =1 Ywi0 Ro

427 3 naw;—kaRo+ (m+1)37. (2.2)

gma]
In Eq. (2.1), the first term represents an incoming
partial wave in a state z. R is the radial coordinate and

'in[): eXp(Z‘II"I« Z n,-w;)
=1

represents the remaining r degrees of freedom expressed
in terms of action-angle variables.® k, and », are the
asymptotic wavenumber and velocity, respectively.
The second term in Eq. (2.1) represents an outgoing
wave. k, v, and 7; are the instantaneous wavenumber,
velocity, and the action for the coordinate 7, respec-
tively.® The integration in Eq. (2.2) is from some
initial set of values {w® Ry} at the beginning of the col-
lision, to some final set of values {w;, R} at the end.
Finally | dw./6w;® | denotes a Jacobian of the final angle
variables with respect to the initial ones.
The elements of the S matrix are defined by

¥a® ~ R (Yn”/2a?) CXP(_iknR+'i%”17r)

R»eo

—3 Sn (Y 0a?) exp(iknR—1kmm)] (2.3)

and the problem is to determine Sn, from Egs. (2.1)
and (2.3). In Refs. 1 and 2, S, was found by a lengthy
calculation in which Green’s theorem was used to
convert an 741 dimensional volume integral into an
r-dimensional surface integral. Instead of doing this,
however, we can realize that Egs. (2.1) and (2.3) are
two representations of the same wavefunction, ¥,™,
and hence are equivalent. Therefore we have from
Egs. (2.1) and (2.3):

5 Sutar/ 1) exp (il R— ')

=2 | duf o [ explid*/).  (24)

The mnth element of the S matrix is now obtained
by multiplying both sides of Eq. (2.4) by ¥m.", inte-
grating over w, and using the orthonormality of the

{'l’mwol :
1 1 r
f b ‘/ \bmwo*\bm’wo H W= 8pm’.
0 0 =1

This gives for Spa:

S"m___ -/01. . ./;1 (2;2)1/2

dw; |12

dwf

exp(A) I1 dw,
i1

(2.5)
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where

r s R
A=2r Z [‘" [ﬁ,(w.) ——n,-]d'w.--l— / de—k,.Ro—ka
w4 Eo

V=1 0

+27"§': (mi—m)wi+ (m+m+1)3r.  (2.6)
=1

This completes the formal derivation of the integral
representation for Sm,.

At first sight, Eq. (2.5) differs from the result ob-
tained previously!? by the Green’s theorem method,
namely

_ 1 1 (‘IJ+'Um)
Smn_/; '/‘; Z(vvm)l,’z

dw; |1

aw

exp(tA) fI dw;.
(2.7)

However, the formal results (2.5) and (2.7) cannot be
used as they stand, because Su, is a function of R.
This can be most easily seen by integrating by parts
the integrals in Eq. (2.6) for A:

r r

g k
A=—2TZ / widﬁ,-—/ de+27rz ('ﬂ,-—m;)wi
EY —kn

el =1

+ (k—kn) R+ (my+m+1)3x.  (2.8)
However, if Egs. (2.5) and (2.7) are evaluated by
asymptotic methods, Swm. becomes independent -of R
and Egs. (2.5) and (2.7) become equivalent. This
follows since at a saddle point (defined by dA/dw.=0),
we have n;=m,; and hence k=£k,, and v=19,,. The use of
an asymptotic method to evaluate the integral repre-
sentation of S.. is consistent with the use of an asymp-
totic method to derive Eq. (2.1) originally.l* An ex-
ception to the use of an asymptotic evaluation of the .S
matrix integral is the case of elastic scattering, when
both Egs. (2.5) and (2.7) reduce to their well-known
values exp(218;)6ms, where 8; is the semiclassical phase
shift for radial motion with a single turning point.?

In the next paper® of this series, integral representa-
tions will be given which are not R dependent and one
of which satisfies the principle of microscopic reversi-
bility, The method presented in the subsequent sec-
tions will be equally applicable to them as it is to (2.5)
or (2.7). In all cases, the same results are then obtained
for the asymptotic result, and so the analysis of Secs.
ITI and IV need not then be repeated in the later paper.

In the remainder of this paper, we will consider only
one-dimensional integrals for simplicity of presenta-
tion, although some of the results are valid in more than
one dimension. The next section deals with the theory
of the asymptotic evaluation of integrals of the type
(2.5) and (2.7), whilst applications will be found in
Sec. IV.
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III. UNIFORM ASYMPTOTIC INTEGRATION

A. Introduction

Here we apply the method of Chester, Friedman,
and Ursell® to the asymptotic evaluation of the in-
tegral

1= [ g2) explif(e )W, (30)
where a is a real parameter. It is known from studies
in potential scattering that this is a very effective
method for dealing with integrals of the type (3.1) 182
Another treatment for the uniform asymptotic integra-
tion of Eq. (3.1) has been given by Miller® based on a
method of Carrier. We have adapted the method of
Chester et al. because of its comparative rigor. Applica-
tions and further discussion are given in the next sec-
tion.

B. f"(x1)>0 f(x2) <0

We shall suppose there exist two points of stationary
phase such that

e, m)=0,  f(a, x)=0.

For the classically accessible case (which we consider
first) #, and x, are real while in the classically inacces-
sible case x; and x, are complex conjugates. For the
classically accessible case we choose for the signs of the
second derivatives

f" () >0

(3.2)

[ (@) <0, (3.3)
where the primes denote differentiation with respect
to x. In addition it is assumed that there exists a real
ap and x such that

f, (0[0, xo) =0; f” (xo) =0)
that is, for @ = @ there exists a double root, but for as£ay
there exists two single roots.

The absence of « in the second- and third-order de-
rivatives in (3.3) and (3.4) indicates that f(e, x) de-
pends only linearly on the parameter «. For example,
in terms of Eq. (2.8), and Fig. 3 of Ref. 2, ¢ is m, aq is
i, and xp is %; in rainbow scattering'®* « is 8 the scatter-
ing angle, o is 6, the rainbow angle and xo is /, the value
of the angular momentum quantum number at the
rainbow angle. [See Egs. (3.27) and (3.28) below.]
However, it is true in general that f"(x) and f""’(x0)
can be taken as independent of «, by a suitable transla-
tion and rotation of coordinates.’®

Throughout this section and the next it is assumed
that g(x) does not possess any zeros or singularities
near the saddle points. If this is not the case, a modified
treatment can be given.

J" (%) <0, (3.4)
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C. Quadratic Approximation

The simplest approximation for evaluating the in-
tegral (3.1) in the classically accessible case comes by
expanding f{a, ) around the points x; and x;:

fla, x) =f(a, 2) +5f" (21) (x—m1)?

flo, @) =fla, @) =3 | " (w2) | (x—222)?
which leads to the simple stationary phase result
I=(2n/| /" )2gy expli( frt-im) 4 2/ £ )2

X expli( o—1m)], (3.6)

where the obvious notation gi=g(x:), fi=f(a, %),
f'=f"(x:), i=1, 2 has been used.

(3.5)

D. Cubic Approximation

For o near ay, the approximation (3.5) breaks down,
and a cubic expansion of f(a, x) about % must be used
instead

f(a! x) =f(a: xo) +f,(a1 xO) (x——xo)
—% 1" (%) | (x—m)?, (3.7)

where Eq. (3.4) has been used. For the classically ac-
cessible case, f'(a, %) is positive whereas in the classi-
cally inaccessible case f’(a, %) is negative. It will also
prove useful to include the second term in the asymp-
totic expansion for 7 by writing!$:#

g(x) =g (%0) +¢' () (x—0). (3.8)

Inserting Egs. (3.7) and (3.8) into the integral (3.1)
and making the change of variable

v=—=(]f""(x) |/2)3(z~—0)

leads to
I=2mgo(2/| fo"" |)"® exp (ifo) AiL—1s' (2/| fo"' [)¥%]
+i2mgd (2/1 " ) exp(ifo) AT —fo' (2/| £ )],
(3.9)

where Ai(x) and A4'(x) are the regular Airy function
and its derivative, respectively,?

2rAdi(x) = /w expl¢(xv+30%) Jdv,

2rd (x) =1 f v exp[s(xv-+307) Jdv.
For small values of the argument of the Airy function
and its derivative [i.e., those for which the expansion
(3.7) is valid], the first term in Eq. (3.9) will dominate
the second term

In passing we note that if f// (%) =0 but f'" (%) #0,
the method of this subsection still holds but now the
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characteristic integral is

Cx)= [ dvexpli(a+oh]

instead of the Airy integral. In potential scattering this
behavior gives rise to cubic rainbows.

E. Uniform Approximation

In this subsection, a uniform approximation for the
integral (3.1) is derived which reduces to Eq. (3.6)
when x; and x» are far apart, and to Eq. (3.9) when
they are close together, but which is also valid for inter-
mediate values of x; and x» as well.

Chester, Friedman, and Ursell’® have shown that a
uniform approximation for the integral (3.1) may be
obtained by introducing a new variable y, implicitly
defined by® (note that this is noi an approximation)

fla, 2) =3y*—{ (@) y+A(a), (3.10)

where {(a) and A(a) are constants. The mapping is
one-to-one and uniformly analytic if the stationary
points of either side of Eq. (3.10) correspond®:

x=m>y={12,
x=xpry=—[12, (3.11)

Substituting Eqs. (3.11) into Eq. (3.10) yields two
simultaneous equations for {(«) and A («) which may
be solved to give

24 =f(a7 xl) +f(a) x2) ’ (312)
F2=f(ar, 02) —f(e, %1). (3.13)

In our applications, the right-hand sides of Eqs. (3.12)
and (3.13) will represent the sum and difference of
classical action terms, respectively.

In the classically accessible case, where %, and %, are
real solutions of Eq. (3.2), A and ¢ are both real and
¢ may be chosen to be positive. In the classically in-
accessible case, where x; and =, are complex conjugate
solutions of Eq. (3.2), A and { are again real with ¢
chosen to be negative.

The integral (3.1) now becomes

o 7
1= exp(ia) [ g (5 emliC—ty+i) 5. (.10

In Ref. 13 it is shown that the first two terms of a suit-
able expansion for g(dx/dy) are

g(dx/dy) = potquoy. (3.15)

Inserting Egs. (3.11) into Eq. (3.15) then gives two
simultaneous equations which may be solved for p, and
ot

po=3[g(®) (dx/dy) sy +-g(x2) (dx/dy).,], (3.16)
go= (1/2¢9%) [g (1) (dac/dy) 2y — g (#2) (d/dy)ae].  (3.17)
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The values of the derivatives may be found by differ-
entiating the transformation equation (3.10) twice to
give:

& (a, x) (d_x)* Hlox) Pz _ ) (3.18)

d  \dy dx dyt

Substituting the values (3.11) into Eq. (3.18) and
using Eq. (3.2) leads to

(dx/dy) = (212/f") 2,

(dx/dy) y= (—2812/f") 12,
so that from Egs. (3.16) and (3.17), po and ¢; become
po= (/2 { Lo/ (A" 2]+ Lo/ (— )11,
go=(1/2%¢") {[g1/ (") ]=Lo/ (=]}, (3.19)

Substituting Eqs. (3.19) and (3.15) into Eq. (3.14)
allows the integral 7 to be written in terms of the Airy
function and its derivative, thus

I=2"r exp(i4) {[g1/ ( fi") "]
+Lgo/ (—f") 2]} A(—¢)
— 122 exp(i4) {[g1/ ( A") ]
—Lg/ (=) PR MAY (=),

where A(a) is given by Eq. (3.12) and {(a) by Eq.
{3.13). This is the uniform approximation we have
been seeking and Eq. (3.20) is the main result of this
section. Equation (3.20) is valid for both the classically
accessible case and the classically inaccessible case. In
the second case, x; and x» are complex conjugate solu-
tions of Eq. (3.2) and f(a, 1) =f(e; %)*, f'(a, 2,) =
J/(a; %)%, g(x1) =g(x2)* (all these results are a conse-
quence of the Schwarz Reflection Principle). In addi-
tion, in the classically inaccessible case, 4 and ¢ are
real with { negative. We can write therefore

(3.20)

g1=ge™, g=ge ",
f=f"e,  f=f"e. (3.21)

With Eqgs. (3.21) substituted into Eq. (3.20), the equa-
tion for I does not take a particularly simple form, so
we do not report it. However, the equation for | I |2
(required later) does simplify and is given by

I T [2=4ag(f") " [1— sin(2a—R8) ]| ¢ |2 482(| ¢ ])
+[1+sin(2a—@) 1| ¢ |72 42([ ¢ )} (3.22)
F. Limiting Cases

Equation (3.20) is readily shown to reduce to the
simple stationary phase result (3.6) by substituting
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the asymptotic forms for Ai(—¢) and Ai'(—¢)®

Ai(—) ~ g sin (3 ),

0

4§ (=) ~ — U4 cos (34 dm).

$>o0

(3.23)

To verify that the uniform approximation (3.20) and
(3.22) reduces to the Airy result (3.9), the cubic ex-

pansion (3.7) is assumed for f(a, «), and the linear

expansion (3.8) for g(x). With the help of the stationary
phase conditions (3.2) and Eq. (3.8), it is then found
that

Xo—Xp= — (xl—xo) = (Zfo,/,fol', I)1/2 (324)
in the classically accessible case, or
m—xp=— (2—x0) =4 (2| fo' |/[ f"" )12 (3.25)

in the classically inaccessible case. Equations (3.24)
and (3.25) then allow 4, {, g, g2, fi”, 2/, 8, /"', @, and
B to be determined, and it is readily shown that Eqgs.
(3.20) and (3.22) reduce to the Airy result (3.9).

G. f"(x) <0 f'(x5)>0

In this subsection, we consider the uniform approx-
imation for the opposite case to that of Sec. IIL.B, i.e.,
in the classically accessible case when

' (x:) <0,  f(x)>0.

As the derivation is similar to that described in the
previous subsections, we merely quote the results.
Defining a new function implicitly by Eq. (3.10) and
proceeding as before, we arrive at the following uniform
approximation for 7:

I=2"2r exp(id) {[g/( f")**]
+Le/ (=) JsHe4i (=)
— 2V exp(i4) {[go/ ( fo") V2]
—[g/ (=) 2]} 44 (—¢),
24=f(a, 21) +f(a, x2)

532=f(ar, 1) — f (o, 22) .

Ti the asymptotic forms (3.23) for 4i(—¢) and
Ai'(—¢) are substituted into Eq. (3.26), the simple
stationary phase result is obtained:

SNE AR

el (s3]

On the other hand, if a cubic expansion for f(«, x)
near % is assumed,

f(a, x) =f(a, %o) +f'(0¢, %0} (x— o) +%fm(xo) (x—x0)®

(3.26)
where

and
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and the procedure described in Sec. 11L.F followed,
then the Airy result is obtained:

I=2mwgo(2/f"") 13 exp(ifo) Adl fo' (2/£""") V%]
—12ngy (2/£"") % exp(ifo) A4'[ fo' (2/f""") 1]

H. Example: Potential Scattering

As an example of the use of Eq. (3.26) and as a
check on our calculations, we evaluate the integral
| £+(6) | where

£6) = —1i exp(—in/4) 7+

k(27 sing) 12 (3.27)

and

I+= / " e exp[i(20416)1d (3.28)

—0

which arises in the theory of the rainbow effect in po-
tential scattering when the rainbow angle 6,<w.18:22
In Egs. (3.27) and (3.28) 8 is the scattering angle, !
the angular momentum quantum number, 8; the semi-
classical phase shift (2d8;/dl=0, the deflection func-
tion), and & is the wavenumber. Making the appropriate
identifications with Eq. (3.26) we obtain®

It=2"r exp(id) {[(5/0:,)
+(—h/6n) A (—¢)
—i[ (B/0:,) 12— (= /0, ) MA4d (=)},

(3.29)
where
24=2(8,+8,)+ (h+5h)o
and
$032=2(6,,—81,) + (h—1)8.
Introducing the classical cross sections by
0'i=li/k2 Sil’le , eli’ | 1:=1, 2
we find from Eq. (3.29) for the case <8,
| £,(68) = (o o)A —g)
+r (a2 — V)22 442 (—)  (3.30)

in agreement with Berry.® Equation (3.30) will pro-
vide a very illuminating analogy with a result derived
in Sec. 1V.

IV. DISCUSSION

The general results of Sec. ITT are now applied to the
integral representation of the .§ matrix given in Sec.
IT, hence unifying and extending the analysis given
previously.? Tt is clear that there are essentially three
cases to consider: the simple stationary phase result,
the Airy result, and the uniform result which encom-
passes the other two. For each case we will compare
our results with those of Miller.t8
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A, Simple Semiclassical Analysis

The results of Sec. IT1.C are applicable here. From
Egs. (2.5)-(2.8) the points of stationary phase w/,
w,’ are given by (see also Ref. 2)

dA/dw="2x[n{w) —m]
=0 at w=wn/,w .

(4.1)

‘The first line of Eq. (4.1) is the equivalent of the rela-
tion 2d6,/dl=0 in potential scattering (see Sec. IIT.H).
Then from Eqgs. (2.5) or (2.7) and (3.6)

Siun=| @1/ dw® |y 12 exp{i[A(wr?) +3r ]}
+ | di/du® |wp"* expli[A(we) —1r ]},
where we have used from Eq. (4.1) the fact that
EA/dw?=2wdn/dw.

(4.2)

(4.3)

In Eq. (4.2), n is now to be regarded as an explicit
function of »° rather than w, and the labeling of the
points of stationary phase has been changed to conform
with this. Thus if

w=w(w?),
then

w,-'=w(’wi°'), ’i=1, 2.

Also in writing down Eq. (4.2), we have chosen the
sign of the Jacobian factor

(du®/dw)uw,:

to be positive in order that the amplitude factor 4 [de-
fined by Eq. (4.23) of Ref. 2] be real. This will also
be the case in the next two subsections. When the sign
is negative, the analysis of this section is still valid
provided appropriate modifications are made; or one
may proceed directly from the integral (2.5) or (2.7)
to the results of Sec. III.G. A(w,”) and A(w) are
defined by [from Eq. (2.8) }:

Alw™) ’

A(w)

km
Rdk+3r  (4.4)

=—2r f wdn—
n —kn

since #=#,=0 in the one-dimensional case we are

considering. [We recall? that the integrals in Eq. (4.4)

are line inmtegrals, i.e., integrals evaluated along the

actual classical trajectories. In the present case there

are two trajectories which give rise to a final m.]

We can now compare Eq. (4.2) with Miller’s results
[Egs. (41)-(45) of Ref. 417 The expressions differ
in both their amplitude and phase factors. The ampli-
tudes differ by a factor of #. This, however, is a con-
sequence of the delta function normalization used in
Ref. 4,2 which apparently omitted the % factor. The
over-all phase of the .§ matrix is also different in the
two cases. Miller gives his § matrix an over-all phase
of —x/4 in the one-dimensional case (Appendix A of
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Ref. 4), whereas Eq. (4.4) shows that the present .S
matrix has an over-all phase of 7/2, or in the general
case, from Eq. (2.6), an over-all phase of

(n1+m1+ 1)7I'/2.

The term (#;-+m1) /2 is a consequence of the boundary
condition that the incoming wave in Eq. (2.1) be a
partial wave, and the 7/2 is a consequence of the de-
crease in w/2 of the wavefunction at the turning point
in the R motion.? The transition probability is

Pmn=! Sﬂm |2

and then the over-all phases are of no consequence.
Thus from Eq. (4.2)

Pon=prtprt2(prp2) " sin[A(w) — A(wr®) ],

where

(4.5)

pi= (| dni/dw®

i=1,2 (4.6)

wi”’)_l7

is the classical transition probability. Thus the present
simple semiclassical results are equivalent to those of
Millert® when the above remarks regarding the am-
plitude and over-all phase of the S matrix are taken
into account,

B. Airy Analysis

We now wish to consider the result for Sy, based on
the assumption of a parabolic maximum in the 7 (w) vs
w plot?:

n(w) =fi— (a/27) (w—w)? 4.7
so that from Eq. (4.1)
A(w) =AD) + 2r (i—m) (w—b) —3a(w—0)% (4.8)

Then if we compare Eq. (4.8) with Eq. (3.7) and use
Eq. (3.9), we have

Sma=2ma~ 13 exp[ZA (D) ]
X (| dw/dw® |3)~ 12 Ai[ — 2z (i—m) /a¥®] (4.9)
and
Prn=4m2a"23(| dw/duw’ |5) AP~ 2w (Ai—m) /a¥/?],
(4.10)

where we have neglected the second term in Eq. (3.9)
in writing down Egs. (4.9) and (4.10) as it is dominated
by the first term.®

The result derived previously [Egs. (7.6) and (7.10)
of Ref. 2] differs from Eq. (4.9) in that the Jacobean
factor was evaluated at a saddle point w, rather than
at the maximum of #(w), i.e., &. However since w,’
is assumed to lie close to % for the quadratic expansion
(4.7) to be meaningful and because the Jacobian factor
is also assumed to be a slowly varying function of w,
this difference will be of little importance.
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This is a convenient point at which to discuss the
variable of integration in Egs. (2.5), (2.7), (4.9), and
(4.10). In these equations, the integration is over w,
i.e., the final value of the angle variable. However since
there is a relation between w and »°, the initial value of
the angle variable, of the form

w=w(w?)

the integration can be changed from one over w to one
over #°. The question then arises as to which variable
is to be preferred: the initial angle variable or the final
angle variable? Clearly the variable to use is that for
which the %(w) vs w plot, or (%) vs w° plot, is the
simpler. For example, in the nonreactive linear atom—
diatom collision problem, the n(x®) vs %° plot has a
simple sinusoidal shape (see Figs. 2 and 4 of Ref. 3),
whereas the n(w) vs w plot is considerably more com-
plicated.® The initial angle variable is therefore the
preferred one to use in this case.

Now Egs. (2.5), (2.7), (4.9), and (4.10) together
with the analysis given previously? involve integrations
over w, whereas Miller uses the initial angle variable.®
Suppose however we know that n(%") can be repre-
sented by

fi(w?) =7 (0°) + 5 (&Pn/dw™) 50 (w'—0°)?
and that

(4.11)

w0=12"(w)
with
= (@);

Then it is not difficult to show that Eq. (4.11) becomes
7i(w) =0 (D) +3 (d*n/dw®) oo (dw/dw®) 5T (w—1b)*.
(4.12)

Miller uses initial angle variables in his Airy analysis
[Eq. (18) of Ref. 5], so in order to make the comparison
Eq. (4.7) must be identified with Eq. (4.12). When
this is done, and the remarks of Sec. IV.A regarding
the normalization and over-all phase of S... are taken
into account, it is found that the two approximations
for the transition probability agree.®®

Miller actually uses a somewhat different set of vari-
ables in his treatment of the nonreactive linear atom—
diatom system®*® from the usual action-angle variables
we are using. However, the arguments leading to the
various asymptotic approximations are quite general
and our comparison remains valid.

Finally, by evaluating the S matrix in different repre-
sentations, Miller derived another integral representa-
tion for Sm. which he called the initial value repre-
entation.! The question then arises as to the relation-
ship between this representation and the integral repre-
sentation of Egs. (2.5) or (2.7). We have not tried to
derive the initial value representation from Egs. (2.5)
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or (2.7) or from the formalism of Ref. 2. However, in
Part 111 of this series® a new representation of the wave-
function is achieved and yields in a natural manner
an integral expression which satisfies microscopic re-
versibility. A comparison with Miller’s initial value
representation is given in Part IIT. The coordinates in
the new representation are all “uniformized” whereas
formerly only the internal coordinates were.

The method described in the present paper can be
used to give an asymptotic approximation to the in-
tegral for S, given in Part IT1.

C. Uniform Approximation

Here we apply the uniform approximation of Sec. TIT
to the integral (2.5) or (2.7). We consider the classi-
cally accessible case first. Making the appropriate
identifications and using Egs. (4.3) and (4.6) we have

Sma=m'2 exp(id) [(p1'?+ /%) $11440(—¢)
—i(p P — M)AV (1) ], (4.13)

where
A=3[A(w")+A(w") ]
and

t=1{3A(w") — Aw) ]}

so that A and { involve the sum and difference of the
classical actions, respectively. The transition prob-
ability then takes the form

Prp=7(pr 1) 24T (—¢)
F (P2 — p MY 2124472 (— ).

This is directly analogous to the uniform approximation
for the rainbow effect in potential scattering derived
in Sec. ITL.H [see Eq. (3.30)7). For ¢ large, Eq. (4.14)
goes over to the simple semiclassical result Eq. (4.5),
and for { small, Eq. (4.14) becomes equivalent to the
Airy result Eq. (4.10).

Miller has also derived a uniform approximation® for
the transition probability which in our notation is

Prn=m(pr24ps1%) 2 A2(— )
+1I' (plll2_ lel?.) 2§-1IZB,I:2 ( —_ g.) s

where Bi(—¢) is the irregular Airy function.? Thus, Eq.
(4.15) differs from Eq. (4.14) only in that {¥2B#?(—{)
replaces {V2442(—{).

(4.14)

(4.15)

Since?
A=)
~ 771 cos?(3¢¥24-1m)
§BE(—p) ) b

it is clear that both Eqs. (4.14) and (4.15) are equiv-
alent for large ¢ [and go over to Eq. (4.5)]. When { is
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small, however,
FURAVH () #BR ()

but in this case, the first term in both Eqs. (4.14) and
(4.15) dominates the second term, cf. Eq. (3.9). We
therefore conclude that Eqs. (4.14) and (4.15) are
essentially equivalent for all ¢ in the classically ac-
cessible case. ‘

We now consider the classically inaccessible case. 1f
we write

(dn/ duf)or 2= p12 exp(if/2),
then from Egs. (3.21) and (3.22) we have
Ppp=2ap[ (1+ sing) | ¢ [V2422(] ¢ |)
+(1— sing) [ ¢ [P243%([¢ )] (4.16)

Equations (4.14) and (4.16) are therefore the uniform
approximation in the general case.

It is not difficult to show from Eqs. (4.11) and (3.25)
that B=4w for a quadratic expansion of #(w®) [Eq.
(4.11)7], and in general we expect f23r to hold. With
this value of 8, Eq. (4.16) becomes

Pra=drp | ¢ [V242(] £ |) (4.17)

which is the expression used by Miller [Eq. (1a) of
Ref. 6].7:% Therefore, we conclude that the present
uniform semiclassical approximation and that of Miller
are essentially equivalent for both the classically ac-
cessible and classically inaccessible cases,
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