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The asymptotic evaluation of the integral representation for an S matrix element in a previously de-
veloped semiclassical theory of molecular collisions is considered. The integral representation is evaluated 
asymptotically by the method of Chester, Friedman, and Ursell to give a uniform approximation for the 
S matrix element which is valid for classically accessible and classically inaccessible transitions. The re-
sults unify and extend those previously derived, which were restricted to the simple semiclassical and 
Airy function cases. A comparison is made with the simple, Airy, and uniform semiclassical approxima-
tions that occur in Miller's semiclassical theory of molecular collisions. Although the starting point of 
the two theories is different, it is concluded that their asymptotic results are essentially identical. In addi-
tion, a simpler derivation of the integral representation for an S matrix element from the semiclassical 
wavefunction is given, one which avoids the use of Green's theorem. 

I. INTRODUCTION 

There has been considerable interest recently in the 
way classical mechanics may be incorporated into the 
description of atomic and molecular collisions.1-l2 

One approachl- 3 applies the WKB (semiclassical) 
approximation directly to the Schrodinger equation, 
obtaining thereby a wavefunction that consists of an 
incoming and outgoing term. This method avoids the 
resolution of the Schrodinger equation into an infinite 
set of coupled differential equations. The phase of the 
wavefunction satisfies the Hamil ton-Jacobi equation 
of classical mechanics, whilst the amplitude satisfies 
an equation of continuity of fiUX.l,2 The characteristics 
of the Hamilton-Jacobi equation are the classical equa-
tions of motion. This paper presents a further develop-
ment in the theory of this semiclassical approach to 
collision problems. 

One step in the theory developed in Refs. 1 and 2, was 
the derivation of an integral representation for the 
elements of the S matrix, from the semiclassical wave-
function mentioned above. The method previously 
used' ·

2 involved a lengthy calculation using a multi-
dimensional form of Green's theorem. However a 
shorter derivation of the S matrix is possible, and this 
is described in Sec. II. The method avoids the use of 
Green's theorem. 

The integral representation for the S matrix was 
evaluated in Refs. 1 and 2 by means of asymptotic argu-
ments. Results were obtained when the points of sta-
tionary phase were well separated ("simple" semi-
classical analysis) or when they were close together 
(Airy function analysis). In this paper, we present a 
more extensive discussion of the asymptotic evaluation 
of the S matrix integral, one which unifies the previous 
treatment and extends it. For this purpose, Sec. III is 
devoted to a discussion of uniform asymptotic integra-

tion by the method of Chester, Friedman, and Ursell. '3 
We give a general discussion because we feel this is 
clearer than if a special case had been considered, and 
because we have other applications of the results in 
mind.3 

In Sec. IV, the general results of Sec. III are applied 
to the integral representation for the S matrix of Sec. 
II. A uniform semiclassical approximation is derived 
which is valid for both classically accessible and classi-
ically inaccessible transitions and which reduces, in 
the appropriate limit, to the simple semiclassical and 
Airy function results. 

Miller4-8 has presented a semiclassical theory of in-
elastic collisions in which he evaluates the classical 
approximation to the quantum mechanical propagatorl4 
in various representations. IS He has demonstrated by 
numerical application to several model problems that 
his theory provides a feasible quantitative approxima-
tion scheme for the analysis of inelastic molecular col-
lisions. In Sec. IV, we compare in some detail our results 
for the simple, Airy, and uniform semiclassical approxi-
mations with those of Miller. Although the starting 
point of the two theories is different, we that 
their asymptotic results are essentially equivalent. 

II. CALCULATION OF THE S MATRIX 

In this section, we present a derivation for the ele-
ments of the S matrix which is shorter and more direct 
than that used previously.l.2 

In Refs. 1 and 2, the asymptotic form of the wave-
function was found to be 

-V-I /2 \ fJw;jawl\-1I2 exp(Up* In)], (2.1) 
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where 

r 
+211' L n;w;-knRo+(n1+1)h. (2.2) 

i-l 

In Eq. (2.1), the first term represents an incoming 
partial wave in a state n. R is the radial coordinate and 

r 

t/t"wo= exp(211'i L niwi) 
i-1 

represents the remaining l' degrees of freedom expressed 
in terms of action-angle variables.16 k" and v" are the 
asymptotic wavenumber and velocity, respectively. 
The second term in Eq. (2.1) represents an outgoing 
wave. k, v, and iii are the instantaneous wavenumber, 
velocity, and the action for the coordinate i, respec-
tively.16 The integration in Eq. (2.2) is from some 
initial set of values {WiO, Ro} at the beginning of the col-
lision, to some final set of values {Wi, R} at the end. 
Finally I aWi/awll denotes a Jacobian of the final angle 
variables with respect to the initial ones. 

The elements of the S matrix are defined by17 

t/t,,<+)"""" R:"1 [(t/t"wO/V,,1/2) exp( -ik"R+itn111') 
R-oo 

- L Smn(t/tmwO/Vm1/2) exp(ikmR-itm111') ] (2.3) 
m 

and the problem is to determine Smn from Eqs. (2.1) 
and (2.3). In Refs. 1 and 2, Smn was found by a lengthy 
calculation in which Green's theorem was used to 
convert an 1'+ 1 dimensional volume integral into an 
1'-dimensional surface integral. Instead of doing this, 
however, we can realize that Eqs. (2.1) and (2.3) are 
two representations of the same wavefunction, t/tn<+) , 
and hence are equivalent. Therefore we have from 
Eqs. (2.1) and (2.3): 

L Sm'n(t/tm'wO/Vm,1/2) exp(ikm,R-itm1'1I') 
m' 

=V-1/2 I aw;jawll-1/2 exp(icp* iii). (2.4) 

The mnth element of the S matrix is now obtained 
by multiplying both sides of Eq. (2.4) by 1fmwo*, inte-
grating over w, and using the orthonormality of the 
{t/tmwO} : 

This gives for Sm,,: 

11 11 (V )1/2 I aw· 1-1/2 
r Smn= ••• -; exp(i/l) II dWi, 

o 0 v aw1 ;"1 

(2.5) 

where 

r 
+211' L (ni-mi)Wi+(n1+m1+1)t1l'. (2.6) 

i-1 

This completes the formal derivation of the integral 
representation for Smn. 

At first sight, Eq. (2.5) differs from the result ob-
tained previouslyl.2 by the Green's theorem method, 
namely 

(2.7) 

However, the formal results (2.5) and (2.7) cannot be 
used as they stand, because Smn is a function of R. 
This can be most easily seen by integrating by parts 
the integrals in Eq. (2.6) for /l: 

However, if Eqs. (2.5) and (2.7) are evaluated by 
asymptotic methods, Smn becomes independent of R 
and Eqs. (2.5) and (2.7) become equivalent. This 
follows since at a saddle point (defined by aAjawi=O), 
we have iii=mi and hence k=km and V=Vm • The use of 
an asymptotic method to evaluate the integral repre-
sentation of Smn is consistent with the use of an asymp-
totic method to derive Eq. (2.1) originally.1,2 An ex-
ception to the use of an asymptotic evaluation of the S 
matrix integral is the case of elastic scattering, when 
both Eqs. (2.5) and (2.7) reduce to their well-known 
values exp(2ill l )llm", where III is the semiclassical phase 
shift for radial motion with a single turning point.2 

In the next paper of this series, integral representa-
tions will be given which are not R dependent and one 
of which satisfies the principle of microscopic reversi-
bility. The method presented in the subsequent sec-
tions will be equally applicable to them as it is to (2.5) 
or (2.7). In all cases, the same results are then obtained 
for the asymptotic result, and so the analysis of Secs. 
III and IV need not then be repeated in the later paper. 

In the remainder of this paper, we will consider only 
one-dimensional integrals for simplicity of presenta-
tion, although some of the results are valid in more than 
one dimension. The next section deals with the theory 
of the asymptotic evaluation of integrals of the type 
(2.5) and (2.7), whilst applications will be found in 
Sec. IV. 
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III. UNIFORM ASYMPTOTIC INTEGRATION 

A. Introduction 

Here we apply the method of Chester, Friedman, 
and Ursell13 to the asymptotic evaluation of the in-
tegral 

1= L: g(x) exp[if(a, x) Jdx, (3.1) 

where a is a real parameter. It is known from studies 
in potential scattering that this is a very effective 
method for dealing with integrals of the type (3.1) .18-20 
Another treatment for the uniform asymptotic integra-
tion of Eq. (3.1) has been given by Millerfi based on a 
method of Carrier.2l We have adapted the method of 
Chester et at. because of its comparative rigor. Applica-
tions and further discussion are given in the next sec-
tion. 

We shall suppose there exist two points of stationary 
phase such that 

(3.2) 

For the classically accessible case (which we consider 
first) Xl and X2 are real while in the classically inacces-
sible case Xl and X2 are complex conjugates. For the 
classically accessible case we choose for the signs of the 
second derivatives 

(3.3) 

where the primes denote differentiation with respect 
to x. In addition it is assumed that there exists a real 
ao and Xo such that 

C. Quadratic Approximation 

The simplest approximation for evaluating the in-
tegral (3.1) in the classically accessible case comes by 
expandingf(a, x) around the points Xl and X2: 

f(a, x) =f(a, Xl)+tj"(Xl) (X-Xl)2 

f(a,x)=f(a,X2)-t 1j"(X2) 1 (X-X2)2 (3.5) 
which leads to the simple stationary phase result 

1= (211"/IH' i)1/2gl exp[i(jl+h)J+ (211"/1 N' i)1/2g2 

X exp[i( h-l11") J, (3.6) 

where the obvious notation gi= g(Xi), f;= f(a, Xi), 
j/' =j" (Xi) , i= 1,2 has been used. 

D. Cubic Approximation 

For a near ao, the approximation (3.5) breaks down, 
and a cubic expansion of f(a, x) about Xo must be used 
instead 

f(a, x) =f(a, xo)+1'(a, xo) (x-Xo) 

-! 1 fill (xo) 1 (X-xo)3, (3.7) 

where Eq. (3.4) has been used. For the classically ac-
cessible case, l' (a, xo) is positive whereas in the classi-
cally inaccessible case l' (a, xo) is negative. It will also 
prove useful to include the second term in the asymp-
totic expansion for I by writing13 ,18 

g(x) =g(xo)+g'(xo) (x-xo). (3.8) 

Inserting Eqs. (3.7) and (3.8) into the integral (3.1) 
and making the change of variable 

V= - (If"'(xo) 1/2)l/3(X-XO) 
leads to 

l' (ao, Xo) = 0, f"(xo) =0, I'" (xo) <0, (3.4) I=211"go(2/lfo''' i)1I3 exp(ifo)Ai[ -fo'(2/I1o''' Dl/aJ 

that is, for a = ao there exists a double root, but for a,eao 
there exists two single roots. 

The absence of a in the second- and third-order de-
rivatives in (3.3) and (3.4) indicates that f(a, x) de-
pends only linearly on the parameter a. For example, 
in terms of Eq. (2.8), and Fig. 3 of Ref. 2, a is m, ao is 
ii, and Xo is w; in rainbow scattering18 ,22 a is 0 the scatter-
ing angle, ao is Or the rainbow angle and Xo is lr the value 
of the angular momentum quantum number at the 
rainbow angle. [See Eqs. (3.27) and (3.28) below.J 
However, it is true in general that f"(XO) and 1'"(XO) 
can be taken as independent of a, by a suitable transla-
tion and rotation of coordinates. IS 

Throughout this section and the next it is assumed 
that g(x) does not possess any zeros or singUlarities 
near the saddle points. If this is not the case, a modified 
treatment can be given. 

+i211"go'(2/lfo'" D2/S exp(ifo)Ai'[ -fo'(2/I1o''' 1)1/3J, 

(3.9) 

where Ai(x) and Ai'(x) are the regular Airy function 
and its derivative, respectively,23 

211"Ai(x) = i: exp[i(xv+iv3) Jdv, 

271-Ai'(x) =i i: v exp[i(xv+iv3) Jdv. 

For small values of the argument of the Airy function 
and its derivative [i.e., those for which the expansion 
(3.7) is validJ, the first term in Eq. (3.9) will dominate 
the second term 

In passing we note that iff'" (Xo) = ° but 1'111 (Xo) ,eO, 
the method of this subsection still holds but now the 

Downloaded 16 Feb 2012 to 131.215.21.63. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



INELASTIC AND REACTIVE COLLISIONS. II 5639 

characteristic integral is 
00 

C(X) = L" dv exp[i(xv+v4) J 

instead of the Airy integral. In potential scattering this 
behavior gives rise to cubic rainbows.24 

E. Uniform Approximation 

In this subsection, a uniform approximation for the 
integral (3.1) is derived which reduces to Eq. (3.6) 
when Xl and X2 are far apart, and to Eq. (3.9) when 
they are close together, but which is also valid for inter-
mediate values of Xl and X2 as well. 

Chester, Friedman, and Urselll3 have shown that a 
uniform approximation for the integral (3.1) may be 
obtained by introducing a new variable y, implicitly 
defined by26 (note that this is not an approximation) 

f(a, x) =bLr(a)y+A(a), (3.10) 

where r(a) and A (a) are constants. The mapping is 
one-to-one and uniformly analytic if the stationary 
points of either side of Eq. (3.10) correspondl3 : 

x= Xl+-+y=rl/2, 
x=X2+-+y= -rl/2. (3.11) 

Substituting Eqs. (3.11) into Eq. (3.10) yields two 
simultaneous equations for r(a) and A (a) which may 
be solved to give 

2A = f(a, Xl) +f(a, X2), 

x2)-f(a, Xl). 

(3.12) 

(3.13) 

In our applications, the right-hand sides of Eqs. (3.12) 
and (3.13) will represent the sum and difference of 
classical action terms, respectively. 

In the classically accessible case, where Xl and X2 are 
real solutions of Eq. (3.2), A and r are both real and 
r may be chosen to be positive. In the classically in-
accessible case, where Xl and X2 are complex conjugate 
solutions of Eq. (3.2), A and r are again real with r 
chosen to be negative. 

The integral (3.1) now becomes 

1= exp(iA) L: g e;) exp[i( -ry+!y3) Jdy. (3.14) 

In Ref. 13 it is shown that the first two terms of a suit-
able expansion for g(dx/dy) are 

g(dx/dy) = Po+qoy. (3.15) 
Inserting Eqs. (3.11) into Eq. (3.15) then gives two 
simultaneous equations which may be solved for po and 
qo: 

PO=t[g(XI) (dx/dy) "'l+g(X2) (dx/dy)",.], (3.16) 

qo= (1/2rlI2) [g(Xl) (dx/dY)"'l-g(X2)(dx/dy)",.J. (3.17) 

The values of the derivatives may be found by differ-
entiating the transformation equation (3.10) twice to 
gIve: 

d2f(a, X) (dX)2 + df(a, x) d2x =2y. (3.18) 
dx2 dy dx dy2 

Substituting the values (3.11) into Eq. (3.18) and 
using Eq. (3.2) leads to 

(dx/dY)zt= (2rl/2/H')l/2, 

(dx/dy)",.= (-2r1/2/N')l/2, 

so that from Eqs. (3.16) and (3.17), po and qo become 

po= (r114/21/2) {[gt/ (H') 1/2J+[gd (-N') 1/2JI, 

qo= (1/2112r1/4) {[gt/(H')112J-[g2/( -N')1/2JI. (3.19) 

Substituting Eqs. (3.19) and (3.15) into Eq. (3.14) 
allows the integral I to be written in terms of the Airy 
function and its derivative, thus 

1= 21/27r exp (iA) { [gl/ ( H') 112J 

+ [g2/( _N')1/2Jlrl/4Ai(-0 

- i21/27r exp (iA) {[gl/ ( H') 1/2J 

-[g2/( -NI)112Jlr-l/4Ai/( -r), (3.20) 

where A (a) is given by Eq. (3.12) and r(a) by Eq. 
(3.13). This is the uniform approximation we have 
been seeking and Eq. (3.20) is the main result of this 
section. Equation (3.20) is valid for both the classically 
accessible case and the classically inaccessible case. In 
the second case, Xl and X2 are complex conjugate solu-
tions of Eq. (3.2) and f(a, Xl) = f(a, X2)*, 1" (a, Xl) = 
1" (a, X2) *, g(Xl) = g(X2) * (all these results are a conse-
quence of the Schwarz Reflection Principle). In addi-
tion, in the classically inaccessible case, A and rare 
real with r negative. We can write therefore 

gl = geia, 

fl" = f" eifJ , (3.21) 

With Eqs. (3.21) substituted into Eq. (3.20), the equa-
tion for I does not take a particularly simple form, so 
we do not report it. However, the equation for 1 I 12 
(required later) does simplify and is given by 

1 I 12= [1- sin (2a-{3) J 1 r 11/2 Ai2(1 r i) 

+[1 + sin(2a-{3)] 1 r 1-1/2 Ai'2(1 r i) I. (3.22) 

F. Limiting Cases 

Equation (3.20) is readily shown to reduce to the 
simple stationary phase result (3.6) by substituting 
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the asymptotic forms for Ai( -t) and Ai'( _t)23 

Ai( -t) ,....., 71"-1/2;'-114 sinW-3/2+t7l"), 

To verify that the uniform approximation (3.20) and 
(3.22) reduces to the Airy result (3.9), the cubic ex-
pansion (3.7) is assumed for f(a, x), and the linear 
expansion (3.8) for g(x). With the help of the stationary 
phase conditions (3.2) and Eq. (3.8), it is then found 
that 

X2- XO= - (X1- XO) = (2fo' /110''' I) 1/2 (3.24) 

in the classically accessible case, or 

x2-xo=-(x1-xo)=i(2I1o'I/I1o'''1)112 (3.25) 

in the classically inaccessible case. Equations (3.24) 
and (3.25) then allow A, r, gI, g2, H', H', g, f", a, and 
f3 to be determined, and it is readily shown that Eqs. 
(3.20) and (3.22) reduce to the Airy result (3.9). 

G.j"(X1)<0 j"(X2»0 

In this subsection, we consider the uniform approx-
imation for the opposite case to that of Sec. III.B, i.e., 
in the classically accessible case when 

As the derivation is similar to that described in the 
previous subsections, we merely quote the results. 
Defining a new function implicitly by Eq. (3.10) and 
proceeding as before, we arrive at the following uniform 
approximation for I: 

1=211271" exp(iA) ([gd(H')112J 

+[gd (-H')112) Jlrl14Ai( -r) 

-i21/271" exp(iA) ([gd (H') 1/2J 

and the procedure described in Sec. IlI.F followed, 
then the Airy result is obtained: 

1= 271"go( 2/10''') 113 exp (ifo) A i[ 10' (2/10''') 113J 

- i27rgo' (2/10''') 213 exp (ifo) A iT 10' (2/10''') 1/3]. 

H. Example: Potential Scattering 

As an example of the use of Eq. (3.26) and as a 
check on our calculations, we evaluate the integral 
1fT (0) 12 where 

-i exp( -i'71/4) 
f (0) - 1+ 

r - k (271" sinO) 1/2 (3.27) 

and 

(3.28) 

which arises in the theory of the rainbow effect in po-
tential scattering when the rainbow angle 0,< 71".18,22 
In Eqs. (3.27) and (3.28) 0 is the scattering angle, 1 
the angular momentum quantum number, 01 the semi-
classical phase shift (2do 1/ dl = 8, the deflection func-
tion) , and k is the wavenumber. Making the appropriate 
identifications with Eq. (3.26) we obtain26 

1+ = 21/271" exp (iA ) ([ (12/8 1/) 1/2 

where 

and 

+ (-It/el,') 1/2JrlI4Ai(-0 

-i[(12/el.')ltL (-11/8 1,')1/2J;'-1!4Ai'( -0 l, 
(3.29) 

Introducing the classical cross sections by 

Ui= li/k2 sinO I 8 1/ I i=1,2 

-[gd(-H')112JI;'-114Ai'(-0, (3.26) wefindfromEq. (3.29) for the caseO<Or 
where 

and 
f(a, Xl) -f(a, X2). 

If the asymptotic forms (3.23) for Ai( -t) and 
Ai'( -t) are substituted into Eq. (3.26), the simple 
stationary phase result is obtained: 

On the other hand, if a cubic expansion for f(a, x) 
near Xo is assumed, 

f(a, x) =f(a, xo)+f'(a, xo)(x-XO)+iJlII(XO)(X-XO)3 

! fr(O) !2=7I"(U2112+0"11/2)2rI/2Ai2( -r) 

+71" (0"2112-U1lt2)2;'-1/2Ai'2 ( -0 (3.30) 

in agreement with Berry.I8 Equation (3.30) will pro-
vide a very illuminating analogy with a result derived 
in Sec. IV. 

IV. DISCUSSION 

The general results of Sec. III are now applied to the 
integral representation of the S matrix given in Sec. 
II, hence unifying and extending the analysis given 
previously.2 It is clear that there are essentially three 
cases to consider: the simple stationary phase result, 
the Airy result, and the uniform result which encom-
passes the other two. For each case we will compare 
our results with those of Miller.4- 8 
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A. Simple Semiclassical Analysis 

The results of Sec. TILe are applicable here. From 
Eqs. (2.5)-(2.8) the points of stationary phase WI', 
W/ are given by (see also Ref. 2) 

dM dw= 2·n{n( w) - m J 
=0 at w=wt', w/. (4.1) 

The first line of Eq. (4.1) is the equivalent of the rela-
tion urn/ dl = e in potential scattering (see Sec. IlLH). 
Then from Eqs. (2.5) or (2.7) and (3.6) 

Smn= 1 dn/dwo IWIO,-1/2 exp{i[A(wIO')+t1l'JI 

+ 1 dn/dwo IW20,-1/2 exp{i[A(w20')-t1l'JI, (4.2) 

where we have used from Eq. (4.1) the fact that 

(4.3) 

In Eq. (4.2), n is now to be regarded as an explicit 
function of wO rather than w, and the labeling of the 
points of stationary phase has been changed to conform 
with this. Thus if 

then 
w/=w(wP') , i=I,2. 

Also in writing down Eq. (4.2), we have chosen the 
sign of the Jacobian factor 

to be positive in order that the amplitude factor A [de-
fined by Eq. (4.23) of Ref. 2J be real. This will also 
be the case in the next two subsections. When the sign 
is negative, the analysis of this section is still valid 
provided appropriate modifications are made; or one 
may proceed directly from the integral (2.5) or (2.7) 
to the results of Sec. IILG. A(WIO') and A(W20') are 
defined by [from Eq. (2.8) J: 

(4.4) 

since nl = ml = 0 in the one-dimensional case we are 
considering. [We recall2 that the integrals in Eq. (4.4) 
are line integrals, i.e., integrals evaluated along the 
actual classical trajectories. In the present case there 
are two trajectories which give rise to a final m.J 

We can now compare Eq. (4.2) with Miller's results 
[Eqs. (41)-(45) of Ref. 4J.27 The expressions differ 
in both their amplitude and phase factors. The ampli-
tudes differ by a factor of n. This, however, is a con-
sequence of the delta function normalization used in 
Ref. 4,28 which apparently omitted the n factor. The 
over-all phase of the S matrix is also different in the 
two cases. Miller gives his S matrix an over-all phase 
of -11'/4 in the one-dimensional case (Appendix A of 

Ref. 4), whereas Eq. (4.4) shows that the present S 
matrix has an over-all phase of 11'/2, or in the general 
case, from Eq. (2.6), an over-all phase of 

(nl+ml+ 1)11'/2. 
The term (nl+ml) 11'/2 is a consequence of the boundary 
condition that the incoming wave in Eq. (2.1) be a 
partial wave, and the 11'/2 is a consequence of the de-
crease in 11'/2 of the wavefunction at the turning point 
in the R motion.2 The transition probability is 

Pmn=1 Smn 12 

and then the over-all phases are of no consequence. 
Thus from Eq. (4.2) 

Pmn= PI+P2+2(PtP2)1/2 sin[A(w20') -A(WIO') J, (4.5) 

where 
i=1,2 (4.6) 

is the classical transition probability. Thus the present 
simple semiclassical results are equivalent to those of 
Miller4.6 when the above remarks regarding the am-
plitude and over-all phase of the S matrix are taken 
into account. 

B. Airy Analysis 

We now wish to consider the result for Smn based on 
the assumption of a parabolic maximum in the n (w) vs 
w plot2: 

new) =n- (a/211') (w-w)2 (4.7) 

so that from Eq. (4.1) 

A(W) =A(w)+211'(n-m) (w-w) -la(w-w)3. (4.8) 

Then if we compare Eq. (4.8) with Eq. (3.7) and use 
Eq. (3.9), we have 

Smn= 211'a-I/3 exp[iA(w) J 

X (I dw/dwo Iw)-1/2 Ai[ -211'(n-m)/aI/3J (4.9) 

and 

P mn =41I'2a-2/3(1 dw/dwO -211'(n-m)/al/3J, 
(4.10) 

where we have neglected the second term in Eq. (3.9) 
in writing down Eqs. (4.9) and (4.10) as it is dominated 
by the first term.29 

The result derived previously [Eqs. (7.6) and (7.10) 
of Ref. 2J differs from Eq. (4.9) in that the Jacobean 
factor was evaluated at a saddle point w/ rather than 
at the maximum of n(w), i.e., W. However since w/ 
is assumed to lie close to w for the quadratic expansion 
(4.7) to be meaningful and because the Jacobian factor 
is also assumed to be a slowly varying function of w, 
this difference will be of little importance. 
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This is a convenient point at which to discuss the 
variable of integration in Eqs. (2.5), (2.7), (4.9), and 
(4.10). In these equations, the integration is over w, 
i.e., the final value of the angle variable. However since 
there is a relation between wand wo, the initial value of 
the angle variable, of the form 

w=w(wD) 

the integration can be changed from one over w to one 
over woo The question then arises as to which variable 
is to be preferred: the initial angle variable or the final 
angle variable? Clearly the variable to use is that for 
which the new) vs w plot, or n(wO) vs WO plot, is the 
simpler. For example, in the nonreactive linear atom-
diatom collision problem, the n (WO) vs WO plot has a 
simple sinusoidal shape (see Figs. 2 and 4 of Ref. 5), 
whereas the new) vs w plot is considerably more com-
plicated.3D The initial angle variable is therefore the 
preferred one to use in this case. 

Now Eqs. (2.5), (2.7), (4.9), and (4.10) together 
with the analysis given previously2 involve integrations 
over w, whereas Miller uses the initial angle variable.· 
Suppose however we know that n (WO) can be repre-
sented by 

n(wO) =n(WO) +Hd2ii/dwD2)wo(wLWO) 2 (4.11) 

and that 

with 
WO=WO(w) ; 

Then it is not difficult to show that Eq. (4.11) becomes 

new) =n(w) +Hd2ii/ dwD2) .. o[ (dw/dwD) .. oj2(w-w)2. 

( 4.12) 

Miller uses initial angle variables in his Airy analysis 
[Eq. (18) of Ref. 5], so in order to make the comparison 
Eq. (4.7) must be identified with Eq. (4.12). When 
this is done, and the remarks of Sec. IV.A regarding 
the normalization and over-all phase of Smn are taken 
into account, it is found that the two approximations 
for the transition probability agree.27 •28 

Miller actually uses a somewhat different set of vari-
ables in his treatment of the nonreactive linear atom-
diatom system··s from the usual action-angle variables 
we are using. However, the arguments leading to the 
various asymptotic approximations are quite general 
and our comparison remains valid. 

Finally, by evaluating the S matrix in different repre-
sentations, Miller derived another integral representa-
tion for Sm. which he called the initial value repre-
entation." The question then arises as to the relation-
ship between this representation and the integral repre-
sentation of Eqs. (2.5) or (2.7). We have not tried to 
derive the initial value representation from Eqs. (2.5) 

or (2.7) or from the formalism of Ref. 2. However, in 
Part III of this series3 a new representation of the wave-
function is achieved and yields in a natural manner 
an integral expression which satisfies microscopic re-
versibility. A comparison with Miller's initial value 
representation is given in Part lIT. The coordinates in 
the new representation are all "uniformized" whereas 
formerly only the internal coordinates were. 

The method described in the present paper can be 
used to give an asymptotic approximation to the in-
tegral for Smn given in Part III. 

C. Uniform Approximation 

Here we apply the uniform approximation of Sec. III 
to the integral (2.5) or (2.7). We consider the classi-
cally accessible case first. Making the appropriate 
identifications and using Eqs. (4.3) and (4.6) we have 

Smn = 7r1/2 exp(iA) [(Pl1/2+N/2) r1/(A i( -t) 

-i(Prl/2- P21/2)t-l/4A i' ( -t)], (4.13) 
where 

and 

so that A and r involve the sum and difference of the 
classical actions, respectively. The transition prob-
ability then takes the form 

Pmn=7r(N/2+P21/2)2tl/2Ai2( -r) 

+7r(Pl1/L N/2)2r-l/2Ai'2 ( -r). (4.14) 

This is directly analogous to the uniform approximation 
for the rainbow effect in potential scattering derived 
in Sec. IH.H [see Eq. (3.30)]' For t large, Eq. (4.14) 
goes over to the simple semiclassical result Eq. (4.5), 
and for t small, Eq. (4.14) becomes equivalent to the 
Airy result Eq. (4.10). 

Miller has also derived a uniform approximation" for 
the transition probability which in our notation is 

Pmn=7r(N/2+P21/2)2tl/2Ai2( -t) 

+7r(N/2- N12)2t1/2Bi2( -t), (4.15) 

where Bi( - r) is the irregular Airy function.23 Thus, Eq. 
(4.15) differs from Eq. (4.14) only in that rl/2Bi2(_t) 
replaces t-1/2 A i'2 ( - t) . 

Since23 

t-1
/
2Ai'2( -t») 

'" 7r-1 cos2(it3/ 2+t7r) 
tli2Bi2( -r) t ... ., 

it is clear that both Eqs. (4.14) and (4.15) are equiv-
alent for large r [and go over to Eq. (4.5)]. When r is 

Downloaded 16 Feb 2012 to 131.215.21.63. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



INELASTIC AND REACTIVE COLLISIONS. II 5643 

small, however, 

r-1/2Ai'2( -r) 

but in this case, the first term in both Eqs. (4.14) and 
(4.15) dominates the second term, cf. Eq. (3.9). We 
therefore conclude that Eqs. (4.14) and (4.15) are 
essentially equivalent for all r in the classically ac-
cessible case. 

We now consider the classically inaccessible case. If 
we write 

(dn/du.fl)W10,1/2= p-1/2 exp(i{3/2), 

then from Eqs. (3.21) and (3.22) we have 

Pm" = 211'p[(1+ sin(3) 1 r II/2At'2(i r I) 

+(1- sin(3) 1 r I-I/2Ai'2(1 r \)]. (4.16) 

Equations (4.14) and (4.16) are therefore the uniform 
approximation in the general case. 

It is not difficult to show from Eqs. (4.11) and (3.25) 
that (3=!11' for a quadratic expansion of n( u.fl) [Eq. 
(4.11)J, and in general we expect to hold. With 
this value of (3, Eq. (4.16) becomes 

( 4.17) 

which is the expression used by Miller [Eq. (la) of 
Ref. 6].27,31 Therefore, we conclude that the present 
uniform semiclassical approximation and that of Miller 
are essentially equivalent for both the classically ac-
cessible and classically inaccessible cases. 
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