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In the present paper the time-independent Schriidinger equation for inelastic collisions is solved directly 
in the WKB approximation, using action-angle variables and the method of characteristics. A single wave-
function, consisting of an ingoing and an outgoing term, is thereby derived, describing all collision channels 
and so avoiding the application of WKB methods to an infinite set of coupled differential equations. An 
integral is obtained for the S matrix, and asymptotic methods (e.g., steepest descents, stationary phase) 
are used for its evaluation. The expressions can be calculated using numerical data on classical trajectories 
or using approximations. To facilitate the latter and to show the connection with approximations in 
the literature, a canonical perturbation theory is described for the wave phase and amplitude, in a form 
suited to collisions, and used to relate the theory to those approximations. The topic of collisional selection 
rules is also considered. The extension of the method employed in the present paper to the direct calculation 
of differential and total inelastic cross sections, rather than via the S matrix, is briefly described, and the 
extension to reactive cross sections is also noted. The method can also be used to treat time-dependent 
problems, and so is not restricted to collisions. These topics and other applications will be described in later 
papers of this series. 

I. INTRODUCTION state? The latter are then solved by a WKB method, 
with added approximations. In our case, instead, a 

Classical action-angle variables were used to treat single WKB solution is found for the entire system 
atomic and molecular structure, as well as absorption rather than using coupled equations. Apart from one 
and emission of radiation, many years ago.! Recently, restrictionS the approximation in the present work is the 
we have employed them to treat inelastic and certain application of an asymptotic (i.e., WKB) argument. 
chemically reactive collisions.2- 5 In the present paper a The accuracy of WKB arguments for describing 
quantum mechanics in action-angle variables, in the quantum mechanical phenomena and interferences in 
WKB approximation, is used to calculate transition elastic collisions accurately is now well established.9 

probabilities in collisions. The final expression can be We have employed action-angle variables because 
evaluated by integration of a system of ordinary dif- of their desirable properties: the action variables are 
ferential equations (the classical equations of motion) closely related to quantum numbers (WKB, Bohr-
or by various approximation techniques. Sommerfeld formulas) j the initial angle variables each 

As before, we use conventional coordinates (R, PR) occur randomly in the interval [0, lJj and the angle 
to describe the radial motion and employ action-angle variables are uniformizing variables, removing the 
variables to describe the other degrees of freedom. 3 singularities in unperturbed WKB wavefunctions. 
The present paper is the one cited as Ref. 2 there.3b A The presentation in the paper has the following 
method, based on the Feynman propagator, for format: In Sec. II a simple classical result is given for 
applying action-angle variables to the S matrix has the transition probabilities, as an illustration of the 
recently been employed by Miller.6 use of these variables. In Sec. III the unperturbed 

In the present paper we have calculated the S matrix, Schrodinger equation is given, and in Sec. IV the 
partly to facilitate comparison both with exact (numer- actual equation and its WKB solution are described for 
ical) computations and with various approximations in the system. Application is made in Sec. V for the 
the literature. However, the method requires relatively elastic case to verify that the phase shift and the 
little modification to calculate the observables directly, solution as a whole reduce to the usual one in that case. 
the differential and total cross sections for inelastic An expression for the S matrix is given in Sec. VI and 
processes. The nature of the modification is indicated asymptotic methods (steepest descents, stationary 
briefly, and described more fully in a later paper. The phase) are applied to its evaluation in Sec. VII. A 
method can also be used to treat problems with time- canonical perturbation theory for the phase and 
dependent Hamiltonians, and so is not restricted to amplitude, and hence for the S matrix, is derived in 
scattering phenomena. These results will also be de- Sec. VIII. It is used as a guide in Sec. IX to apply 
scribed subsequently. exact and approximate numerical results3- 5 of trajectory 

Usually, WKB treatments of the time-independent calculations to the problem, as a preliminary to a more 
Schrodinger equation for inelastic collisions first resolve detailed discussion to be given elsewhere. The topic of 
the equation into coupled equations, one per quantum collisional selection rules is also noted there. In Sec. X 
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both the extension from S matrices to differential and 
total inelastic cross sections, and the extension to 
chemical reactions, are indicated. The relationship to 
various approximations in the literature is also de-
scribed. 

The principal equations in the paper are Eqs. 
(6.5)-(6.7) and (7.17). Others are (7.6), (7.9) [and 

their asymptotic forms (7.13)-(7.14)J, (7.16), (7.27), 
and (8.15)-(8.18). 

The myriad of phenomena associated with inelastic 
transitions makes clear some of the applications of the 
method. We shall describe some of these applications in 
later papers of this series. 

A flow sheet of the present procedure is as follows: 

Schrodinger equation 

I WKn 

FI t. . H '1 '] b' . ann ton- aco I equation 
(Phase) 

Method of ,hamd"i"i" 

Solved for phase 
I t 

. ux conservatIOn equation 
(Ampli tude) 

Gau",' ,hoo", m 

Solved for amplitude 
I 

Wavefunction 

I Expression for S matrix 
• (or for dUa {3/dQ) 

Saddle points 

I . t . 
elastic 

The approach in this paper is a direct descendent of 
the WKB method used for treating the time-inde-
pendent Schrodinger equation for elastic scattering or 
eigenvalue problems. Miller's approach6 is a most 
interesting one which begins with the classical Feyn-
man propagator. While their starting points and their 
integral expressions for Smn differ, one can anticipate 
that future interaction between the two approaches 
should enrich both. We hope to compare the two, both 
with respect to phase and amplitude of Smn, in a later 
paper. The terms in the phase of Smn playa role in 
phenomena such as line broadening. 

II. A SIMPLE CLASSICAL RESULT 

An application of a formalism based on action-angle 
variables is illustrated by calculation of a "classical" 
transition probability for a classically accessible transi-
tion. The angle variables, as already noted, have the 
convenient property of lying, initially randomly, in the 
interval [0, 1]. The probability of finding the system in 
some quantum state m after a collision, if the system 

Ine astlc or reactive 

C lassica II \" 
accessible 

Classically 
inaccessible 

was in an initial state n, is denoted by Pmn• Correspond-
ing to a unit interval in quantum number m is an 
interval M = h in action variable J. [J equals mh or 
(m+! )h, according to Bohr-Sommerfeld theory, 
depending on the degree of freedom. J ]f !1wo is the 
interval in initial angle variable WO leading to a J m 

lying in (lm, Jm+M), then Pmn is equal to !1wO. 
Since !1wO equals M / (aJ m/ awO) for small !1wo, and 
since M is h, we have 

(2.1) 

This classical result is immediately generalized to r 
dimensions: Since 

!1WI0 •• ,!1wro= I aJmjawp I-IM1 , , 'Mr, (2.2) 

where II denotes an rXr determinant, and since M,= 
h!1m;= h, we have 

Pm1 ... m,nl ... n,=hr/1 aJmjawll. (2.3) 
When several isolated !1wo intervals contribute the 
contributions are added to yield the total Pmn in (2.1) 
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and (2.3). Equation (2.3) can also be derived later 
from (7.17). 

Frequently, one is interested in only one or several 
of the m;'s, and the corresponding transition probability 
is obtained by integrating (2.3) over the remaining 
m;'s (treated as continuous variables). 

III. SCHRODINGER EQUATION AND WKB 
SOLUTION IN ACTION-ANGLE 

VARIABLES 

The classical Hamiltonian Ho in an unperturbed 
system having r+ 1 degrees of freedom is a function 
only of the action variables J i (i= 1 to r), the radial 
coordinate R and its conjugate momentum PRo It can 
therefore be written as Ho(J, PR, R), where J denotes 
(Jl, "', J r ). An approximate action-angle quantum 
mechanical formalism was introduced many years ago 
by DiracW and yielded results for the hydrogen atom 
and for the harmonic oscillator similar to those obtained 
by WKB theory.11 The quantum mechanical action 
variable operators J i did not correspond precisely to the 
action variables J i , but differed from them by some 
term, hOi, of order h.w In the 7V representation we may 
write Ji as (liji)aja7Vi. The Schrodinger equation for 
the unperturbed system is then 

(3.1 ) 

where Ho is chosen to be a Hermitian operator, PR 
is the momentum operator (hji)ajaR in the R 
representation, J+hO denotes (Jl+hO l ,"', Jr+hor), 
and E is the total energy. Dirac's paper contains 
a prescription for finding the operator Ji+ho i . However, 
for our purpose it suffices to choose the o/s to satisfy 
their WKB values, given below. 

The wavefunction ",0 is periodic in each Wi, with unit 
period. Since the Wi are absent in (3.1) the solution 
"'mEo to (3.1) for a given state mE is 

(3.2) 

where mw denotes r.imiwi. The m/s are integers, 
because of the periodicity of "'mEo in the w;'s. fm(R) is 
the radial wavefunction, with wavenumber km at 
R= rL) ; km is determined by energy conservation once 
E and m;'s are specified: If Emo is the in ternal energy of 
the separated collision partners at R= rL) then 

(3.3 ) 

where J.I. is their reduced mass. 
According to Eqs. (3.1) and (3.2) and the nature of 

Ji in the 70 representation, the energy of the unperturbed 
system is the same function of (mi+oi)h that it is of 
the classical action variable J mi' (J m, is the value of 
the classical action variable J i in the mith quantum 
state of the ith degree of freedom.) Thus, in this 
WKB-type approximation 

(3.4) 

The Oi are known from WKB solutions for the various 
standard problems. For example, Oi is ° for a plane 
rotator, t for an oscillator, t for an orbital motion, ° 
for the z component of the latter, etc. A prescription 
due to Kellerl2 is illuminating in this connection. 

In scattering theory the relative translational motion 
in the initial state is described by a plane wave, which is 
usually then decomposed into partial waves, each 
characterized by an orbital angular momentum and the 
latter's z component. An analogous decomposition can 
be made with the present coordinates. Equation (3.2) 
represents a partial wave for the unperturbed system. 

IV. SCHRODINGER EQUATION AND WKB 
SOLUTION FOR THE PERTURBED SYSTEM 

The Schrodinger equation for the perturbed system is 

H(J+ho, PR, 70, R)",=E"" (4.1) 

H being Hermitian. 
In the following, (ql, ••. , qr, qr+l) denotes (WI, "', 

7Ur , R), respectively, and (pI, "', pr, pr+l) denotes the 
canonically conjugate classical momenta (JI, ... ,J r, PR). 

A partial wave "'nE in the perturbed system [n 
denotes the set (nl' "', nr )] can be expressed as 

"'nE= exp[i<I>(q, n, E)jh]. ( 4.2) 

Following Diracl3a, the latter can be written as 

"'nEro...; A exp[i<fj(q, n, E)jfi], (4.3) 

where A and <fj are real and vary slowly as a function 
of the q/s. A and <fj describe the phase and amplitude 
of "'nE. The pre-exponential factor A satisfies an 
equation of conservation of probability flux, which 
for the time-independent Schrodinger equation, after 
some manipulationl3b , is 

V' (A2iJ.) = L: (ajaWi) (A2Wi) 

+R-2(ajaR)R2A2R=O, (4.4) 

where the velocity component qi denotes aHjapi. The 
It-dimensional divergence V and vector q have com-
ponents (ajawI, ,ajawr, R-2(ajaR)R2), and 
(WI, "', wr , ll), respectively. A is determined later 
from Eq. (4.4). The latter can be rewritten in terms of 
the probability current density i: 

V"i=O, i=A2q. (4.4') 

cp is found from (4.1) and (4.3) to satisfyl3a 

H(a<fjjaq+ho, q)=E, (4.5) 

where OR is zero. It is useful to define a function cp; 

cp(q, a)=<fj(q, n, E)+27rwoli, (4.6) 

where 71!0 denotes r.iWiOi and where a denotes 

ar+l=E. (4.7) 
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Here, In, is the value of Ii for the initial quantum 
state (Ill,"', llr). Equations (4.3) and (4.5) then 
become 

ifinE=A exp[i(cj>-27rw81i)/IiJ, (4.8) 

H(8cj>jaq, q)=E. (4.9) 

Equation (4.9) is a Hamilton-Jacobi type equation 
for a generating function l4 cj> for a canonical transforma-
tion. The transformation is from old variables (p, q) 
and a Hamiltonian H to new variables (a, {3) and to a 
Hamiltonian E. Thereby, 

( 4.10) 

The new equations of motion are 

a;= -8E/8{3i=O, (4.11) 

They show that ai, "', a,+I, {31, •• " {3r are all constants 
and that, since ar+1 has been chosen to be E, {3T+1 is 
I-to, where to is some arbitrary constant. As {3i we 
choose 

{3r+l = 1- to, (4.12) 

where Wio is the initial value of Wi at some specified 
separation distance Ro before collision. The choice 
(4.12) for ({31, "', {3r) is dictated by the fact that 
according to (4.7) ai is In, the initial value of Ii, and 
that {3i is canonically conjugate to ai. 

Equation (4.9) may be integrated by the method of 
characteristics. The characteristics satisfyl5 

dqJ/(8H/8pd='" =dqr+l/(8H/8Pr+l) 

= dpJ/ (-8H/8ql) = ... 
=dPr+J/( -8H/8qr+l) 

= dcj>/L,(8cj>/8qi)(8H/8Pi). (4.13) 
i 

The expression for dcj> along the characteristics is then 
found to be15 

(4.14) 

For purposes of evaluating the cj> and A in Eq. (4.8) the 
integration in (4.14) is to be performed from an initial 
configuration (WIO, "', wro, Ro) to some large post-
collision value of R, and so to some configuration 

•• 'Wr , R). If the right-hand side of (4.13) is 
written as an infinitesimal parameter, dr, and if we 
now use a dot to denote il/ dr, then Eq. (4.13) for the 
characteristics becomes 

wi=8H/8I;, 

ji= -8H/8w;, 
R=8H/8PR 

PR=-8H/8R. (4.15 ) 

Since these equations are the equations of motion along 
the characteristics, r is the "time." The final time of 
integration will, incidentally, be different for different 
values of (WIO, •• " wr O) since the time to reach the final 
R will vary. 

In integrating (4.14) along the characteristics (4.15) 
there are several boundary conditions to be satisfied: 

(i) Initially, R is Ro and PR is negative. In the 
precollision region cj> should be the unperturbed cj>, 
which is seen from (4.14) to be 

r 
cj>(q, a)= L, In,wi+PRoR 

where PRo, the initial PR, is expressible in terms of the 
a/s by energy conservation. 

(ii) At the turning point of the radial motion PR 
changes from negative value to positive and, by 
WKB theory, the phase cj>/Ii decreases by 7r/2 there.12 

(When there are several turning points in the R motion 
the 7r/2 in (4.17b) is modified. We reserve until a later 
paper any discussion of such topics.) 

The cj>(q, a) satisfying (4.14) and these boundary 
conditions is 

(PR<O), (4.17a) 

cj>(q, a)= E IidWi+ln,WiO) 

+(i: PRilR+PRORo)-t7rh (PR>O), (4.17b) 

where the integrals are line integrals, i.e., the integration 
is performed along the characteristics (Fig. 1). The 
dependence of (4.17) on the initial coordinates is 
only an apparent one, since partial differentiation 
of (4.17) shows that 8c/>/8wiO and 8c/>/8Ro vanish. 
Numerical integration along the characteristics (15) 
to some final R, for various initial values of the WiO'S, 

W characTerisTics 

FIG. 1. Plot of the phase function", vs a 'Wi and a uniformized 
R variable, "'R, indicating the characteristics (the streamlines of 
the motion), and the decrease in phase by rr/2 at a 'WR correspond-
ing to the turning point of the R motion. 
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provides the desired set of numerical values of 
lP(w, R,ln" E). 

The phase IP given by (4.17) is plotted schematically 
in Fig. 1. The characteristics and the change in phase 
of IP at the turning point are both depicted. Purely for 
convenience of drawing we have used a uniformizing 
variable WR based on a line integral, 

WR= rR 
PRdR. (4.18) 

apRo iRo 

This WR increases monotonically during the collision 
since PR is negative when dR is negative, and PR is 
positive when dR is positive. At very large separation 
distances, the integral is initially PRoC'?.- Ro) and so 
initially WR is simply R. At large final separations it is a 
linear function of R. 

It remains to evaluate A using Eq. (4.4). A schematic 
diagram of the probability flow in w-R space is given in 
Fig. 2. An initial region IIidwio at some initial Ro has 
a cross-sectional area R02IIidwiO normal to the R co-
ordinate. (The volume element in w-R space 
is The streamlines (the characteristics) 
are also indicated in Fig. 2. At some final R the 7Vio have 
evolved to Wi and the final cross-sectional area normal 
to the R coordinate is R2IIidwi. Since the flow is diver-
genceless, according to (4.4), application of Gauss' 
theorem to this r+1 dimensional space shows that the 
net flow out of the region enclosed by the heavy solid 
lines in Fig. 2 is zero. Since there is no flow across the 
sides (the streamlines) of the tube, the only flow is 
across the ends. Considering the volume enclosed by a 
dark outline in Fig. 2 it follows from (4.4), (4.4'), and 
Gauss' theorem therefore, that 

iRoRo2 II d,Vio+iRR2 II dw;= 0, (4.19) 
i i 

where iR is the R component of the probability current, 
and, by (4.4'), is given by (4.20); iRo is its initial value 
at the initial Ro and 

(4.20 ) 

in the given channel. The incoming wave has a pre-
exponential factor which we can denote by Ao. 

Equations (4.19) and (4.20) yield 

Ao2R02Vn II dWio-A2R2V II dw;= 0, (4.21 ) 
i i 

where v is the magnitude of the final R component of 
velocity, I PR 1/ J.L, in the outgoing channel and 7'n is the 
corresponding component, - pRof J.Ln in the incoming one, 
11 (PRO is negative). When chemical reaction occursl6 

certain IIidwiO intervals in (4.21) lead eventually to a 
product channel, for the given a/s; other IIidw;o 
intervals at these ai's lead only to the original reactants. 

IIidwi and IIidwiO are related by a Jacobian, 

II dWi= I Bw,/aw/ I II dWio, 
i 

( 4.22) 

where II denotes an rXr determinant. Equations 
(4.21) and (4.22) yield the final result, 

A =Ao(Ro/R)(Z'n/V)l/2 I Bw,/Bwll-"2. (4.23) 

We shall choose Ao so that the incident R flux of the 
partial wave, integrated over all 'WiO (namely, Ao2Ro2Vn 
for R=Ro) is unity. Thereby, 

( 4.24) 

For later notational convenience, and without loss of 
generality, we shall multiply both incoming and out-
going portions of the above wavefunction by 
exp(inl7r/2), (Throughout this paper 111 (and ml) 
will denote the principal orbital quantum number, 
usually denoted by t.) Ro is now chosen to equal R, 
so as to evaluate ifinEc+) at this R. 

If the waveful1ction of the complete partial wave is 
denoted by l/InE c+), its form at large R is, from (4.8), 
(4.16), (4.17b), (4.23), (4_24), and the preceding 
discussion, seen to be 

l/InE c+),-"", (Rz'n l/2)-lifipwO exp( -iknR+i11I7r/2) 

- (Rvl/2 )-l I iJwJiJwll-l/2 exp[ilP*(q, a)/h], (4.25) 

Here J.L denotes the reduced mass of the collision partners h .1, o· (2' " ) d h were ,/,nw IS exp 7rl l1iWi , an were 

FIG. 2. Plot of the characteristics in an R-'ii' space (71.'/27(' is 
the angular variable) showing the relation between the initial 
dwo and the final (postcollision) dw, indicating the dependence 
of the surface area (R2du' in the actual r+l dimensional system) 
for any given R and showing the reflection of the R motion. The 
characteristics arc indicate by arrows and the final wave front bv 
a dotted line. 0 could be plotted as the vertical coordinate. -

Here the 7r compensates for the minus sign of the last 
term in (-US), and IP is given by (4.17b). These 
equations yield 

The integrals in (4,26') are line integrals along the 
characteristics defined by (4.15)_ 

It is useful to define a continuous variable iii by 

( 4.27) 
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On introducing this result into (4.26'), using (3.4), and 
rearranging the terms, Eq. (4.26') becomes 

cf>*(q a) T jWi lR _..:...'--,- = 27l' L (r1i-ni)dwi+ kdR 
fi i=l wiO Ro 

where k is PR/fi, a function of R, and kn is the magnitude 
of PRO /fi(pRO is negative; hence kn= - PRo/h). Since 
initially 11i equals ni and -k equals kn, the expression 
is independent of the lower limits on the integrals (as 
differentiation with respect to WiD or Ro shows). In 
(4.28), as in all preceding and all subsequent ex-
pressions, the integrals are to be evaluated along the 
characteristics, i.e., along the trajectories. 

V. ELASTIC COLLISION 

We verify in this section that (4.25) reduces to the 
usual WKB expression when the collision is elastic, i.e., 
when aliI; equal their initial valueslni • The Jacobian 
I aw;/awll is unity since Wi in this case equals 7Oio+ 
Vi°(t-tO), where ViO is the i'th unperturbed frequency. 
The first term in (4.28) is zero, and k in the next term 
now satisfies the equation 

(/l2fi2/2}l) + (In,2/87l'2}lR2)+ V (R) = kn2fi2/2}l, (5.1) 

where In/27l' is the orbital angular momentum and 
VCR) is the interaction potential. On introducing (5.1) 
into (4.28), and relating this integral to its value when 
V =0, one obtains, on letting R (and Ro) become large, 

cf>*(q, a)/fi= knR- (1l17l'/2)+20 1+27l' L niWi, (5.2) 

where 

01= 1'" (1<-k n )dR-l<nrO+(U1+!H7l'. (5.3) 
TO 

Here, ro is the classical turning point of the R motion in 
(5.1 ). 

Thus, if;nE(+) for this case, obtained from (4.25), is 

The O[ given by (5.3) is the standard WKB expression 
for the phase shift in an elastic collision.17a 

In the absence of the interaction potential VCR), ei[ 
vanishes and if;nE(+) becomes if;nEo, the unperturbed 
wavefunction. Replacing the 11 by m, we have 

- exp[i(kmR-m17l'/2)J}. (5.5) 

VI. CALCULATION OF S MATRIX 

Once the S matrix is known the other properties, 
such as differential and total cross sections, for in-

elastic and reactive collisions are known. The on-the-
energy shell S matrix is defined by the asymptotic 
form of the exact wavefunction17b : 

if;nE(+)"""" R-l L Z'm·-1/Ym'wolom'n exp( -ikm.R 
R-(1!'J m' 

+im1'7l'/2) - Sm'n exp(ikm.R-iml'7l'/2)}. (6.1) 

Equation (6.1) applies both to reactive and nonre-
active collisions. In the case of a reactive collision the 
reduced mass }lm used to calculate the velocity Vm from 
the wavenumber km(vm=kmfi/}lm) will normally be dif-
ferent from }In, when m refers to a quantum state of the 
reaction products. 

Integration by parts (Green's theorem) shows that18 

j if;mE0* (H-Hm)if;nE(+)R2dR IT d70i 
w,R i 

_of. EC+) _m_ IT d7O' aif; EO*) 
'l'n aR i t, (6.2) 

where Hm is the unperturbed Hamiltonian in the 
outgoing channel m and R is the separation distance in 
that channel. Like Eq. (6.1), Eq. (6.2) applies to 
elastic (m=n), inelastic (m;t-1t, Hm=Hn) and re-
active (Hm;t-Hn) collisions. 

Introducing (6.1) into the right-hand side of (6.2) 
shows that 

Smn=Omn- i 1 if;mEO*(H-Hm)if;nEC+)R2dRITd7Oi 
fi w,R i 

(6.3 ) 
Equations (6.2) and (6.3) then yield 

_ ifi. 2 11 ( 0* aif;nEc+) Sm" - omn - - lim R if;mE 
2}lm w=O aR 

aif; 0*) -if;nE(+) If d7Oi. (6.4) 

When Eqs. (4.25) and (4.28) for if;nEc+) and Eq. 
(5.5) for if;mEo are introduced into (6.4), one obtains19 

f11 a7O'1-1/2((v+v ») Smn= lim -:--i (expiJ1) r;Idw;, (6.5) ° a,Vj 2(vmv t 

where v is the postcollision velocity at large R, as 
before, and is a function of 7O. J1 is given by 

That is, 

,1= 27l' E (ni-ni)dwi+ I: JuiR-knRo-kmR 

(1ti-mi)wi+(1t1+m1+1H7l'. (6.6) 
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In (6.6), as noted earlier, the expression is independent 
of the lower limits, Wio and Ro. Incidentally, if the 
value of cf>* (q, a) for the unperturbed system in the 
mth state is denoted by cf>m *0, then inspection of (6.5') 
and evaluation of (4.28) for the unperturbed problem 
shows that 

(6.6') 

In the case of an elastic collision A can readily be 
shown to reduce to 

201+211' L (ni-mi)wi+ (kn-km)R- (1h-mlHlI', 
i 

where lh is given by (5.3). The pre-exponential factor 
in (6.5) becomes unity, and Smn becomes its well-
known value, [exp(2io 1)]omn. 

When, as in the application of a steepest descents 
method (discussed later), the final value of iii at a 
saddle point w' is (for each i) mi, integration of (6.6) 
by parts yields for A', the value of A at w', 

(6.7) 

since the initial value of iii is ni, and that of k is pRo/n, 
i.e., -kn • 

From a numerical point of view, different values of 
(WI, ••• , wrO) can be chosen at some Ro and used to 
evaluate A and (WI, ••• , wr ), using (6.6) and an inte-
gration of (4.15), respectively. Thereby, known values 
of (A, WI, .•• , wr ) are generated and can be employed 
to calculate (6.5)-(6.7) and the subsequent equations 
of Sec. VII. 

In an examination of the behavior of (6.5) as R---'>oo 
we have noted the following: In the case of m= n, i.e., 
of Snn, A consists of an unperturbed term which vanishes 
and of a perturbed term which, by a simple change of 

m _____ + ____ -

"-n 

m 

FIG. 3. Plot of number variable n[=(J/h)-o] vs w in the 
vicinity of a maximum. The straight lines for n =m, an integer, 
are indicated for the classically accessible (acc.) and inaccessible 
(inacc) cases. The 10' are saddle points. n is the curve maximum. 
The shaded area it appears in the final expressions for Smn. 

variable Wi, can be made independent of R. In the 
case of m-,6.n, the steepest descents method becomes 
applicable, as noted in the following section, and the 
integration by parts leading to (6.7) converts A to A', 
which is independent of R at large R, as already noted. 
Examples illustrating these different features for 
m = n and for m -,6. n, as well as those in Sec. VII, will be 
given in a later paper. 

VII. EVALUATION OF Smn USING EQ. (6.5) 

The principal contribution to an integral of the type 
in (6.5) normally comes from the saddle points20 or 
when there are none, from the integrand as a whole. 
Since an asymptotic method (WKB) was used to 
derive (6.5), grounds of consistency suggest that only 
the leading term (or terms) in the evaluation will 
be significant. 

An example of an integral in (6.5) having no saddle 
points is that for the elastic collision. Here, the integral 
can be evaluated exactly, as in Sec. VI, to yield 

(7.1a) 

When in an inelastic collision system the "elastic 
case" of m=n is considered, the steepest descents 
method will still not be suitable when Snn is close to 
unity, and the integrand as a whole must be treated. 

In an inelastic collision, for Smn with m-,6.n or, when 
Snn is small, for m=n, the integral in (6.5) will be the 
sum of its saddle-point contributions. In the remaining 
portion of this section we investigate this case. 

The saddle points of A will be denoted by 
(wI', "', w/). Regarding each Wi as a complex variable, 
this w' is the solution of 

(W= w'). (7.1 b) 

w' is real when the transition is classically accessible, 
and contains an imaginary component when the transi-
tion is classically inaccessible. We shall use the method 
of steepest descents (or that of stationary phase, when 
natural) to evaluate (6.5). 

To illustrate some of the points and to serve as a 
check on our more general calculations we first con-
sider in (i) and (ii) a more restricted case, a system 
having one wand a parabolic approximation to the 
usual ii vs w plot in Fig. 3.21 The actual curve in that 
figure is rep res en ted by 

(7.2) 

where a(w) is a function of w having zeros distant 
from w=w, the position of the local maximum in Fig. 
3; n is the value of rl at iv. In the parabolic approxima-
tion a( w) is a constant, a. The factor of 211' is introduced 
to simplify later notation. In Secs. VILA and VILB 
we consider the case where n is a local maximum at W, 
while in Sec. VII.F the case where it is a local minimum 
is treated. 
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A. Parabolic Approximation; Classically 
Accessible Case 

In the classically accessible case, m is less than n 
and the solutions a"f (7.1b) and (7.2) are 

w'-w=± [211" In-m l/aJ1/2 (7.3) 

where the magnitude symbols about n-m are added for 
later notational convenience. The path of integration 
is along the real axis. The phase A in (6.5) is stationary 
at the points defined by Eq. (7.1b), leading to ex-
cessive cancellation of the integrand at all other regions 
but these, whenever the asymptotic method ;s ap-
propriate. Hence, the pre-exponentialfactor in (6.5) can 
be replaced by its value at the saddle points (7.3) 
(Singularities or zeros of the pre-exponential factor 
near the saddle point appear to be rare,22a and through-
out Sec. VII we shall suppose them to be absent. 
Should they arise, a modified treatment can be given.) 
Thereby, by (7.1b) and energy conservation, v equals 

in the pre-exponential factor. \Ve now have 

Smn= I 8w/87CP 1-1/2f expiAdw. (7.4) 

The original integration region over 70 of [0, IJ can be 
changed to (- 00 , + 00 ). A (70) is expressed in terms 
ofitsvalueatw=w, by integrating (7.2) [with a(w)=a 
in the parabolic case]. This integration of (7.2), from 
1V to w, yields 

A(W)= A(w)+211" I n-m I (w-w)- (a/3) (W-1V)3, (7.5) 

where the "magnitude symbols" about n-m are again 
added. Letting s denote -aI/3 (w-w), Eqs. (7.4) and 
(7.5) now yield 

Smn=a-1/3 1 8w/8wo 1-1/2[expiA(1v)J 

X L: exp[ -ibs+His3 )Jds, (7.6) 

where 
b= 211" I n-m I a-1/3. (7.7) 

The integral in (7.6) is 211" times the Airy function 
Ai ( - b ).23 For later purposes it is useful to relate this 
argument b to the shaded area a in Fig. 3: For the 
present parabolic case the area a is the integral of 
(n-m)dw from 70' to n and so, from (7.3) and (7.5), is 
[A(W)-A(W')J/211", where 70' is the negative square 
root in (7.3). Using Eq. (7.5) one finds 

a= [A(W)-A(w')]/211"= (2/3) [n-m [3/2(211"/a)1/2. (7.8) 

According to (7.7) and (7.8) the argument of the Airy 
function equals (-311"a)2/3, and we have 

Smn = 211"a-1/3 [ 870/ 87CP 1-1/2 

X [exp(iA' + 211"ia) JA i ( - [311"aJ2/3) , (7.9) 

Both A', given by (6.7), and a can be calculated from 
the data on classical trajectories. 

B. Parabolic Approximation; Classically 
Inaccessible Case 

When the transition is classically inaccessible in Fig. 
3, n-m is neg,ttive, the roots of (7.1b) are imaginary, 
and so the saddle points in the 7U-1V complex plane lie 
on the imaginary axis. As noted later for a related 
integral, the present integration path along the real 
axis can be deformed in the complex plane without 
changing the value of the integral, and be made to lie 
along the line of steepest descents passing through the 
saddle point at w'-w= -i[211" I n-m l/aJI/2. The pre-
exponential factor in (6.5) can now be set equal to its 
value at this point, placed outside the integrand, and 
the integration path deformed back to its original 
position along the real axis. One then has 

Smn=a-1/3 1 8w/87CP 1-1/2[expiM1v)J 

X L: exp(ibs+!isa)ds, (7.10) 

where b is given by (7.7), and where 1870/870° 1-1/2 is 
evaluated at the saddle point on the negative imaginary 
axis in the W-1V complex plane. The new integral is 211" 
times the Airy function Ai (b), where b is rela ted to the 
area a in Fig. 3 as discussed previously. Equation 
(7.10) becomes 

Smn=211"a- I /3 1 8w/8wo [-1/2[expiA(1V)JAi[Cha)2/3J, 

(7.11) 

where I 8w/87C,o 1-1/2 is evaluated at the saddle point on 
the negative imaginary axis. 

The question arises as to whether the A(W) in (7.11) 
is a collisional "invariant," in the sense of being inde-
pendent of R once R becomes large. Letting /1' now 
denote the value of A at the saddle point on the nega-
tive imaginary" axis in the complex w-w plane, Eq. 
(7.5) shows that 

(classically inaccessible A'), 

(7.12) 

where a is given by (7.8) and is again the shaded area in 
Fig. 3. Equation (6.7) showed that A' is an invariant. 
Since a is also an invariant, Eq. (7.12) shows that 
A( w) is. Both A( w) and a are obtained from the 
trajectory data. If one wished, A' could then be ob-
tained from the latter, even though "iI/ is now classically 
inaccessible, by using (7.12). 

The asymptotic forms23 of (7.9) and (7.11), useful 
only when a is not too small, illustrate the various 
features of those expressions, such as the oscillatory 
dependence of one on a and the exponential dependence 
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of the other: 

(accessible) 

Smn=C{ exp[iA'+ (i7l"/4)J+exp[iA'+471"ia- (i7l"/4)J} 

(7.13) 

(inaccessible) 

Smn=C exp[ -271"ct+iA(w)J, (7.14) 

where 
(7.15 ) 

In (7.14), I aw/awo 1-1/2 is evaluated at the relevant 
saddle point; in (7.13) it can be evaluated at either 
saddle point22b ; the A' in (7.13) is given by (6.7) and 
refers to the saddle point on the negative real axis of 
the w-w complex plane. The "A' /271"" for the second 
saddle point, the one on the positive real axis, is that for 
the first plus the area difference 2a, as one sees from 
Fig. 3, thus providing an insight into the second ex-
ponent in (7.13). 

Finally, both here and in later sections one should 
distinguish between classical inaccessibility and en-
ergetic feasibility. Some classically inaccessible transi-
tions involve so much energy expenditure that the 
km at R= 00 would be imaginary. Their partial wave is 
exponentially damped there and such channels are 
"closed. " 

C. More General Case, Introduction 

We turn now to the more general case. In the case of 
classically inaccessible transitions, with their inverse 
exponential dependence on the area a, the parabolic 
approximation will sometimes be too restrictive. The 
error is of course much less for the classically accessible 
transition. However, in this case there is another reason 
for treating a more general ii vs w plot: In several 
dimensions quadratic expansions of A about the saddle 
points are usually acceptable, but independent cubic 
expansions of the type in (7.S ), one per degree of 
freedom, may be less realistic when those degrees 
of freedom are significantly coupled. 

When the saddle points in (6.S) are fairly isolated the 
leading term in the asymptotic expansion is obtained 
by expanding the exponent, A, in a power series about 
the saddle point (wI', "', wr') and omitting powers 
of Wi-W/ higher than the second. Diagonalization of 
the resulting quadratic serves to locate the initial 
direction of the path of steepest descents. (When 
further terms in the asymptotic expansion are needed 
more data than the initial direction is used.) After 
expansion of the exponent the integrand is Gaussian-
like and the integration interval can be made infinite.24 

There are frequently a number of saddle points w' and 
the integral becomes the sum over the saddle points. 

Equation (6.5) thus yields 

1'" I aw'1-1/
2 Smn = L ( expiA/) 

wI -0:> aWj 

xexp[i L (7V-W/) (W-Wn]rrdWi 
2h i,j aWiaWj , 

(7.16 ) 

where the absolute value is not intended in the rXr 
determinant 

I -ia2</!jaWiaWj 1-1/2, 
but rather due account of the phase of each factor is to 
be taken. For example, in the case of a real a2</!jaw2, 
l-ia2</!jaw,awjl-1/2 has a phase of (-71"/2)(-1/2) 
or (+71"/2)( -1/2), i.e., 71"/4 or -71"/4, according as 

is positive or negative. In the case of two 
dimensions we may suppose for illustration that the 
axes in (w-w' ) space have been rotated so that 
a2</!jaw1aw2 vanishes and, hence, so that a2</!/aWI2 and 
a2</!/awl become the principal curvatures of the 
</! vs (WI, W2) surface at the saddle point. (Since 
a</!/aWl= a</!/aW2= ° there, the usual formula for curva-
tures of a surface contains only second derivatives.) 
According as the two curvatures are both positive, 
both negative, or of opposite sign the phase of 
I -ia2</!/awiaWj 1-1/2 is [(-71"/2)+( -7I"/2)J( -1/2), 
[(71"/2)+ (7I"/2)J( -1/2), or [( -71"/2)+ (7I"/2)J( -1/2), 
i.e., 71"/2, -71"/2, or 0, respectively. 

The value of a</!jawi is (iii+b;)h so that the 
a2</!/ aWiaWj equals haii;/ aWj. Since the product 
I aw;/awl 1-1/2 I -iaiii/aWj 1-1/2 in (7.16) equals 
I -iaii;/awp 1-1/2 , with the precautions referred to 
regarding phase of a2</!/ aWiaWj being again understood, 
Eq. (7.16) becomes 

Smn= L I-iarl;/awp 1-1/2 expiA/. 
wI 

D. Application of Eq. (7.17) to Classically 
Accessible Case 

(7.17) 

Equation (7.17) can be shown to reduce to (7.13) 
when the special assumptions of the latter are intro-
duced. 

The simple classical Eq. (2.3) also follows from 
(7.17): one first notes that A' for a classically accessible 
transition is real since the saddle- points in (6.7) are 
real. Smn * Smn may be computed from (7.17) to obtain 
the transition probability. If interferences (i.e., cross 
terms) between different saddle points are ignored, a 
permissible step when they are sufficiently far apart 
that their average over a small range of initial trans-
lational kinetic energies is zero, one obtains (2.3), 
summed over all contributing saddle points. 
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FIG. 4. Plot of the w-w complex plane, indicating the saddle 
points w' and curves of steepest. descent for. the in-
accessible casco The three dIrectIOns on WhICh becomes 
infinite at infinity are indicated by arrows. The original path of 
integration is the real axis and the deformed path coincides with 
the lower hyperboliclike curve, or, in the saddle-point approxima-
tion with a strai"ht line tangent to it at w'. Various curves (solid 
and' dotted) for "the classically accessible case are obtained by 
clockwise rotation of the curves through 90°. 

E. Application of Eq. (7.17) to Classically 
Inaccessible Case 

In this illus tra tion of (7.17) the one-dimensional 
case based on (7.2) will be treated. (The arguments 
are also readily extended to the case of a local min-
imum.) The function a(w) will be chosen so as not to 
distort the parabolic shape of (7.2) in the immediate 
vicinity of the maximum. Thereby, its zeros are ap-
preciably removed from wand so the first few deriva-
tives of a(w) are small near w or near the saddle point. 
It is also supposed, as is frequently done in phase 
integral treatments25 involving an analogous quantity, 
that a(w) is such that the roots of (7.1b) for negative 
n-m are obtained from those for positive n-m by 
multiplying the latter by i. [An exact example occurs 
when a(w) can be expanded as I+Cl(7V-W)4+ ... ]. 
Thus, for this classically inaccessible case the saddle 
points 70' are given by (for a symmetrical i1 vs 20 curve, 
for illustration) 

w'-w= ± i[21T I n-m II a(7v') Jl/2, (7.18) 

where a(w') is the same for both roots, and equals 
a(w' ), where w' denotes the known (real) roots for the 
classically accessible case with the same I n-m I. Thus, 

w'-w= i(w'-w). (7.19) 

Curves of steepest descents have constant phase, Ll, 
and pass through one or more saddle points.20 Some 
insight into their position near the saddle point is ob-
tained by setting a(w) in (7.2) equal to its value there 
a(w'), and hence to a(w'), and noting that a(w') is 
real. The expression for Ll is now a cubic in 2O-w. 
When 2o-w is written as and introduced into the 

integrated expression, the phase of Ll may be computed 
and equated to its value at a saddle point. The curves of 
steepest descents are found to satisfy the equation26 

where 
X=21T I n-m I/a(w'). 

(7.20) 

(7.21 ) 

The second saddle point satisfies a similar equation, and 
the three solutions to (7.20) are two branches of a 
hyperbola, each of which passes through one saddle 
point, and the imaginary axis, which passes through 
both, as in Fig. 4. The original path of integration in 
(6.5), which was along the real axis, is next deformed to 
one of these curves of steepest descents. To avoid 
changing the value of the integral in the process, the 
deformation of the path should involve no crossing of 
singularities, and the value of the integral along the 
path completing the contour at eX) should be zero. 
The general location of the singularities is readily de-
termined and shows how to deform the path: 

When w-w is small, a(2O) may be set equal to 
a(w) in (7.2) and the result integrated to obtain Ll. The 
integrated expression shows that exp(iLl) would tend 
to infinity along the radii eX) expi1T16, eX) exp(Si1T16) 
and eX) exp(-ill/2) (Fig. 4). The presence of a noncon-
stant a(2O) distorts such curves but their general 
location with respect to the saddle points 20' and the 
lines of steepest descents is largely unchanged. The 
(undistorted) curves are indicated schematically by 
dotted lines in Fig. 4. From this figure it is seen that if 
the saddle point on the negative imaginary axis is 
selected, the original path of integration in Eq. (6.5) 
may be deformed to coincide with the hyperbola 
(the curve of steepest descent) passing through that 
saddle point or be tangent to it there, without crossing 
singularities and with having a zero contribution from 
the path completing the contour at OC. 

Integration of (6.5) using the method of steepest 
descents and leading to (7.16) can thus be performed. 
In (7.16) exp(iLl') is to be evaluated from the tra-
jectory data, even though it has imaginary components, 
as in (7.26) below. Integrating Eq. (7.2) for this 
purpose, from w=u' to w=w' we have (since m>n) 
Ll'- Ll(10) = LW

' [ - 21T I n-m I - (W-l0 )2a(w) Jdw. 

(7.22 ) 

Setting w-w equal to (-is), then using (7.19) and 
the equality of a(w-is) and a(w-s) discussed 
earlier, Eq. (7.22) yields 

_(W'-W) 

Ll'-Ll(lu)=i f [21T I n-m l-s2a(lv-s)Jds, 
o 

(7.23 ) 

where W' is on the negative real aXlS III the w-w 
complex plane. 
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Eq ua tion (7.23) maybe compared with the change in 
b. in the classically accessible case, where w changed 
from w' to w, along the real axis. The change in b. for 
this case is the shaded area under the curve in Fig. 3, 
and is again denoted by ct though now without any 
parabolic approximation to the curve in Fig. 3. Inte-
gration of Eq. (7.2) yields, for this classically accessible 
case, 

ct= [1 ii-m 1 - (7v-w)2a(w) (271")-lJdw. (7.24) 

Setting w-w equal to -s we have 

ct= l-(W'-u,) [I ii-m l- s2a(W-S) (271")-lJds. (7.25) 
o 

Equations (7.23) and (7.25) show that 

b.' = b.(w)+hict, (7.26) 

and so Eq. (7.17) becomes 

Smn=L l-iarl,.jawll-l/2 exp(-271"ct+ib.(w)). (7.27) 

Since b.(w) can be calculated from the trajectory 
calculations, because 1'0 is classically accessible, and 
since the area ct is also known, b.' can be calculated 
from (7.26). The exponent in (7.27) is identical with 
that in Eq. (7.14), but is no longer restricted to the 
parabolic case; ct is now the shaded area under the 
actual curve in Fig. 3. 

For further comparison of (7.14) and (7.27) one 
writes 1 -iani/awll-l/2 at the saddle point in its 
original form in (7.16), 1 aWi/awll-1/21 -iani/aWj 1-1/2. 
Using Eq. (7.2) and neglecting the derivative of 
a(w), as discussed earlier, an/aw is found to be 
-(w'-1v)a(w')/71". If, for the comparison, a(w) in 
(7.25) is written as a(w') and the integration per-
formed, ct can be computed. In this way anjaw can be 
expressed in terms of ct. One finds thereby that (7.4) 
can be obtained from (7.27). 

Similarly, for the classically accessible case, Eq. 
(7.13) can be deduced from (7.17) without the par-
abolic restriction. This result and the preceding one 
indicates that Eqs. (7.9) and (7.11) are also ap-
plicable without the parabolic restriction. 

F. Case Where Curve (7.2) Refers to a Local Minimum 

In this case a (70) is negative and classical accessi-
bility implies that m>ii, ii being the local minimum of 
n. In Eq. (7.5) the sign of the two last terms are 
altered. If s now denotes 1 a Il/3(W-W), Eq. (7.6) is 
again obtained, with a in (7.7) now replaced by 1 a I. 
The integral is again 271" Ai ( - b ). The half -area enclosed 
between 11 (w) curve and the n = m horizonal line (the 
shaded area in Fig. 3) is seen by inverting Fig. 3 to be 
"negative." If it is denoted by -ct, where ct is positive, 
then (7.8) is replaced by 

-ct= [b.(w)-t.(w')J/271" (7.28) 

and Eq. (7.9) is again obtained, but with hict re-
placed by - 271"ict. 

In a classically inaccessible transition we now have 
ii>m. Eq. (7.10) would again follow, with b given by 
(7.7) and a now denoting 1 a I. Eq. (7.27) would also 
follow. The desired saddle point is now on the positive 
imaginary axis and the details of the discussion leading 
to (7.27) would be modified accordingly. 

VIII. CANONICAL PERTURBATION THEORY 

To gain some insight into the cP in (4.17b) and hence 
into the cP* of (4.28) and the b. of (6.6), as well as to 
relate its properties to previous studies2- 5 it is useful to 
develop here a canonical perturbation theory for the 
time-independent Hamiltonian-Jacobi equation (4.9) .27 

Normally, the canonical perturbation theory for the 
latter equation has been one which is appropriate to 
bound state problems, rather than collisions. The one 
derived below is suitable for collisions. 

The Hamiltonian H, written in terms of a perturba-
tion parameter 'A., is 

where E is ar+l as before. The generating function cP, 
expanded in powers of 'A., is 

00 

cP(q, a)= L cPN(q, a)'A.N • (8.2) 

When (8.2) is introduced into (8.1), and both Ho and 
Hl are then expanded in powers of 'A., one obtains 

Ho(q, p(O»)+'A.Hl(q, p(O») 
00 

+ L 
all ni=l 

where 
p(O) = acPo(q, a)/aq. 

Equating equal powers of 'A. one obtains 

Ho(q, p(O»)=E, 

(8.3 ) 

(8.4) 

(8.5 ) 

(N=1,2,···), (8.6) 

where the first several terms are 

Kl(q, a)= pro»), 

K 2(q, a)= {cPl, Hd+(1/2!)lcPl, {cPl, Hol\' 

K 3(q, a)= {cP2, Hd+(1/2!){cPl, {cPl, Hd l 
+(1/3!){cPl, {cPl, {cPl, Holl\' 

and {X, Yl denotes 

r+l (ax aY ax ay) {X,YI=L -------. 
aqi ap/O) ap;<O) aqi 

(8.7) 

(8.8) 

(8.9) 

(8.10) 
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Equations (8.8)-(8.10) employ a compact notation 
which distinguishes Oii from p;<o) , i.e., the af/JN(q, ex)/ 
ap;<O) are zero there. 

The sequence of equations (8.6) can be solved for 
the f/JN'S by the method of characteristics.ls The latter 
yields 

dqi 
'L,(af/JN/aqi)(aHo/ap;<°) . 

i 

d( acfw/ aqi) 
-aKN/aqi' 

( 8.11) 

Setting (8.11) equal to an infinitesimal parameter 
"dt" and using a dot to denote d/dt, we have 

qi= aHo/ap/O), 

which, for the Wi, yields 

7Vi= Wio+ViO(t-tO), 

(8.12 ) 

(8.13 ) 

where Vio is the i'th unperturbed frequency, aHo/ap/O). 
For R, Eq. (8.12) yields 

R-Ro= Jt
[2(E-V(R')- J''I

2
,)/p.]1/2dt" (8.14) 

to 87r2p.R 2 

where R' denotes R(t'), and where E is kn2fi,2/2p.. Hence, 
the parameter t is uniquely specified by R and the sign 
of PR, and can be understood as t(R, sgnPR) and abbre-
viated as feR). Since df/JN is seen from (8.6) and (8.11) 
to be - KN (q, ex )dt along the characteristics, integration 
yields 

I t (R) 

cfw= - _>:> KN(rl(T), ex)dT (N=1,2, .•. ), (8.15) 

where q( T) is the q evolving with T according to (8.12), 
and hence with (8.13)-(8.14). In (8.15) the iji(T) 
must be chosen so that 

iji(T)=qi at T=t(R), (8.16) 

i.e., Wi and 11 are given by (8.13)-(8.14) with WiD' 
to, and Ro replaced by Wi, T, and R. f/J is obtained 
from (8.2) by setting '1\= 1. Examination of (8.7)-
(8.10) and (8.15) shows that, when present in the 
integrand of (8.15), (X, Yl becomes a Poisson-
Bracket: it becomes expressed in terms of variables iji 
and p/O), variables which are canonically conjugate in 
the unperturbed problem. 

>:> 

f/J(q, ex) = 'L, f/JN (q, ex), (8.17) 

where f/JN is given by (8.15). 
In (8.15) f/JN depends on R, both directly and 

(implicitly) via the presence of a t (R) in the integration 
limit, and in the integrand in the expression for the 
iji(T), which conforms to (8.16). Illustrations and 
applications of the formalism based on (8.6)- (8.17) 
will be given in subsequent papers. 

In a previous paper, we have tested an expression 
equivalent to the first-order approximation, f/JO+f/JI, 
and in certain respects have tested one equivalent to 
f/JO+f/JI+f/J2 by comparing the exact (numerical) and 
approximate values of the action variable after the 
collision.3b (Ji=af/J/aWi, i.e., In,+af/JJ/a7Vi in the first 
approximation and J",+af/JJ/aWi+af/J2/aWi in the 
second.) The agreement was encouraging and the 
range of validity was ascertained for various molecular 
parameters. The results are used in the Discussion 
section, to consider Eq. (6.5)-(6.6) for Smn. The f/JN 
terms can be introduced via (4.26) and (6.5)-(6.6) 
or via the relations 

where 

iii= ni+n, (l)+ni(2)+ •. " 

WiO= W,0+WiO(1)+W,0(2)+ • •• 

V=!dt/p.n, (8.18) 

(8.19) 

and ni+oi, WiD and kn are h-Iaf/Jo/aWi, af/Jo/aJ"i) and 
h-Iaf/Jo/aR, respectively. We note for (8.19) that 
a/aWi and a/aJni are commutative with the integral 
sign in (8.15). 

These equations can also be applied to the pre-ex-
ponential factor in (4.23), (6.5), and (7.17). 

IX. REMARKS ON SEC. VIII AND ON 
COLLISIONAL SELECTION RULES 

The approximations, f/JO+f/JI and f/JO+f/JI+f/J2, have 
been tested, in part, for several collisions,3b,28 and the 
results may be applied to (6.5) or (7.16). We reserve 
for a later communication a more detailed discussion 
of them. For certain fairly wide ranges of molecular 
parameters, f/JO+f/JI provided an excellent approxima-
tion. (This approximation was referred to as t:.jll in 
Ref. 3b, and many curves are given there relating t:.jll 
to the exact change of rotational angular momentum 
of the molecule as a result of collision.) 

The value of r1i-ni at any Wj always equals that at 
Wj+ 1 since H is periodic in the w/s, with unit period. 
In addition, because of some suitable symmetry in H, 
H may have a higher periodicity in Wi, with period 
1IMi' where Mi is an integer. Then, l1i-ni for the 
family of characteristics passing through Wi is the same 
as 11i-ni for the family passing through Wi+ Mi-I. 
Thus, in an iii vs Wi plot for this case there are Mi 
oscillations in the unit interval of Wi. In this case, for a 
classically accessible transition, there are 2Mi saddle 
points. For a classically inaccessible transition, there 
would be Mi saddle points for the (Mi) maxima in the 
iii vs Wi plot and Mi for the (M;) minima. 

The above result has immediate implications for 
selection rules as well. If one integrates (6.5) first over 
Wi, one finds that the integral will now vanish unless 

Downloaded 16 Feb 2012 to 131.215.21.63. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



INELASTIC AND REACTIVE COLLISIONS 3977 

1h-mi=0, ± Mi, ± 2Mi, """, etc.29 For the case where 
has a simple cosine or sine dependence on Wi then 

if the exponent in (6.5) is expanded and only the first 
two terms are retained, (6.5) would give 1Zi-mi=O, 
± Mi , while if the third term in the expansion is also 
retained one would have 0, ± Mi , ± 2Mi , and so on. 
(Other selection rules, based on other symmetries in H, 
when they exist, will be considered in a later paper.) 

Thus, application of group theoretic considerations 
prior to application of asymptotic methods simplifies 
the problem by reducing the Wi domain of integration. 
(However, asymptotic methods could be applied first. 
There would be cancellations from various saddle-
point contributions, giving rise to the same selection 
rules as those obtained above. )30 

An example of the selection rules occurs in the col-
lision of an atom with a symmetric top molecule 
such as NH3; the component of the interaction force 
acting on the rotation about the symmetry axis has 
mainly a Fourier component of 3 times the correspond-
ing rotational frequency. Hence, selection rules for the 
change of Kfi, the component of the rotational angular 
momentum along the symmetry axis is 0, ±3 in 
lowest-order quantum mechanical perturbation theory 
and 0, ±3, ±6, """ in higher orders. Similarly, in the 
case of a collision of an atom with a homonuclear 
diatomic rigid rotor M is 2 and the selection rule 
should be j = 0, ±2, """. The two oscillations per unit 
W interval in an rli vs Wi plot here may be seen in Figs. 
4 and 5 of Ref. 4b (where only one-half the W interval 
was plotted to avoid repetition). 

The true saddle points are those for which Eq. 
(7.1b) is fulfilled for all i simultaneously. While 
coalescence of saddle points is common in the case of 
one dimension, our impression on examining the results 
in Ref. 3b is that it is rarer in the case of interacting 
degrees of freedom (varying in probability of oc-
currence as pN, where 2V is the number of interacting 
degrees of freedom, and p is the probability for one). 
For example, one finds from the equations in Ref. 3b 
that when the saddle points for the j vs W plot tend to 
coalesce, (j is the rotational angular momentum 
quantum number), those for the mj vs W plot do not 
(at least usually do not). 

X. CONCLUDING REMARKS 
In the present paper we have attempted to show how 

the Hamilton-Jacobi equation for collision problems, 
solved with the aid of the method of characteristics, 
can be used to obtain the WKB solution and the S 
matrix for inelastic collisions. In the process the re-
lation to our previous action-angle variable studies of 
the classical mechanics of collisions has been noted, as 
has the application of a canonical perturbation treat-
ment of collisions. The application of complex variable 
techniques, particularly in the form of steepest descents 
or stationary phase, has also been described. 

One approximation which has been employed in the 

literature of inelastic collisions, the sudden approxima-
tion,3! corresponds to setting all l'io=O and R=R in 
Eq. (9.1) [KN for N?,2 then vanish in (8.15)J, and 
then introducing the result into (6.5). The eikonal 
approximation32 corresponds in part to replacing the 
relative translational motion (R and the two orbital 
w/s) by a straight line trajectory. The usual first-order 
distorted wave approximation corresponds to expanding 
the exponential in (6.5) and retaining only the first 
two terms, while second-order distorted wave theory 
corresponds to retaining the next term. In the some-
times termed "semiclassical approximation," 33 the 
relative translational motion (R and the two orbital 
w/s) is treated classically (and sometimes in the rec-
tilinear path approximation); the other motions are 
treated in terms of the <PO+<Pl or <PO + <Pl+<P2, approxi-
mations, or sometimes by numerical solution of the 
coupled equations for the wavefunctions of these re-
maining r- 2 degrees of freedom. 

The final equations of the present paper should also 
apply to chemical reactions, with certain restrictions 
dealing with the change of phase in the radial contribu-
tion in a partial wave when the system is reflected from 
the incoming into the outgoing channel. This problem 
will be treated subsequently. 

While the principal equations refer to the S matrix, 
the method requires relatively little modification, as 
mentioned earlier, to treat differential and total 
inelastic cross sections directly. In (4.16) the boundary 
condition is modified so that the incident <p(g, a) IS 

of the form 
T 

k n "ra+21l'L n,Wi, 
i=3 

where the summation is over the r-3 internal co-
ordinates of the collision partners and where a defines 
the incident direction. Equations (4.19)-(4.21) for the 
flux conservation are modified to include the new 
geometry.34 Finally, in the treatment of (4.25)-(4.28) 
and (6.1 )-( 6. 7) leading to the Sand T matrices, the 
wavefunction ifinE<+) is replaced by the expression for 
the full (incident plane wave plus scattered wave) 
wavefunction in terms of scattering amplitudes. The 
analog of (6.3) based on an integration of the new 
(6.2)!9 by parts is then applied to calculate the scatter-
ing amplitude. The formal details are given in a sub-
sequent communication. 
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The optical hydrogen vibrations in lanthanum dihydride and lanthanum trihydride have been investigated 
by the energy-gain scattering of cold neutrons. The approximate frequency distributions, derived from 
the observed time-of-flight spectra, show peaks which correlate well with the known crystal structures. 
In fcc lanthanum trihydride the optical bands are peaked at 940 and 515 cm-1 corresponding to hydrogen 
vibrating at tetrahedral and octahedral sites, respectively, and in lanthanum dihydride there is a single 
peak at 825 cm-1 due to tetrahedral hydrogen. Other weak peaks have been observed and are thought 
to be due to vibrations of hydrogen atoms dissolved in the metal phase; this phase was identified by x rays 
in both samples. A large width of the optical levels, a common feature in all metallic hydrides, was also 
observed for LaH, and LaHa. 

INTRODUCTION 

The inelastic scattering of neutrons has become a 
useful technique for studying atomic and molecular 
motions in liquids and solids. In the scattering process, 
lattice vibrational quanta (phonons) are exchanged 
between the sample and the incident neutrons and by 
analyzing the scattered neutron beam one obtains a 
spectrum from which an approximate frequency dis-
tribution for the scattering sample can be derived. The 
technique is particularly suited to the study of hydro-
gen-containing compounds, because of the large inco-
herent scattering cross section of hydrogen. 

The vibrational properties of a number of hydrides 
have in the past been studied by inelastic neutron 
scattering methods,l-IO The early work was mostly 
directed towards the study of metallic hydrides where 
infrared spectroscopy is useless because of the inter-
actions between the infrared radiation and the conduc-

tion electrons. The present study deals with such 
hydrides. We have investigated the vibration spectra 
of LaR2 and LaR3 by the inelastic scattering of cold 
neutrons. In this type of experiment phonons are trans-
ferred from the sample to the incident neutrons. The 
time-of-flight technique is used to obtain an energy 
analysis of the scattered neutrons. The probability that 
a phonon exists is given by the Boltzmann population 
term, and the cross section for the scattering process 
(which is a measure of the probability of observation of 
a vibrational band) is therefore proportional to the 
Boltzmann factor. Peaks in the derived neutron spectra 
are correlated with the vibrational motions of hydrogens 
in their lattice sites. 

EXPERIMENTAL 

Lanthanum trihydride was prepared as follows: 
Lanthanum metal, obtained from Ronson Metal Cor-

Downloaded 16 Feb 2012 to 131.215.21.63. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions


