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In the present paper the time-independent Schrodinger equation for inelastic collisions is solved directly
in the WK B approximation, using action-angle variables and the method of characteristics. A single wave-
function, consisting of an ingoing and an outgoing term, is thereby derived, describing all collision channels
and so avoiding the application of WKB methods to an infinite set of coupled differential equations. An
integral is obtained for the S matrix, and asymptotic methods (e.g., steepest descents, stationary phase)
are used for its evaluation. The expressions can be calculated using numerical data on classical trajectories
or using approximations. To facilitate the latter and to show the connection with approximations in
the literature, a canonical perturbation theory is described for the wave phase and amplitude, in a form
suited to collisions, and used to relate the theory to those approximations. The topic of collisional selection
rules is also considered. The extension of the method employed in the present paper to the direct calculation
of differential and total inelastic cross sections, rather than via the S matrix, is briefly described, and the
extension to reactive cross sections is also noted. The method can also be used to treat time-dependent
problems, and so is not restricted to collisions. These topics and other applications will be described in later
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papers of this series.

I. INTRODUCTION

Classical action-angle variables were used to treat
atomic and molecular structure, as well as absorption
and emission of radiation, many vears ago.! Recently,
we have employed them to treat inelastic and certain
chemically reactive collisions.>= In the present paper a
quantum mechanics in action-angle variables, in the
WKB approximation, is used to calculate transition
probabilities in collisions. The final expression can be
evaluated by integration of a system of ordinary dif-
ferential equations (the classical equations of motion)
or by various approximation techniques.

As before, we use conventional coordinates (R, pr)
to describe the radial motion and employ action-angle
variables to describe the other degrees of freedom.?
The present paper is the one cited as Ref. 2 there® A
method, based on the Feynman propagator, for
applying action-angle variables to the .S matrix has
recently been employed by Miller.®

In the present paper we have calculated the S matrix,
partly to facilitate comparison both with exact (numer-
ical) computations and with various approximations in
the literature. However, the method requires relatively
little modification to calculate the observables directly,
the differential and total cross sections for inelastic
processes. The nature of the modification is indicated
briefly, and described more fully in a later paper. The
method can also be used to treat problems with time-
dependent Hamiltonians, and so is not restricted to
scattering phenomena. These results will also be de-
scribed subsequently.

Usually, WKB treatments of the time-independent
Schrodinger equation for inelastic collisions first resolve
the equation into coupled equations, one per quantum

state.” The latter are then solved by a WKB method,
with added approximations. In our case, instead, a
single WKB solution is found for the entire system
rather than using coupled equations. Apart from one
restriction® the approximation in the present work is the
application of an asymptotic (i.e., WKB) argument.
The accuracy of WKB arguments for describing
quantum mechanical phenomena and interferences in
elastic collisions accurately is now well established.®

We have employed action-angle variables because
of their desirable properties: the action variables are
closely related to quantum numbers (WKB, Bohr-
Sommerfeld formulas); the initial angle variables each
occur randomly in the interval [0, 17]; and the angle
variables are uniformizing variables, removing the
singularities in unperturbed WKB wavefunctions.

The presentation in the paper has the following
format: In Sec. IT a simple classical result is given for
the transition probabilities, as an illustration of the
use of these variables. In Sec. III the unperturbed
Schridinger equation is given, and in Sec. IV the
actual equation and its WKB solution are described for
the system. Application is made in Sec. V for the
elastic case to verify that the phase shift and the
solution as a whole reduce to the usual one in that case.
An expression for the S matrix is given in Sec. VI and
asymptotic methods (steepest descents, stationary
phase) are applied to its evaluation in Sec. VII. A
canonical perturbation theory for the phase and
amplitude, and hence for the .S matrix, is derived in
Sec. VIII. Tt is used as a guide in Sec. IX to apply
exact and approximate numerical results®= of trajectory
calculations to the problem, as a preliminary to a more
detailed discussion to be given elsewhere. The topic of
collisional selection rules is also noted there. In Sec. X
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both the extension from .S matrices to differential and
total inelastic cross sections, and the extension to
chemical reactions, are indicated. The relationship to
various approximations in the literature is also de-
scribed.

The principal equations in the paper are Egs.
{6.5)-(6.7) and (7.17). Others are (7.6), (7.9) [and
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their asymptotic forms (7.13)-(7.14)7, (7.16), (7.27),
and (8.15)-(8.18).

The myriad of phenomena associated with inelastic
transitions makes clear some of the applications of the
method. We shall describe some of these applications in
later papers of this series.

A flow sheet of the present procedure is as follows:

Schridinger equation

l WKB

Hamilton-Jacobi equation
(Phase)

Method of characteristics

Solved for phase

Flux conservation equation
{Amplitude)

Gauss’ thearem

Solved for amplitude

!

Wavefunction

elastic

The approach in this paper is a direct descendent of
the WKB method used for treating the time-inde-
pendent Schriodinger equation for elastic scattering or
eigenvalue problems. Miller’s approach® is a most
interesting one which begins with the classical Feyn-
man propagator. While their starting points and their
integral expressions for Sm, differ, one can anticipate
that future interaction between the two approaches
should enrich both. We hope to compare the two, both
with respect to phase and amplitude of Sns, in a later
paper. The terms in the phase of S play a role in
phenomena such as line broadening.

II. A SIMPLE CLASSICAL RESULT

An application of a formalism based on action-angle
variables is illustrated by calculation of a “classical”
transition probability for a classically accessible transi-
tion. The angle variables, as already noted, have the
convenient property of lying, initially randomly, in the
interval [0, 1]. The probability of inding the system in
some quantum state m after a collision, if the system

Integral

Expression for .§ matrix
(or for doag/d)

— T
Saddle points
Inelastic or reactive

Classically
inaccessible

Classically
accessible

was in an initial state #, is denoted by P,.,. Correspond-
ing to a unit interval in quantum number m is an
interval AJ=F in action variable J. [J equals mh or
(m—+3%)h, according to Bohr-Sommerfeld theory,
depending on the degree of freedom.] If Aw® is the
interval in initial angle variable ° leading to a J,
lying in (Jm, Jn+AJ), then Pn. is equal to Awf.
Since Aw® equals AJ/(8]./dw’) for small Aw’, and
since AJ is &, we have

Pmn=h/(6fm/6w°).

This classical result is immediately generalized to r
dimensions: Since

Ay« -Aw,"=] a]m,./aw,-‘) I_lAjl' . 'AJ,-,

(2.1)

(2.2)

where | | denotes an X r determinant, and since AJ ;=
hAm;=h, we have

meu.m,n;...nr:hr/l 6]m.~/awj0 |~ (2'3)

When several isolated Ax® intervals contribute the
contributions are added to yield the total Py, in (2.1)
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and (2.3). Equation (2.3) can also be derived later
from (7.17).

Frequently, one is interested in only one or several
of the m,’s, and the corresponding transition probability
is obtained by integrating (2.3) over the remaining
my’s (treated as continuous variables).

III. SCHRODINGER EQUATION AND WKB
SOLUTION IN ACTION-ANGLE
VARIABLES

The classical Hamiltonian H, in an unperturbed
system having r+1 degrees of freedom is a function
only of the action variables J; (i=1 to r), the radial
coordinate R and its conjugate momentum pg. It can
therefore be written as Hy(J, pr, R), where J denotes
(J1, +++, J+). An approximate action-angle quantum
mechanical formalism was introduced many years ago
by Dirac'® and yielded results for the hydrogen atom
and for the harmonic oscillator similar to those obtained
by WKB theory.!' The quantum mechanical action
variable operators J; did not correspond precisely to the
action variables J;, but differed from them by some
term, k3, of order 4. In the w representation we may
write J; as (%/1)3/8w,. The Schrédinger equation for
the unperturbed system is then

HO(JJ{_ha’ Pr, R)‘pO:Ell’O} (31)

where Hp is chosen to be a Hermitian operator, pz
is the momentum operator (#/7)0/0R in the R
representation, J-+45 denotes (Ji+héy, « -+, J4-48,),
and £ is the total energy. Dirac’s paper contains
a prescription for finding the operator J;+#448;. However,
for our purpose it suffices to choose the §,’s to satisfy
their WKB values, given below.

The wavefunction ° is periodic in each w;, with unit
period. Since the w; are absent in (3.1) the solution
¥nme® to (3.1) for a given state mE is

Yme®=fn(R) explrimw, (3.2)

where mw denotes X maw,. The m;s are integers,
because of the periodicity of ¥z in the w/s. f.(R) is
the radial wavefunction, with wavenumber £, at
R=0; k, is determined by energy conservation once
E and m;’s are specified: If E,° is the internal energy of
the separated collision partners at R= = then

E= E,+knh?/ 24, (3.3)

where u is their reduced mass.

According to Egs. (3.1) and (3.2) and the nature of
J:in the w representation, the energy of the unperturbed
system is the same function of (m,+6;)% that it is of
the classical action variable J,.,. (J.; is the value of
the classical action variable J; in the m;th quantum
state of the ith degree of freedom.) Thus, in this
WKB-type approximation

T = (mi+8)h. (3.4)
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The 8; are known from WKB solutions for the various
standard problems. For example, §; is O for a plane
rotator, § for an oscillator, 3 for an orbital motion, 0
for the z component of the latter, etc. A prescription
due to Keller is illuminating in this connection.

In scattering theory the relative translational motion
in the initial state is described by a plane wave, which is
usually then decomposed into partial waves, each
characterized by an orbital angular momentum and the
latter’s z component. An analogous decomposition can
be made with the present coordinates. Equation (3.2)
represents a partial wave for the unperturbed system.

IV. SCHRODINGER EQUATION AND WKB
SOLUTION FOR THE PERTURBED SYSTEM

The Schrédinger equation for the perturbed system is
H(J+h67 Pr, w, R)¢=E¢: (41)

H being Hermitian.

In the following, (g1, -+, ¢;, ¢-+1) denotes (w, +«-,
w,, R), respectively, and (py, ++ -, pr, pr11) denotes the
canonically conjugate classical momenta (Jy, « + -+, J,, pr).

A partial wave ¥,z in the perturbed system [»
denotes the set (71, +++, #,)] can be expressed as

Ynu=exp[i®(q, n, E)/R]. (4.2)
Following Dirac'®, the latter can be written as
V=4 explid(q, n, E)/1], (4.3)

where 4 and ¢ are real and vary slowly as a function
of the ¢’s. A and ¢ describe the phase and amplitude
of ¢ng. The pre-exponential factor A satisfies an
equation of conservation of probability flux, which
for the time-independent Schrédinger equation, after
some manipulation?, is

V- (A2q)= X (8/0w:) (A%0i)

k3

+R2(8/dR)R2A2R=0, (4.4)
where the velocity component ¢; denotes dH/dp.. The
n-dimensional divergence V and vector q have com-
ponents (8/dwy, -+, 9/0w, R2(3/IR)R*), and
(wy, -+, 1, R), respectively. 4 is determined later
from Eq. (4.4). The latter can be rewritten in terms of
the probability current density i:

V-i=0, i=A%. (4.4)
¢ is found from (4.1) and (4.3) to satisfy®»
H(38¢/3q+hs, q)=E, (4.5)

where g is zero. It is useful to define a function ¢;

o(q, a)=¢(q, n, E)+2mwoh, (4.6)
where wé denotes Y ;w.5; and where a denotes
ai=],,i(i§r), oz,+1=E. (47)
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Here, J,, is the value of J; for the initial quantum
state (my, -+, n,). Equations (4.3) and (4.5) then
become

Vg=A expli(¢p—2rwoh)/H], (4.8)
H(d¢/dq, q)=E. (4.9)

Equation (4.9) is a Hamilton—Jacobi type equation
for a generating function! ¢ for a canonical transforma-
tion. The transformation is from old variables (p, ¢)
and a Hamiltonian H to new variables («, 8) and to a
Hamiltonian E. Thereby,

pi=00/0q;,  Bi=0¢/da..
The new equations of motion are
di=—0E/98;=0,  B;=0E/da;=06;,.1. (4.11)

They show thatayq, <<, @y, 81, *«*, B- are all constants
and that, since a,.; has been chosen to be K, 8,4 is
I—1ty, where #, is some arbitrary constant. As §; we
choose

(4.10)

6,-=wi0 B7+1:l‘-lo, (412)

where w,? is the initial value of w; at some specified
separation distance Ry before collision. The choice
(4.12) for (B, ---, Br) is dictated by the fact that
according to (4.7) «; is J,; the initial value of J;, and
that B3; is canonically conjugate to a..

Equation (4.9) may he integrated by the method of
characteristics. The characteristics satisfy®

dgi/(9H/dp1) =+ » = dqr41/ (0H/3prs1)
=dp/(—0H/dq1)="+--
=dpry1/(—H/gr1)
=d¢/2i:(3¢/395)(3[1/a?i)- (4.13)

(1<i<r),

The expression for d¢ along the characteristics is then
found to be®®

dp=2_pidg:. (4.14)
For purposes of evaluating the ¢ and 4 in Eq. (4.8) the
integration in (4.14) is to be performed from an initial
configuration (w®, ---, w0 R,) to some large post-
collision value of R, and so to some configuration
(wi, *++w, R). If the right-hand side of (4.13) is
written as an infinitesimal parameter, dr, and if we
now use a dot to denote d/dr, then Eq. (4.13) for the
characteristics becomes

w;=aH/dJ;,
ji: —aH/(")wi,

R=98H/3pr

pr=—0H/dR.  (4.15)

Since these equations are the equations of motion along
the characteristics, 7 is the “time.” The final time of
integration will, incidentally, be different for different
values of (w1? « -+, w,%) since the time to reach the final
R will vary.
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In integrating (4.14) along the characteristics (4.15)
there are several boundary conditions to be satisfied:

(i) Initially, R is R, and pr is negative. In the
precollision region ¢ should be the unperturbed ¢,
which is seen from (4.14) to be

¢(g,a)= X Jawit+paR  (pr°<0,R>Ry), (4.16)
i=1

where pz’, the initial pg, is expressible in terms of the
a;’s by energy conservation.

(ii) At the turning point of the radial motion #r
changes from negative value to positive and, by
WKB theory, the phase ¢/% decreases by =/2 there.2
{When there are several turning points in the R motion
the #/2 in (4.17b) is modified. We reserve until a later
paper any discussion of such topics.)

The ¢(g, @) satisfying (4.14) and these boundary
conditions is

600 I (

=1

/ 'Jidwi+Jn,,w,-0)

0

R
+( PRdR—f—pRORO) (PR<0), (4173.)
Ro

¢(q, @)= Zr: ( Wt]idwi‘}‘]m‘wio)
wi0

=1

R
"I’( PRdR“*‘PRORo)"%WfL (pr>0), (4.17b)
Ry

where the integrals are line integrals, i.e., the integration
is performed along the characteristics (Fig. 1). The
dependence of (4.17) on the initial coordinates is
only an apparent one, since partial differentiation
of (4.17) shows that d¢/dw:" and d¢/0R, vanish.
Numerical integration along the characteristics (15)
to some final R, for various initial values of the w"s,

w characteristics

I16. 1. Plot of the phase function ¢ vs a w; and a uniformized
R variable, wg, indicating the characteristics (the streamlines of
the motion), and the decrease in phase by 7/2 at a wg correspond-
ing to the turning point of the K motion.
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provides the desired set of numerical values of
oW, R, Jn,, E).

The phase ¢ given by (4.17) is plotted schematicaily
in Fig. 1. The characteristics and the change in phase
of ¢ at the turning point are both depicted. Purely for
convenience of drawing we have used a uniformizing
variable wg based on a line integral,

F:] R
= — dR. 418
WR 520 ey Pr ( )

This wg increases monotonically during the collision
since pr is negative when dR is negative, and pg is
positive when dR is positive. At very large separation
distances, the integral is initially pe°(R—R,) and so
initially wg is simply R. At large final separations it is a
linear function of R.

It remains to evaluate 4 using Eq. (4.4). A schematic
diagram of the probability flow in w-R space is given in
Fig. 2. An initial region J[:dw at some initial R, has
a cross-sectional area Ry*[[,dw® normal to the R co-
ordinate. (The volume element in w-R space
is R?dR][idw?.) The streamlines (the characteristics)
are also indicated in Fig. 2. At some final R the w,° have
evolved to w; and the final cross-sectional area normal
to the R coordinate is R2[];dw;. Since the flow is diver-
genceless, according to (4.4), application of Gauss’
theorem to this r+1 dimensional space shows that the
net flow out of the region enclosed by the heavy solid
lines in I'ig. 2 is zero. Since there is no flow across the
sides (the streamlines) of the tube, the only flow is
across the ends. Considering the volume enclosed by a
dark outline in Fig. 2 it follows from (4.4), (4.4'), and
Gauss’ theorem therefore, that

iRy T] dwid+igRe I1 duo;=0, (4.19)

where i is the R component of the probability current,
and, by (4.4"), is given by (4.20); {z° is its initial value
at the initial R, and

in= A= A%pr/p. (4.20)

Here p denotes the reduced mass of the collision partners

Fic. 2. Plot of the characteristics in an R-w space (w/2r is
the angular variable) showing the relation between the initial
dw’ and the final (postcollision) dw, indicating the dependence
of the sur_facc area (R’dw in the actual »4-1 dimensional system)
for any given R and showing the reflection of the R motion. The
characteristics are indicate by arrows, and the final wave front by
a dotted line. ¢ could be plotted as the vertical coordinate. ’
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in the given channel. The incoming wave has a pre-
exponential factor which we can denote by 4,.
Equations (4.19) and (4.20) yield

AR, [1 dw— A2R% [] dwi=0, (4.21)
i 7
where v is the magnitude of the final R component of
velocity, | pr |/1, in the outgoing channel and v, is the
corresponding component, — pg"/u. in the incoming one,
n (pg" is negative). When chemical reaction occurs'®
certain J]:dw,® intervals in (4.21) lead eventually to a
product channel, for the given a/s; other Jl:.dw®
intervals at these @,’s lead only to the original reactants.
I1:dw; and J]:dw? are related by a Jacobian,

I1 dw.=| dw./dw? | T] dwsd, (4.22)
where || denotes an rXr determinant. Equations
(4.21) and (4.22) vield the final result,

A=A¢(Re/R) (2./v)'? | dw;/0w® |72 (4.23)

We shall choose 4 so that the incident R flux of the
partial wave, integrated over all w,® (namely, 4,*R¢%,
for R=Ro) is unity. Thereby,

A(]: (R()'Un”?’)_‘. (4‘.24)

For later notational convenience, and without loss of
generality, we shall multiply both incoming and out-
going portions of the above wavefunction by
exp(imm/2). (Throughout this paper #; (and my)
will denote the principal orbital quantum number,
usually denoted by I.) R, is now chosen to equal R,
so as to evaluate ¥,z at this R.

If the wavefunction of the complete partial wave is
denoted by ¥,z™, its form at large R is, from (4.8),
(4.16), (4.17b), (4.23), (4.24), and the preceding
discussion, seen to be
Ynp® ~ (R, ?) W0 exp(— ik R+-1mw/2)

R->o
— (R'?)71 | 0w/ 9w, |71 expig*(g, ) /1],

where ¥n." 1s exp (2wt 3 naw;), and where

¢*(g, @)/h= (¢/h)+imm+m—2r 3w (4.26)

(4.25)

Here the m compensates for the minus sign of the last
term in (4.23), and ¢ is given by (4.17b). These
equations vield

r w, R
o (g, a)= 3 [/ ],'dwl—{—fmwi"J-}— / PrAR
i=] w0 Ro

+ pp'Ro+ [ (m+ 1w /2]—2m Z wdifi.  (4.267)

K

The integrals in (4.26') are line integrals along the
characteristics defined by (4.15).
It is useful to define a continuous variable 7; by

(i A-6:)h=J.s. (4.27)
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On introducing this result into (4.26"), using (3.4), and
rearranging the terms, Eq. (4.26”) becomes

* r w R’
@D o s [ —n)dwt [ kR

7 i=1 Yw0 Ro

+ 2 Z naw,— ko Ro+ (m+1)3m,  (4.28)

i

where % is pr/7i, a function of R, and %, is the magnitude
of pr%/A(pr® is negative; hence k,=—pr’/h). Since
initially 71; equals #; and —k equals k,, the expression
is independent of the lower limits on the integrals (as
differentiation with respect to w;® or R, shows). In
(4.28), as in all preceding and all subsequent ex-
pressions, the integrals are to be evaluated along the
characteristics, i.e., along the trajectories.

V. ELASTIC COLLISION

We verify in this section that (4.25) reduces to the
usual WKB expression when the collision is elastic, i.e.,
when all J; equal their initial values J,,. The Jacobian
| 0w;/0w, | is unity since w; in this case equals w2+
v®(t—1y), where »;° is the 7’th unperturbed frequency.
The first term in (4.28) is zero, and % in the next term
now satisfies the equation

(B2 2u)4 (. /8 u RV (R)= k2 /2u,  (5.1)

where J,,/27 is the orbital angular momentum and
V(R) is the interaction potential. On introducing (5.1)
into (4.28), and relating this integral to its value when
V=0, one obtains, on letting R (and Ry) become large,

o*(q, ) /fi=k,R— (1'117/2)—|—26;—|—27rz nav;, (5.2)
where

= f (k= k)R — kot (- 1)br. (5.3)
0
Here, 7, 1s the classical turning point of the R motion in
(5.1).
Thus, Y. for this case, obtained from (4.25), is

¢7LE )~ (R‘Unllz )“V’nw(}{ exp[— 7 ( knR‘- 71,17r/2 )]

R->x

—expl7 (k. R— (mm/2)+28,)]}.

The §; given by (3.3) is the standard WKB expression
for the phase shift in an elastic collision.'»

In the absence of the interaction potential V(R), &
vanishes and ¥,z becomes ¢,5°, the unperturbed
wavefunction. Replacing the # by m, we have

l/’mE0 ~ (R'Umll2 )_l¢mzcn { exp[— 7 (ka_ mﬂr/z)]

R>cc

(5.4)

— expli(knR—mr/2) ]}, (5.3)
VI. CALCULATION OF S MATRIX

Once the § matrix is known the other properties,
such as differential and total cross sections, for in-
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elastic and reactive collisions are known. The on-the-
energy shell S matrix is defined by the asymptotic
form of the exact wavefunction™:

‘/’nE’(+) ~ R1 Z 'Z'm'—1/21//m'w0{5m’n eXP<_1km’R

R m!
Fim'nw/2)— Swrn exp(ikw R—im'w/2)}.  (6.1)

Equation (6.1) applies both to reactive and nonre-
active collisions. In the case of a reactive collision the
reduced mass p,, used to calculate the velocity »,, from
the wavenumber k(v =knfi/un) will normally be dif-
ferent from p,, when m refers to a quantum state of the
reaction products.

Integration by parts (Green’s theorem) shows that!®

/ Yne® (H— H, Wop ™ R2AR ] dw;
w,R i

B 1 EYaCS
= " im R / (,meo* Wnr ™
Mm R—>x w=0 aR

a‘xmeO*
oR ){Idw,, (62)

where H, is the unperturbed Hamiltonian in the
outgoing channel 7 and R is the separation distance in
that channel. Like Eq. (6.1), Eq. (6.2) applies to
elastic (m=mn), inelastic (m=n, H,=H,) and re-
active (H,# H,) collisions.

Introducing (6.1) into the right-hand side of (6.2)
shows that

“‘/’nE(+)

Sww=dm— 2 [ s (H—Ho o RART] dv
w,R T

(6.3)
Equations (6.2) and (6.3) then vield
7 1 W™
Sy =B — i lim sz <¢mEo* Wup™
2,um R—>» w=0 aR
O™
— Y™ h‘/;; )IiIdwi. (6.4)

When Eqs. (4.25) and (4.28) for ¢,z and Eq.
(5.5) for Yn.g® are introduced into (6.4), one obtains®

(et
2(vu0)2

where ¢ is the postcollision velocity at large R, as
before, and is a function of w. A is given by

A=[¢*(¢g, @) /h]—knR—27 3 miw;+3mm.  (6.5)

L Qw;

dwp

Smn=lim
R-ow v

)(expiA) I dw;, (6.5)

That is,

r wy R
A=21rZ/ (ﬁ,i—ni)dwi-l—/ kdR—Fk.Ro—FknR
=1 0

Ro

w5

—I—21rZ (n;—m)wi+ (m+m+1)57. (6.6)
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In (6.6), as noted earlier, the expression is independent
of the lower limits, w:® and Ry. Incidentally, if the
value of ¢*(g, ) for the unperturbed system in the
mth state is denoted by ¢,*, then inspection of (6.5")
and evaluation of (4.28) for the unperturbed problem
shows that

A=¢*— ™. (6.6")
In the case of an elastic collision A can readily be
shown to reduce to

260+2r > (ni—mi)wi+ (kn—km)R— (m—my )3,

7

where 8, is given by (5.3). The pre-exponential factor
in (6.5) becomes unity, and Sn. becomes its well-
known value, [exp (2¢8;) Joun-

When, as in the application of a steepest descents
method (discussed later), the final value of 7; at a
saddle point @’ is (for each i) m;, integration of (6.6)
by parts yields for A’, the value of A at w/,

km
de+ (nl—l—ml—i- 1 )%ﬂ‘,

—kn

r ms
AN=—=2r Y / WA —
=1 vYnyg

(6.7)

since the initial value of 7; is #;, and that of % is pr°/%,
1e., —ku.

IFrom a numerical point of view, different values of
(w1, -+, ) can be chosen at some Ry and used to
evaluate A and (w1, *+-, w,), using (6.6) and an inte-
gration of (4.15), respectively. Thereby, known values
of (A, wy, +++, w,) are generated and can be employed
to calculate (6.5)~(6.7) and the subsequent equations
of Sec. VII.

In an examination of the behavior of (6.5) as R—w
we have noted the following: In the case of m=u, i.e.,
of Sy, A consists of an unperturbed term which vanishes
and of a perturbed term which, by a simple change of

m _IDa_C_C _____ + _____

A

n

mlace 2 N .
| |

w! W w!

Fi16. 3. Plot of number variable A = (J/k)—8] vs w in the
vicinity of a maximum. The straight lines for »=m, an integer,
are indicated for the classically accessible (acc.) and inaccessible
(inacc) cases. The w' are saddle points. 7 is the curve maximum.
The shaded area @ appears in the final expressions for Sy..
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variable w;, can be made independent of R. In the
case of ms“n, the steepest descents method becomes
applicable, as noted in the following section, and the
integration by parts leading to (6.7) converts A to A,
which is independent of R at large R, as already noted.
Examples illustrating these different features for
m=mn and for m>~n, as well as those in Sec. VII, will be
given in a later paper.

VII. EVALUATION OF S.. USING EQ. (6.5)

The principal contribution to an integral of the type
in (6.5) normally comes from the saddle points® or
when there are none, from the integrand as a whole.
Since an asymptotic method (WKB) was used to
derive (6.5), grounds of consistency suggest that only
the leading term (or terms) in the evaluation will
be significant.

An example of an integral in (6.3) having no saddle
points is that for the elastic collision. Here, the integral
can be evaluated exactly, as in Sec. VI, to yield

Spn= (exp2i87)Bmn. (7.1a)

When in an inelastic collision system the ‘‘elastic
case” of m=n is considered, the steepest descents
method will still not be suitable when S.. is close to
unity, and the integrand as a whole must be treated.

In an inelastic collision, for S,, with m#n or, when
Sun is small, for m=#, the integral in (6.5) will be the
sum of its saddle-point contributions. In the remaining
portion of this section we investigate this case.

The saddle points of A will be denoted by
(w, - -+, w,"). Regarding each w; as a complex variable,
this 70’ is the solution of

0=0A/0w:;=2x(R;—m;)

(w=w"). (7.1b)

w’ is real when the transition is classically accessible,
and contains an imaginary component when the transi-
tion is classically inaccessible. We shall use the method
of steepest descents (or that of stationary phase, when
natural) to evaluate (6.5).

To illustrate some of the points and to serve as a
check on our more general calculations we first con-
sider in (i) and (ii)} a more restricted case, a system
having one w and a parabolic approximation to the
usual 7 vs w plot in Fig. 3.2 The actual curve in that
figure is represented by

A=n— (w—w)%a(w)/2r, (7.2)
where a(w) is a function of w having zeros distant
from w=1, the position of the local maximum in Fig.
3; 7 1s the value of 77 at 0. In the parabolic approxima-
tion a(w) is a constant, . The factor of 27 is introduced
to simplify later notation. In Secs. VII.A and VIL.B
we consider the case where 7 is a local maximum at @,
while in Sec. VILF the case where it is a local minimum
is treated.
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A. Parabolic Approximation; Classically
Accessible Case

In the classically accessible case, m is less than 7
and the solutions of (7.1b) and (7.2) are

w—w=[2r [A—m |/a]"? (7.3)

where the magnitude symbols about #i—m are added for
later notational convenience. The path of integration
is along the real axis. The phase Ain (6.5) is stationary
at the points defined by Eq. (7.1b), leading to ex-
cessive cancellation of the integrand at all other regions
but these, whenever the asymptotic method is ap-
propriate. Hence, the pre-exponential factor in (6.5) can
be replaced by its value at the saddle points (7.3)
(Singularities or zeros of the pre-exponential factor
near the saddle point appear to be rare,” and through-
out Sec. VII we shall suppose them to be absent.
Should they arise, a modified treatment can be given.)
Thereby, by (7.1b) and energy conservation, ¢ equals
o, in the pre-exponential factor. We now have

Sn=1] 0w/dw® |72 expiAdw. (7.4)

The original integration region over w of [0, 1] can be
changed to (—oo, 4% ). A(w) is expressed in terms
of its value at w=1w, by integrating (7.2) [with a(w)=0¢
in the parabolic case]. This integration of (7.2), from
0 to w, yvields

A(w)=AW)+ 27 | i—m | (w—w)— (a/3)(w—w)?, (7.5)

where the “magnitude symbols” about #—m are again
added. Letting s denote —a'3(w—w), Egs. (7.4) and
(7.5) now yield

Smn=a"13 | d10/0u" [V expiA()]

X / " exp[—ibs+1(is$))ds, (7.6)

where

b="2r |A—m| a3 (7.7)
The integral in (7.6) is 27 times the Airy function
Ai1(—0).% For later purposes it is useful to relate this
argument b to the shaded area @ in Fig. 3: For the
present parabolic case the area @ is the integral of
(n—m)dw from @’ to # and so, from (7.3) and (7.5), is
[A(@)—A(w')]/2x, where %' is the negative square
root in (7.3). Using Eq. (7.5) one finds

Q=[AW)—A@) ]/ 2r=(2/3) | i—m [*2x/a)"*. (1.8)

According to (7.7) and (7.8) the argument of the Airy
function equals (—3x@)%*, and we have

Sn=2mwa1% | dw/dw® [/

X [exp(iA’+271@) JAi(—[3x@ J3), (7.9)
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Both A, given by (6.7), and @ can be calculated from
the data on classical trajectories.

B. Parabolic Approximation; Classically
Inaccessible Case

When the transition is classically inaccessible in I'ig.
3, i—m is negative, the roots of (7.1b) are imaginary,
and so the saddle points in the w—w complex plane lie
on the imaginary axis. As noted later for a related
integral, the present integration path along the real
axis can be deformed in the complex plane without
changing the value of the integral, and be made to lie
along the line of steepest descents passing through the
saddle point at @' —@=—i[2r | A—m |/e]"% The pre-
exponential factor in (6.5) can now be set cqual to its
value at this point, placed outside the integrand, and
the integration path deformed back to its original
position along the real axis. One then has

Spn=a""*| dw/dw® TV expiA(w)]
X fm exp(ibs+3is®)ds, (7.10)

where b is given by (7.7), and where | dw/dw" [712 is
evaluated at the saddle point on the negative imaginary
axis in the w—@ complex plane. The new integral is 2r
times the Airy function 4i(&), where b is related to the
area @ In Fig. 3 as discussed previously. Equation
(7.10) becomes

Spn=2ma~13 | 810/9n° [V expiA (W) ]Ai[ (37@)¥%],
(7.11)

where | dw/dw® |71 is evaluated at the saddle point on
the negative imaginary axis.

The question arises as to whether the A(®) in (7.11)
is a collisional “invariant,” in the sense of being inde-
pendent of R once R becomes large. Letting A" now
denote the value of A at the saddle point on the nega-
tive imaginary axis in the complex w—w plane, Lq.
(7.5) shows that

A= A(D)+ 27 (classically inaccessible A'),

(7.12)

where @ is given by (7.8) and is again the shaded area in
Fig. 3. Equation (6.7) showed that A’ is an invariant.
Since @ is also an invariant, Eq. (7.12) shows that
A(w) is. Both A(w) and @ are obtained from the
trajectory data. If one wished, A" could then be ob-
tained from the latter, even though i’ is now classically
inaccessible, by using (7.12).

The asymptotic forms? of (7.9) and (7.11), useful
only when @ is not too small, illustrate the various
features of those expressions, such as the oscillatory
dependence of one on @ and the exponential dependence
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of the other:

(accessible)
Spn=C{exp[iA'+ (im/4) IHexp[id’+4mi@— (ir/4) ]}
(7.13)
(inaccessible)
Spn= C exp[—2r@+iA(D)], (7.14)
where
C=x12g"3(3x@)~Y8 | dw/duw’ V2. (7.15)

In (7.14), | dw/dw® |71/ is evaluated at the relevant
saddle point; in (7.13) it can be evaluated at either
saddle point®P; the A’ in (7.13) is given by (6.7) and
refers to the saddle point on the negative real axis of
the w— complex plane. The “A’/2x” for the second
saddle point, the one on the positive real axis, is that for
the first plus the area difference 2@, as one sees from
Fig. 3, thus providing an insight into the second ex-
ponent in (7.13).

Finally, both here and in later sections one should
distinguish between classical inaccessibility and en-
ergetic feasibility. Some classically inaccessible transi-
tions involve so much energy expenditure that the
kn at R= o« would be imaginary. Their partial wave is
exponentially damped there and such channels are
“closed.”

C. More General Case, Introduction

We turn now to the more general case. In the case of
classically inaccessible transitions, with their inverse
exponential dependence on the area @, the parabolic
approximation will sometimes be too restrictive. The
error is of course much less for the classically accessible
transition. However, in this case there is another reason
for treating a more general 7 vs w plot: In several
dimensions quadratic expansions of A about the saddle
points are usually acceptable, but independent cubic
expansions of the type in (7.5), one per degree of
freedom, may be less realistic when those degrees
of freedom are significantly coupled.

When the saddle points in (6.5) are fairly isolated the
leading term in the asymptotic expansion is obtained
by expanding the exponent, A, in a power series about
the saddle point (wy, +++, w,”) and omitting powers
of w;~w;" higher than the second. Diagonalization of
the resulting quadratic serves to locate the initial
direction of the path of steepest descents. (When
further terms in the asymptotic expansion are needed
more data than the initial direction is used.) After
expansion of the exponent the integrand is Gaussian-
like and the integration interval can be made infinite.2
There are frequently a number of saddle points »’ and
the integral becomes the sum over the saddle points.
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Equation (6.5) thus yields

. o« 8wi ~1/2
Smn= Z (eXp’LA,) f —_—
w/ —o 610,-0
SIS
21 W Wi X d i
XeXp[Zﬁ%»(awiaw,- w=w,(w wi') (w—w;) TﬁI W
s 12 — ik | 12
x| 2 | T i, (7.16)
w | dw; 010:0w;

where the absolute value is not intended in the 7Xr
determinant

[ —i62¢/6wi6wj |—1/2,

but rather due account of the phase of each factor is to
be taken. For example, in the case of a real 8%/dw?,
| —i0%/dw,0w; |72 has a phase of (—=/2)(—1/2)
or (+m/2)(—1/2), i.e., w/4 or —=/4, according as
d%/dw” is positive or negative. In the case of two
dimensions we may suppose for illustration that the
axes in (w—w’) space have been rotated so that
9%/ dwdw, vanishes and, hence, so that 8%¢/dw,* and
3%/0w? become the principal curvatures of the
¢ vs (wy, we) surface at the saddle point. (Since
d¢/ 0w = d¢/dw,=0 there, the usual formula for curva-
tures of a surface contains only second derivatives.)
According as the two curvatures are both positive,
both negative, or of opposite sign the phase of
| —id*¢/dwidw; [ is  [(—7/2)+(—7/2))(—1/2),
L(x/2)+(r/2)1(—=1/2), 0t [(—7/2)+(x/2)](—=1/2),
ie., w/2, —w/2, or 0, respectively.

The value of 9¢/0w: is (A,+8:;)k so that the
d%/dw.dw; equals hdA;/0w;. Since the product
| Ow;/0w® |7V | —ioA;/w; [T in  (7.16) equals
| —idn;/dwP |~Y2, with the precautions referred to
regarding phase of 9%/dw;dw; being again understood,
Eq. (7.16) becomes

Smn=2_ |—107;/dw® |72 expid.

w!

(7.17)

D. Application of Eq. (7.17) to Classically
Accessible Case

Equation (7.17) can be shown to reduce to (7.13)
when the special assumptions of the latter are intro-
duced.

The simple classical Eq. (2.3) also follows from
(7.17): one first notes that A’ for a classically accessible
transition is real since the saddle- points in (6.7) are
real. Sy,.*Sn. may be computed from (7.17) to obtain
the transition probability. If interferences (i.e., cross
terms) between different saddle points are ignored, a
permissible step when they are sufficiently far apart
that their average over a small range of initial trans-
lational kinetic energies is zero, one obtains (2.3),
summed over all contributing saddle points.
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iv

/

AN 7
\\ d
\\\ w' //
~ - U

wa,

F1G. 4. Plot of the w—iy complex plane, indicating the saddle
points w’ and curves of steepest descent for the classically in-
accessible case. The three directions on which expiA becomes
infinite at infinity are indicated by arrows. The original path of
integration is the real axis and the deformed path coincides with
the lower hyperboliclike curve, or, in the saddle-point approxima-
tion, with a straight line tangent to it at w’. Various curves (solid
and dotted) for the classically accessible case are obtained by
clockwise rotation of the curves through 90°.

E. Application of Eq. (7.17) to Classically
Inaccessible Case

In this illustration of (7.17) the one-dimensional
case based on (7.2) will be treated. (The arguments
are also readily extended to the case of a local min-
imum.) The function a(w) will be chosen so as not to
distort the parabolic shape of (7.2) in the immediate
vicinity of the maximum. Thereby, its zeros are ap-
preciably removed from % and so the first few deriva-
tives of a(w) are small near % or near the saddle point.
It is also supposed, as is frequently done in phase
integral treatments® involving an analogous quantity,
that a¢(w) is such that the roots of (7.1b) for negative
fi—m are obtained from those for positive 7—m by
multiplying the latter by ¢. [An exact example occurs
when a(w) can be expanded as 14¢(w—d)44----].
Thus, for this classically inaccessible case the saddle
points w’ are given by (for a symmetrical 7 vs w curve,
for illustration)

W' — W=+ 27 | i—m |/a(w) ]2, (7.18)

where a(w') is the same for both roots, and equals
a(w'’), where @ denotes the known (real) roots for the
classically accessible case with the same | i—m |. Thus,

(7.19)

Curves of steepest descents have constant phase, A,
and pass through one or more saddle points.® Some
insight into their position near the saddle point is ob-
tained by setting a(w) in (7.2) equal to its value there
a(w'), and hence to a{w’'), and noting that a(w') is
real. The expression for A is now a cubic in w—1b.
When w—1@ is written as #4177, and introduced into the

@' —Ww=1i(W' —).
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integrated expression, the phase of A may be computed
and equated to its value at a saddle point. The curves of
steepest descents are found to satisfy the equation?

u(3vP—u*—3x)=0, (7.20)
where
x=27 |fi—m |/a(®’).

(7.21)

The second saddle point satisfies a similar equation, and
the three solutions to (7.20) are two branches of a
hvperbola, each of which passes through one saddle
point, and the imaginary axis, which passes through
both, as in Fig. 4. The original path of integration in
(6.5), which was along the real axis, is next deformed to
one of these curves of steepest descents. To avoid
changing the value of the integral in the process, the
deformation of the path should involve no crossing of
singularities, and the value of the integral along the
path completing the contour at o should be zero.
The general location of the singularities is readily de-
termined and shows how to deform the path:

When w—% is small, a(w) may be set equal to
a(w) in (7.2) and the result integrated to obtain A. The
integrated expression shows that exp(iA) would tend
to infinity along the radii « expir/6, = exp(5ir/0)
and « exp(—in/2) (Fig. 4). The presence of a noncon-
stant ¢(w) distorts such curves but their general
location with respect to the saddle points w’ and the
lines of steepest descents is largely unchanged. The
(undistorted) curves are indicated schematically by
dotted lines in Fig. 4. From this figure it is seen that if
the saddle point on the negative imaginary axis is
selected, the original path of integration in Eq. (6.5)
may be deformed to coincide with the hyperbola
(the curve of steepest descent) passing through that
saddle point or be tangent to it there, without crossing
singularities and with having a zero contribution from
the path completing the contour at .

Integration of (6.5) using the method of steepest
descents and leading to (7.16) can thus be performed.
In (7.16) exp(iA’) is to be evaluated from the tra-
jectory data, even though it has imaginary components,
as in (7.26) below. Integrating Eq. (7.2) for this
purpose, from w=1w to w=w' we have (since m>n)

w!

A—AD)= /: [—2x | fi—m | — (w—1)%(w) Jdw.

(7.22)

Setting w—1w equal to (—is), then using (7.19) and
the equality of a(i—is) and a(w—s) discussed
earlier, Eq. (7.22) yields

— (%' —W)

[27 | Ai—m |—sPa(d—s)]ds,

A'—A(ﬁ)):if

(7.23)

where 1’ is on the negative real axis in the w—w
complex plane.
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Equation (7.23) may be compared with the change in
A in the classically accessible case, where w changed
from %’ to w, along the real axis. The change in A for
this case is the shaded area under the curve in Fig. 3,
and is again denoted by @ though now without any
parabolic approximation to the curve in Fig. 3. Inte-
gration of Eq. (7.2) yields, for this classically accessible
case,

a= /_ [la—m]| —(w—)%a(w)(2r)Jdw. (7.24)
Setting w—w equal to —s we have
—(@'—ib)
G= / [|A—m |—s2a(b—s)(2m)']ds. (7.25)
0

Equations (7.23) and (7.25) show that

A =A(D)+2ri@, (7.26)
and so Eq. (7.17) becomes
Smn=2 | =197/ dwf |72 exp(—2rQ@+iA(d)). (7.27)

w!

Since A(®W) can be calculated from the trajectory
calculations, because W is classically accessible, and
since the area @ is also known, A’ can be calculated
from (7.26). The exponent in (7.27) is identical with
that in Eq. (7.14), but is no longer restricted to the
parabolic case; @ is now the shaded area under the
actual curve in Fig. 3.

For further comparison of (7.14) and (7.27) one
writes | —i07,;/0w [7"? at the saddle point in its
original form in (7.16), | dw/0w,® |72 | —id71:/dw; |7V/2
Using Eq. (7.2) and neglecting the derivative of
a(w), as discussed earlier, 97/0w is found to be
— (w'—w)a(w’)/x. U, for the comparison, a(w) in
(7.25) is written as a(w’) and the integration per-
formed, @ can be computed. In this way 97/dw can be
expressed in terms of @. One finds thereby that (7.4)
can be obtained from (7.27).

Similarly, for the classically accessible case, Eq.
(7.13) can be deduced from (7.17) without the par-
abolic restriction. This result and the preceding one
indicates that Egs. (7.9) and (7.11) are also ap-
plicable without the parabolic restriction.

F. Case Where Curve (7.2) Refers to a Local Minimum

In this case a(w) is negative and classical accessi-
bility implies that m>4%, % being the local minimum of
n. In Eq. (7.5) the sign of the two last terms are
altered. If s now denotes | @ |¥3(w—w), Eq. (7.6) is
again obtained, with ¢ in (7.7) now replaced by | a|.
The integral is again 2r4i(—b). The half-area enclosed
between #(w) curve and the 7=m horizonal line (the
shaded area in Fig. 3) is seen by inverting Fig. 3 to be
“negative.” If it is denoted by — @, where @ is positive,
then (7.8) is replaced by

—a@=[A(w@)—A(w')]/2x (7.28)

3975

and Eq. (7.9) is again obtained, but with 2xi@® re-
placed by —2xiQ.

In a classically inaccessible transition we now have
a>m. Eq. (7.10) would again follow, with & given by
(7.7) and ¢ now denoting | e |. Eq. (7.27) would also
follow. The desired saddle point is now on the positive
imaginary axis and the details of the discussion leading
to (7.27) would be modified accordingly.

VIII. CANONICAL PERTURBATION THEORY

To gain some insight into the ¢ in (4.17b) and hence
into the ¢* of (4.28) and the A of (6.6), as well as to
relate its properties to previous studies?=® it is useful to
develop here a canonical perturbation theory for the
time-independent Hamiltonian—Jacobi equation (4.9).7
Normally, the canonical perturbation theory for the
latter equation has been one which is appropriate to
bound state problems, rather than collisions. The one
derived below is suitable for collisions.

The Hamiltonian H, written in terms of a perturba-
tion parameter A, is

H(q, 0¢/3q)=H,(q, 0¢/3¢)+NH,(q, 36/3¢q)=E, (8.1)

where E is a1 as before. The generating function ¢,
expanded in powers of \, is

6(g, @)= 3 dnl(g, Q)NY. (8.2)
N=0

When (8.2) is introduced into (8.1), and both H, and
H, are then expanded in powers of A, one obtains

Ho(q, p©)+NH\(q, p©)

© r41 omi
+ 3 H(*H0<q,p<°>>+wl<q,p<°>>)

all mim1 i1 \@P, O
o) /ol o
where
PO=0d0(q, @)/dq. (8.4)
Equating equal powers of \ one obtains
Hy(q, p©)=E, (8.5)
}S:;Iig) 59;;—:’ =—Kn(ga) (N=1,2,+++), (8.6)
where the first several terms are
Ki(g, @)=—Hi(g, p), (8.7)
Ka(g, @)= {¢1, Hi}+(1/2!) {¢1, {¢1, Ho}}, (8.8)
Ki(g, a)={¢s, Hi}+(1/21) {¢n, {1, Hn}}
+(1/30){éy, {1, {01, Hol}}, (8.9)
and {X, Y} denotes
1 79X oY X oY
{X,¥V}= El(gq—zw—waz> (8.10)
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Equations (8.8)-(8.10) employ a compact notation
which distinguishes a; from p,%, i.e., the dpn(q, o)/
9p:© are zero there.

The sequence of equations (8.6) can be solved for
the ¢x’s by the method of characteristics.’® The latter
yields

dgs don
OHo/0p:® 3 (9¢w/3q") (9Ho/0p:¥)

_ d(0¢n/9q:)
—aKN/aq,' )
Setting (8.11) equal to an infinitesimal parameter
“dt” and using a dot to denote d/dt, we have
Gi=0H,/3p:?,
which, for the w;, yields
wi=w v (t—1t), (8.13)

where v, is the #’th unperturbed frequency, dH,/9p, .
For R, Eq. (8.12) vields

I ] 12 1/2 ,
R—R:f 2<—VR’— " )/]dt,
0 to[ ¢ &) 872uR’? K

where R’ denotes R(¢'), and where € is £,24%/2u. Hence,
the parameter ¢ is uniquely specified by R and the sign
of pr, and can be understood as ¢(R, sgnpg) and abbre-
viated as f(R). Since d¢y 1is seen from (8.6) and (8.11)
to be — K (g, o)di along the characteristics, integration
yields

(8.11)

(8.12)

(8.14)

HR)

Ky (q(r), a)dr

=00

dn=— +), (8.15)

(N=1,2, -
where §(7) is the ¢ evolving with r according to (8.12),
and hence with (8.13)-(8.14). In (8.15) the §:(r)
must be chosen so that

Gi(r)=q; at r=1(R), (8.16)

i.e., @w; and R are given by (8.13)-(8.14) with w.’,
f, and Ry replaced by w;, r, and L. ¢ is obtained
from (8.2) by setting A=1. Examination of (8.7)~
(8.10) and (8.15) shows that, when present in the
integrand of (8.15), {X, ¥} becomes a Poisson—
Bracket: it becomes expressed in terms of variables §;
and p;®, variables which are canonically conjugate in
the unperturbed problem.

8(g, )= 3 dn(ga), (8.17)

N=0
where ¢x is given by (8.15).

In (8.15) ¢~ depends on R, both directly and
(implicitly) via the presence of a /(R) in the integration
limit, and in the integrand in the expression for the
g:(r), which conforms to (8.16). Illustrations and
applications of the formalism based on (8.6)-(8.17)
will be given in subsequent papers.
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In a previous paper, we have tested an expression
equivalent to the first-order approximation, ¢yt ¢,
and in certain respects have tested one equivalent to
dot+d1+¢2 by comparing the exact (numerical) and
approximate values of the action variable after the
collision.® (J;=0d¢/dw;, i.e., J,,-+0¢/dw; in the first
approximation and J,,+9¢:1/0w;+d¢:/dw; in the
second.) The agreement was encouraging and the
range of validity was ascertained for various molecular
parameters. The results are used in the Discussion
section, to consider Eq. (6.5)-(6.6) for Sy, The ¢n
terms can be introduced via (4.26) and (6.5)-(6.6)
or via the relations

Ag=ni+nO4nP -0

‘ZU{OZ w;0+Wi0(l)+ZU,O(2)+ -

k=kytkO+kO+ 0o, v=kii/u,  (8.18)
where
V= h"19¢x/0w;, W = 0w /0T ,,
EM =#"13¢x/0R, (8.19)

and #,46;, @ and k, are kA '9¢o/0w;:, d¢o/dJ,,, and
7i7'0¢o/dR, respectively. We note for (8.19) that
8/0w; and 9/dJ,, are commutative with the integral
sign in (8.15).

These equations can also be applied to the pre-ex-
ponential factor in (4.23), (6.5), and (7.17).

IX. REMARKS ON SEC. VIII AND ON
COLLISIONAL SELECTION RULES

The approximations, ¢y+¢:1 and ¢ot+di+¢s, have
been tested, in part, for several collisions,®* and the
results may be applied to (6.5) or (7.16). We reserve
for a later communication a more detailed discussion
of them. For certain fairly wide ranges of molecular
parameters, ¢o+¢y provided an excellent approxima-
tion. (This approximation was referred to as Aj'l in
Ref. 3b, and many curves are given there relating Aj!l
to the exact change of rotational angular momentum
of the molecule as a result of collision.)

The value of 7;—#; at any w; alwavs equals that at
w;+1 since H is periodic in the w,’s, with unit period.
In addition, because of some suitable symmetry in H,
H may have a higher periodicity in w,, with period
1/M,, where M, is an integer. Then, #%;—#n; for the
family of characteristics passing through w; is the same
as 7fi;—mn; for the family passing through w,+M ;.
Thus, in an 7; vs w; plot for this case there are M;
oscillations in the unit interval of ;. In this case, for a
classically accessible transition, there are 2M; saddle
points. For a classically inaccessible transition, there
would be M ; saddle points for the (M;) maxima in the
n; vs w; plot and M, for the (M) minima.

The above result has immediate implications for
selection rules as well. If one integrates (6.5) first over
;, one finds that the integral will now vanish unless
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#ni—m;=0, £M;, £2M,, +++, etc.”® For the case where
A has a simple cosine or sine dependence on w; then
if the exponent in (6.5) is expanded and only the first
two terms are retained, (6.5) would give #;—m;=0,
+M;, while if the third term in the expansion is also
retained one would have 0, £M;, £+2M,, and so on.
(Other selection rules, based on other symmetries in H,
when they exist, will be considered in a later paper.)

Thus, application of group theoretic considerations
prior to application of asymptotic methods simplifies
the problem by reducing the w; domain of integration.
(However, asymptotic methods could be applied first.
There would be cancellations from various saddle-
point contributions, giving rise to the same selection
rules as those obtained above.)®

An example of the selection rules occurs in the col-
lislon of an atom with a symmetric top molecule
such as NHj; the component of the interaction force
acting on the rotation about the symmetry axis has
mainly a Fourier component of 3 times the correspond-
ing rotational frequency. Hence, selection rules for the
change of K7, the component of the rotational angular
momentum along the symmetry axis is 0, &3 in
lowest-order quantum mechanical perturbation theory
and 0, £3, &6, --- in higher orders. Similarly, in the
case of a collision of an atom with a homonuclear
diatomic rigid rotor M is 2 and the selection rule
should be j=0, £2, + .. The two oscillations per unit
w interval in an 7; vs w; plot here may be seen in Figs.
4 and 5 of Ref. 4b (where only one-half the w interval
was plotted to avoid repetition).

The true saddle points are those for which Eq.
(7.1b) is fulfilled for all ¢ simultaneously. While
coalescence of saddle points is common in the case of
one dimension, our impression on examining the results
in Ref. 3b is that it is rarer in the case of interacting
degrees of freedom (varying in probabilitv of oc-
currence as p¥, where N is the number of interacting
degrees of freedom, and p is the probability for one).
For example, one finds from the equations in Ref. 3b
that when the saddle points for the j vs w plot tend to
coalesce, (j is the rotational angular momentum
quantum number), those for the m; vs w plot do not
(at least usually do not).

X. CONCLUDING REMARKS

In the present paper we have attempted to show how
the Hamilton—Jacobi equation for collision problems,
solved with the aid of the method of characteristics,
can be used to obtain the WKB solution and the S
matrix for inelastic collisions. In the process the re-
lation to our previous action-angle variable studies of
the classical mechanics of collisions has been noted, as
has the application of a canonical perturbation treat-
ment of collisions. The application of complex variable
techniques, particularly in the form of steepest descents
or stationary phase, has also been described.

One approximation which has been employed in the
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literature of inelastic collisions, the sudden approxima-
tion,3! corresponds to setting all »°=0 and R=R in
Eq. (9.1) [Kx for N>2 then vanish in (8.15)], and
then introducing the result into (6.5). The eikonal
approximation® corresponds in part to replacing the
relative translational motion (R and the two orbital
w,;’s) by a straight line trajectory. The usual first-order
distorted wave approximation corresponds to expanding
the exponential in (6.5) and retaining only the first
two terms, while second-order distorted wave theory
corresponds to retaining the next term. In the some-
times termed ‘‘semiclassical approximation,”’® the
relative translational motion (R and the two orbital
w;'s) 1s treated classically (and sometimes in the rec-
tilinear path approximation); the other motions are
treated in terms of the ¢o+¢1 or ¢o+¢1+¢s, approxi-
mations, or sometimes by numerical solution of the
coupled equations for the wavefunctions of these re-
maining #— 2 degrees of freedom.

The final equations of the present paper should also
apply to chemical reactions, with certain restrictions
dealing with the change of phase in the radial contribu-
tion in a partial wave when the system is reflected from
the incoming into the outgoing channel. This problem
will be treated subsequently.

While the principal equations refer to the S matrix,
the method requires relatively little modification, as
mentioned earlier, to treat differential and total
inelastic cross sections directly. In (4.16) the boundary
condition is modified so that the incident ¢(g, &) is
of the form

,
k, r.+2r 3 naw,,
=3

where the summation is over the r—3 internal co-
ordinates of the collision partners and where o defines
the incident direction. Equations (4.19)-(4.21) for the
flux conservation are modified to include the new
geometry.® Finally, in the treatment of (4.25)-(4.28)
and (6.1)-(6.7) leading to the S and T matrices, the
wavefunction ¥,z is replaced by the expression for
the full (incident plane wave plus scattered wave)
wavefunction in terms of scattering amplitudes. The
analog of (6.3) based on an integration of the new
(6.2)" by parts is then applied to calculate the scatter-
ing amplitude. The formal details are given in a sub-
sequent communication.
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The optical hydrogen vibrations in lanthanum dihydride and lanthanum trihydride have been investigated
by the energy-gain scattering of cold neutrons. The approximate frequency distributions, derived from
the observed time-of-flight spectra, show peaks which correlate well with the known crystal structures.
In fcc lanthanum trihydride the optical bands are peaked at 940 and 515 ¢cm™ corresponding to hydrogen
vibrating at tetrahedral and octahedral sites, respectively, and in lanthanum dihydride there is a single
peak at 825 cm™ due to tetrahedral hydrogen. Other weak peaks have been observed and are thought
to be due to vibrations of hydrogen atoms dissolved in the metal phase; this phase was identified by x rays
in both samples. A large width of the optical levels, a common feature in all metallic hydrides, was also

observed for LaH,; and LaH;.

INTRODUCTION

The inelastic scattering of neutrons has become a
useful technique for studying atomic and molecular
motions in liquids and solids. In the scattering process,
lattice vibrational quanta (phonons) are exchanged
between the sample and the incident neutrons and by
analyzing the scattered neutron beam one obtains a
spectrum from which an approximate frequency dis-
tribution for the scattering sample can be derived. The
technique is particularly suited to the study of hydro-
gen-containing compounds, because of the large inco-
herent scattering cross section of hydrogen.

The vibrational properties of a number of hydrides
have in the past been studied by inelastic neutron
scattering methods.””® The early work was mostly
directed towards the study of metallic hydrides where
infrared spectroscopy is useless because of the inter-
actions between the infrared radiation and the conduc-

tion electrons. The present study deals with such
hydrides. We have investigated the vibration spectra
of LaH, and LaH; by the inelastic scattering of cold
neutrons. In this type of experiment phonons are trans-
ferred from the sample to the incident neutrons. The
time-of-flight technique is used to obtain an energy
analysis of the scattered neutrons. The probability that
a phonon exists is given by the Boltzmann population
term, and the cross section for the scattering process
(which is a nieasure of the probability of observation of
a vibrational band) is therefore proportional to the
Boltzmann factor. Peaks in the derived neutron spectra
are correlated with the vibrational motions of hydrogens
in their lattice sites.

EXPERIMENTAL

Lanthanum trihydride was prepared as follows:
Lanthanum metal, obtained from Ronson Metal Cor-



