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j5 WKB-t\-PC method is used to calculate the WRV~ function and S-matrix for thesc.collisions directly, 
instead of applying WKB to the customary infinite set of coupled differential cquntions. Action-nnglc 
variables and csnct or approximate classical trajectories arc used. 

1. OUTLINE OF PROCEDURE 

The WKB treatment of the time-independent Schrodinger equation for inelastic collisions has usually 
first involved writing the latter in the form of an infinite set of coupled differential equations. A WICB 
method is then applied to each of the latter, normally with added approximations [l]. 

In the present papertt, we apply instead the WKB method directly to the original SchrGdinger equa- 
tion itself, obtaining a single wave function consisting of an ingoing and an outgoing term. The phase is 
found to satisfy the Hamilton-Jacobi equation, while the amplitude satisfies an equation for the conser- 
vation of.probability flux. Th: former? a nonlinear partial differential equation, is solved by the method 
of characteristics [3]. These characteristics are readily shown to be the trajectories associated with 
the classical equations of motion. The equation for the amplitude is solvable with GauSS’ theorem [4]it3 

When the boundary conditions are such that the wave function describes a partial wave, the latter casl 
be introduced into an integral expression to yield the S-matrix elements [2]. When instead the wave 
function describes an incoming plane wave plus scattered wave one obtains [4] an integral expression 
for the differential cross section for scattering into some internal state and solid angle [2] du&dR. 
These equations are not restricted to inelastic scattering. Under a certain restriction regarding the 
motion along the reaction coordinate they apply to chemical reactions also. Further work on this restric 
tion is planned. 

In the case of pure elastic scattering the integral expression for the S-matrix elements can be shown 
[2] to reduce to the standard one, 15~)~ exp ZiQ, for elastic scattering, where 61 is the usual WKB phase 
shift. In other cases the integral can be evaluated by asymptotic methods [2]. Indeed, since an asymp- 
totic (i.e., short wavelength) method (the WKB method) was used initially, consistency suggests that 
only the leading term, or terms, in an asymptotic expression for the final integral will be meaningful. 

With integrals of the type obtained in the present paper, the principal contributions come from the 
saddle-points of the exponent of the integrand (regarded as a complex variable) and, in some cases, 
from the boundary points. Most commonly, the former contribution dominates, except1 perhaps for the 
elastically scattered term. An example where the boundary point contribution dominates. however, is 
the case of pure elastic scattering. Here, there are no saddle-points. and the integral can either be 
evaluated exactly or, in an asymptotic way, from its boundary-point contributions [2]. 

Fig. 1 summarizes the present procedure [2]. 

$ Acknowledgement 1s made to the National Science Foundation and to the donors of the Petroleum Research Fund. 
administered by the American Chemical Society, for their support of this research. This paper w:ts presented 
at the Conference on Potential Eners Surfaces, University of California, Santa Cruz, Cnlifornin (19703, and is 
also available as an IBM report (proceedings of the above Conferencci on request by writing Librarian, IR&l 
Research .Laborntorv, San Jose. California 93114. USA. 

$$ This paper summar)zes and elaborates on an article scheduled to appear in January 1971 (9). 
SSt For an application of the latter to wave functions and eigenvalucs of a three-body problem see ref.(S)_ 
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Inasmuch as a detailed description of the method will be published elsewhere [2] only a brief descrip- 
tion of the equations will be given in the present letter. The present approach can be compared.with 
others: Keller [4] has treated the application of WKB methods, to nonseparable problems Y thus making 
a major step forward - though did not treat inelastic transitions. Miller has computed matrix elements 
of the Feynmazm propagator for inelastic collisions, in various representations [6]. Both of these papers 
are highly illuminating and related to the present study. and helped expedite our own work in this field. 

2. REMARKS ON ACTION-ANGLE VARIABLES 

The present approach continues our earlier (classical) work in the application of action-angle vari- 
ables (J. II’) to molecular collisions [7]. ‘These variables have several convenient features: the action 
variables bear a simple (WKB) relation to quantum numbers. the initial angle variables are random in 
the interval [O.l ], end the use of these variables removes singularities in the unperturbed WKB wave 
function. The usual one-dimensional WKB wave function in conventional Cartesian coordinates q and 
momenta p is p-1’4 exp[(i/@) J~dq]. The singularity at p = 0 implies s large probability ampIitude in 
that neighborhood. It reflects the long time spent by the classical particle at the classical turning points 
of the motion (i.e., at p = 0). There are no turning.points for the angle variable zt* in an action-angle 
description of the unperturbed motion. i.e.,.no points-where dzu,!dt = 0. Thus, the-unperturbed wave 
function has no singularities *.vhen expressed in terms of these;variables. Quantum mechanics. in action- 
angle variables dates back to 1926-1927 and was first introduced by Dirac and slightlyllater by -Jordan 
[a]$. Unless particular care is taken only results of WKB accurscy are obtained, but this accuracy is 
all that is desired in the present procedure. -. 

Quantum mechanics in action-angle variables, when used within the above (WKB).approximation, has 
a considerable simplicity for separable systems. For ex’ample, if a_classical hamiltonian is Ho(J), 
where J is the action variable? a quantum hamiltonian yieiding the usual WKB expressions for the eigen- 
values is HO(.f+ hS), where 6 = 4 for a harmonic oscillator. 0 for a plane rotator pra particle in a box, _.- ._ -_ 
Z For a cnrcful nnal.&is 6f the harmonic oscillntor case .wc ref. (9~. 

_- 
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& ior a principal rotational or orbital angular momentum. 0 for their z-components. etc. J is the oper- 
ator (E/i) F,‘bi in the angle variable representation. For T degrees ol freedom one has 

ffo(J1. . . . .J,-) = E (classical) ; (1) 
._ ..:. 

iZ()(Jl +A$,... , J,-+ht&)@’ = EGO (quantum) , (2) 

where Ji is (k’i) ?/i~ui. The solution of the Schradinger equation (2) has a corresponding simplicity; the 
normalized solution is 

i3i 

where III denotes (tizl, . . . . III,.) and where the ri~i ‘s are integers. The absence of a coordinate-dependent 
pre-exponential factor reflects the constancy of the drr;+:di in the unperturbed classical case. (riSk 
= ;Ho.%Tk = COnStant, the dot denoting d;dJ). 

Examples of HO in eq. (2) are ( J+ $JI)u. J2/8a21 and ( J+ 9J1)2. 8;;2I for the harmonic oscillator. the 
plane diatomic rotor and the spatial rotor respectively. Their cigenvalues. obtained from eqs. (2) and 
(3), are ()H + i)hV, ?lZ2Ji2/21 and (111 + 2) fi j 21, respectively. and are the well-known WKB eigenvalues. 12 6, 

3. THE COLLISION PROBLEM 

Turning now to the collision problem. there is an additional variable. the radial coordinate R. which 
does not execute a periodic motion in the unperturbed problem. One could still define an “angle” variable 
WR related to R. one having some of the properties of action-angle variables. e.g.. having ic.li f 0 and 
thus avoiding the singularity in the wave function at the classical turning point of the R-motion. Howc?ver 
for the present paper at least we simply use R itself. Instead of cqs. (1) and (2) we can write 

ffo(J.bR, R) = E (classical) ; (4) 

H,,(J+h6.pR,R~~~ = Sa$ (quantum) . (5) 

where J denotes (Jl . . . . ,J,-),J+Jl6 denotes (Jl +JC51,... . J,- + Id,.). and the operator PR is (fi i)? iR in tl 
coordinate representation. The unperturbed wave function *ti”. denoted now by +ilE. is 

*. 

wherefrjlg(R) is the radial wave function, one which may depend on some or all of the rrrJ.,‘s. as well as 
0nE. 

The perturbed problem has a classical hamiltonian If. 

H(J,PR,~L~*R)=H~(J~PR.R) + Hl( J.PR,t~‘,R) , (7) 

where Hi is the perturbation. The Schrodinger equation now reads 

n( J + 14 PR, iu,R)+=B$ -8 (8) 

The asymptotic (i.e., short wavelength, WKB) approsimation is made in the usual way by introducing an 
expansion for 9 into (8) [lo], 

q= exp[(i,lti)(?j+fq+JZ2Z2+... )I . (91 
- - 

applying the operator H, equating equal powers of Ji, so solving for (I). 01.32. . . . . and finally retaining 
only the first two terms in the ei$ansion. In this way. one finds [2] that 3 is given by 



.. VoIume 7, number 5 CHEMICAL PHYSICS LETTE+ 
_ ‘::. ’ . ..l~ December 1970 

. . . -: 

where. a satisfies the classical Hamilton-Jacobi equation,, ““::.. ., ’ I --: ‘, .:- :: .. : . . 
: : : :-,:- __.- :,,: :.,. ..- : ,.., . . 

H(&o,%u,h~/~R,zu,R) = E . .- (11) _: . :_ (-‘ ,_ -. 

$1 is found to be a pure imaginary. Writing exp i@i as A, the new exprekidn for ‘P (neglecting $2 and 
higher terms. in the usual WKB manner) is 

The pre-exponential factor A is found to satisfy an equation for conservation of probability flux (cf. also 
Keller [4]). 

V(A2q, =0 , (13) 

where q is a vector with velocity components along the I’+ 1 coordinate axes and where tr is also ex- 
pressed in terms. of components along those coordinates. 

4. S-MATRIX 

The S-matrix elements can be defined in terms of the coefficients of outgoing scattered waves, at 
large R [l]: 

(14) 

where 1, and Znz Ire incident and final orbital angular momenta and represent one of the ni’s and n1i.S 
respectively (e.g.,l,,= nl,Z,,, --I ml)_ 

When an incident wave of the form of the first term in (14) is used for an ingoing wave, the outgoing 
wave can be determined by solving eqs.(ll) and (13) for (D and A. We found, in this way [2], that 

J/(+) .vR 
PIE 

0 . where / &r~:%ci 1 IS an y x Y determinant and where v* is 

(15) 

(@ * is ~7-2~ C I’i6iti + $i(Z, + 1)ti _) 
i 

-In-eq. (16) w!, Jni ,RO and pi are initial values of We, 4 ; R andPR on the trajectory; the integrals are 
along the ch&actermtics. The equations of the characteristics are t$e solutions of Hamilton’s equations 
of motion, - 

A schematic example of the characteristics and of the behavior of rp as a function of a-uniformized 
R-variable WR is given in figs. 2 and 3, respectively$. _ : ,. .._ 

t Gnuss! theorem was applied in ref. !2] Lo the heav solid-line enclosure in fig. 2.‘ to solve e&-(13) and obtain eq. (15). 
The ‘C’R in fig. 3. defiEd [.?zj in tCrI%i of an integral along the cla!+cal‘trajectory. I’. -’ . 

‘L’R =: (v%& / PRdR . 
,_ :, . _: 

Ro 
by analogy with the usual angle variables. is used only for convenience of illustration’ of fig. 3.’ The’ decrease of ~7 
by an amount ii/Z. indicated in fig. 3. reflects a typical change in bhase at the turning-point of the ,radial motion. 
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Fig. 2. Plot of characteristics describing collision using 
(w.R) coordinates. 

Fig. 3. Plot of phase $I versus angle variables (zc.w~). 

One can extract an expression for the S-matrix elements from (14) and (15). To this end, one may 
use the following identity, proven by integration by parts (Green’s theorem) [12]: 

where p is the reduced mass of the collision partners. Introduction of (14) into (18) leads to 

and introduction of (15) into (19) leads to 
. 

s mn = lim .f-.‘._f /?~;i~~ql-1’2[(~ +v,,,)/2(v,,Ir)1’2](expiA) fvl dWi . 
R-03 wl=o 

(201 

where the velocity V is PR/c( and vjJ, is k&/p. A is 

R 
A= 2x iti jt(iii-IZi)dlcj+ J kdR - k,,RO -kmR+2rE(JZi 

i 
-mi)lVi + $;T(l!fi + lm + I) , 

IUi RO 
where iti is a continuously varying quantity, defined in terms of Ji by 

(21) 

(ifi + 6i)h = Ji- (22, 

So defined, Ri equals xi initially. 
In (21) k is defined as PR/ITzuI~ so has both a sign and a magnitude; kn is the magnitude of &/!i and, 

since pi is negative, k, equals - pi/E. Initially, k equals -kn. As in (16), the integration path in (21) 
is along the characteristics of the motion. 

5. SOME APPLICATIONS 

In the case of a purely elastic collisional system the integral in (20) is readily evaluated and this S,,,J~ 
can be shown’to reduce to the standard WKB expression for elastic collisions [2]. In the inelastic case 
(xi -?,ni), an asymptotic method may be used to evaluate the integral in (20). The latter’s integrand has 
saddle-points, (zu’ , ;.. , IV;-), which occur at values of (rol, . . . 
where, according+0 (21)) 

, II+) where aAia!cli vanishes, and hence 

fii-= n2i (at a saddle-point) . (23) 
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At this point. too. the velocity L’ equals l)tll (i.e., & &‘/L) i by energy conservation.. U&ally there are 
several saddle-points for a given final state (ml,... , m,) a‘nd given initial .sta’te {?z 1, . . . .n&j, When the 
saddle-points are not too close to each othkr, application of the method of steepest descents to (20) 
yields [2] 

where A’. the value of the A in (20) at a saddle-point L~J’. is found to be __ _,_- 

the integration path once again being along the characteristic- The summation over 10’ in (25) is over all 
saddle-points satisfying (23), i.e.. contributing to the transition tzi -- jlli. 

When the transition is classically accessible, the saddle-point (mi. . . . ,lu;-) lies on the real axis of 
each zri variable (regarding each zci variable as .a complex variable). When the transition is classically 
inaccessible, IU’ has an imaginary component [2,6]. The S-matrix element is found to depend exponential- 
ly on the area _d enclosed between an ,‘i versus IC plot and the straight line % = ?n, with a closely related 
result for the case where these two plots do not intersect 121. The latter case.is the classically inaccessi- 
ble one. In this zase a simple geometric construction was possible and permitted the definition of a re- 
lated area. d. but now S,l,,t depends exponentially on isf. 

When two saddle-points appropriate to 12 - 1~ are near each other. cognizance’must be taken of their 
proximity in evaluating (20) by the steepest-descents method. and (24) becomes inadequate. For the case 
of a single !f’i. this proximity when it occurs. is fairly readily treated [2.6]. 

Detailed equations for S,,,,l may be found in ref. [2]. eqs(7.9). (7.11). (7.13). (7.14) and (7.27). 

6. CANONICAL PERTURBATION THEORY 

To relate eqs. (20) and (24) to common appioximations for transition”probabilities in the literature a 
canonical perturbation theory was also formulated in ref. [2] for the phase UY, yielding 

where ‘30 is the solution for the unperturbed Hamilton-Jacobi equation. and where the other terms are 
defined in appendix I. Various terms in eq_ (26) have been tested in part in recent publications from OUT 

laboratory. by numerically comparing exact and approximate classical mechanical results for various 
molecular collisions [?I. An example is given by the plots in ref. [13]. 

Eq. (26) can also be used to obtain information on the position of the saddle-points in several-dimen- 
sional systems and on the chance of their being close to each other [2]. In conjunction with eq. (20) 
eq. (26) provides insight into the topic of collisional selection rules and into the usefulness of symmetry 
arguments in reducing the number of saddle-points about which detailed separate calculations need be 
made in evaluating (20) or (24) 121. 

7. EXTENSIONS AND CONCLUDING REMARKS 

To obtain the S-matrix elements a partial wave was employed for +iT$ as in eq. (15). Had an incident 
plane wave been used instead. one would have obtained the differential crq%s section for the transition. 
instead of the S-matrix elements. The procedure of so obtaining duaP cdn is outlined in ref. [2], &d the 
detailed equations will appear in a subsequent paper. 

The identity in eq. (18) is applicable not only to inelastic collisions but also tolreactike ones as well 
[2]. In this case HO and /.f will vary with the chemical constitution in the Products channel. Apart from a 
restriction regarding the nature of the motion along the radial coordinate ‘in each ch&n&, the subse- I 

quent equations are also applicable to reactions, but further investigation into the restriction is needed. 
A variety of approximations for treating collisions in the literature (e.g., sudden, elkonal. _and others) 
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can be diicussed.[2] in terms of eq. (20) fors,,,, , 
.eq.(26).-’ : 

using the canonical perturbation theory expressed by 

There is considerable scope for applying the present WKB formalism to a wide variety of differential 
cross S,SCtiOnS which have appeared in many phenomena and have been admirably summarized recently 
[14]. .The now-extended WXB formalism has a broad potentiality for applying various asymptotic methods 

.to the integral eXPreSSiOnS fOrSfiln or du&dCZ. The richness of the complex variable field offers much 
promise in this connection. 

APPENDIX I 

Definifion of h?YIIt.s in eq. (26). 
In eq. (26) ‘30 is the solution of the unperturbed Hamilton-Jacobi equation. 

H(P(O) .q) =E . 

where fi(-O) is i@O(q 2 . o)/‘r’q i. the (Y being the constants of the motion: cqhr for N 1 1 is 

W! 

(28) 

where iJi(r) satisfies the unperturbed Hamilton equation of motion 

;r. = 
.I 

“Ho ‘Q,(6) 
’ 2 ’ 

&O) = ?Ho,‘?<7i , 

The ci(r) in (27) must be chosen so as to equal qi at 7 = I; the first fewK$s are 

K1(q.o) = - Q(4. P(O)) , I 

K2(q,o) = IUI,Hl) + (1/2!){cr?I.{c(,l.IIO]} . 

cm 

(30) 

(31) 

where 

The q’s in these equations denote all the ~1;s and the R. The A in eq. (20) is related to the phase ~9 by 
the equation 

Y 
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