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A WKB-type method is used to calculate the wave function and S-matrix for these-collisions directly,
_ instead of applying WKB to the customary infinite set of coupled differential equations. Action-angle
variables and exact or approximate classieal trajectories are used.

1. OUTLINE OF PROCEDURE

The WKB treatment of the time-independent Schridinger equation for inelastic collisions has usually
first involved writing the latter in the form of an infinite set of coupled differential equations. A WKB
method is then applied to each of the latter, normally with added approximations [1].

In the present paperli, we apply instead the WKB method directly to the original Schriadinger equa-
tion itself, obtaining a single wave function consisting of an ingoing and an outgoing term. The phase is
found to satisfy the Hamilton-Jacobi equation, while the amplitude satisfies an eguation for the conser-

vation of -probability flux. The former, a nonlinear partial differential equation, is solved by the method
of characteristics [3]. These characteristics are readily shown to be the trajectories associated with
the classical equations of motion. The equation for the amplitude is solvable with Gauss' theorem [4]11}

When the boundary conditions are such that the wave function describes a partial wave, the latter can
be introduced into an integral expression to yield the S-matrix elements [2]. When instead the wave
function describes an incoming plane wave plus scattered wave one obtains [4] an integral expression
for the differential cross section for scattering into some internal state and solid angle [2] dogg/df.
These equations are not restricted to inelastic scattering. Under a certain restriction regarding the
motion along the reaction coordinate they apply to chemical reactions also. Further work on this restric
tion is planned.

In the case of pure elastic scattering the integral expression for the S-matrix elements can be shown
[2] to reduce to the standard one, 6,y,; exp 216j, for elastic scattering, where §; is the usual WKB phase
shift. In other cases the integral can be evaluated by asymptotic methods [2]. Indeed, since an asymp-
totic {i.e., short wavelength) method (the WKB method) was used initially, consistency suggests that
only the leading term, or terms, in an asymptotic expression for the final integral will be meaningful.

With integrals of the type obtained in the present paper, the principal contributions come from the
saddle-points of the exponent of the integrand (regarded as a complex variable) and, in some cases,
from the boundary points. Most commonly, the former contribution dominates, excepf;perhaps for the
elastically scattered term. An example where the boundary point contribution dominates, however, is
the case of pure elastic scattering. Here, there are no saddle-points, and the integral can either be
evaluated exactly or, in an asymptotic way, from its boundary-point contributions [2].

Fig. 1 summarizes the present procedure [2].

. 1 Acknowledgement is made to the National Science Foundation and to the donors of the Petroleum Research Fund,
administered by the American Chemical Society, for their support of this research. This paper was presented
at the Conference on Potential Energy Surfaces, University of California, Santa Cruz, California (1970), and is
also available as an IBM report (proceedings of the above Conferencc) on request by writing lel arian, IBM
Research Laboratory, San José, California 95114, USA.

11 This paper summarizes and elaborates on an article scheduled to appear in January 1971 [2].
131 For an application of the latter to wave functions and eigenvalues of a three-body problem see ref.[3].
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Fig. 1. Flow sheet of the present procedure.

Inasmuch as a detailed description of the method will be published elsewhere [2] only a brief descrip-
tion of the equations will be given in the present letter. The present approach can be compared with
others: Keller [4] has treated the application of WKB methods to nonseparable problems - thus making
a major step forward - though did not treat inelastic transitions. Miller has computed matrix elements
of the Feynmann propagator for inelastic collisions, in various representations [6]. Both of these papers
are highly illuminating and related to the present study. and helped expedite our own work in this field.

2. REMARKS ON ACTION-ANGLE VARIABLES

The present approach continues our earlier (classical) work in the application of action-angle vari-
ables (7.} to molecular collisions [7]. These variables have several convenient features: the action
variables bear a simple (WKB) relation to quantum numbers, the initial angle variables are random in
the interval [0,1], and the use of these variables removes singularities.in the unperturbed WKB wave
function. The usual one dimensional WKB wave function in conventional cartesian coordinates ¢ and
momenta p is p~1* exp[(i/#) [pdq). The singularity at p = 0 implies a large probability amplitude in
that neighborhood. It reflects the long time spent by the classical partlcle at the classical turning points
of the motion (i.e., at # = 0). There are no turning. points for the angle variable  in an action-angle
description of the unperturbed motion. i.e.,.no points-where dw/df = 0. Thus, the unperturbed wave
function has no singularities when expressed in terms of these:variables. Quantum mechanics-in action-
angle variables dates back to 1926-1927 and was first introduced by Dirac and slightly later by Jordan
[8]f. Unless particular care is taken only results of WKB accuracy are obtained, but this accuracy is
all that is desired in the present procedure.

Quantum mechanics in action-angle variables, when used w1thm the above (WKB) approximation, has
a considerable simplicity for separable systems. For example, if a_classical hamiltonian is Hg(J),
where o is the action variable, a quantum hamiltonian yieliding the usual WKB expressions for the eigen-
values is Ho(J +#b), where & = 3 for a harmomc oscxllator. 0 for a plane rotator or'a particle in a box,

¥ For a careful annlysis of the harmonic oscillator case see rel’. [9].
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1 for a principal rotational or orbital angular momentum. 0 for their z-components. etc. J is the oper-
ator (%/i) ¢/¢w in the angle variable representation. For » degrees of freedom one has

HoW1.--. «Jy) =E (classical) ; (1)
HolJy +hoy,... Iy +08,) 90 = ELO (quantum) . (2

where J; is (f7'i) ¢/¢w;. The solution of the Schridinger equation (2) has a corresponding simplicity; the
normalized solution is

L4 .
;p?n = eXP(Z wi Lgl my, "'k) . (3

where m denotes (my,... .ny,.) and where the m;'s are integers. The absence of a coordinate-dependent
pre- exponentlal factor reflects the constancy of the du, "d/ in the unperturbed classical case. (i I
= ¢Hp/eJp = constant, the dot denotmg d, df).

Examples of Hy in eq. (2) are (J+ v J2/8.. 27 and (J+ )2 8727 for the harmonic oscillator, the
plane diatomic rotor and the spatial rotor, respectively. Their eigenvalues. obtained from egs. (2) and
(3), are (m+ kv, m 252 /21 and (i + -,)27’ /21, respectively. and are the well-known WKB eigenvalues.

3. THE COLLISION PROBLEM

Turning now to the collision problem. there is an additional variable. the radial coordinate R. which
does not execute a periodic motion in the unperturbed problem. Cne could still define an "angle" variabl
wp related to R. one having some of the properties of action-angle variables. e.g.. having /tg = 0 and
thus avoiding the singularity in the wave function at the classical turning point of the R-motion. However
for the present paper at least we simply use R itself. Instead of egs. (1) and (2) we can write

Ho(J.PR ,R) =E (classical) ; (4)

HO(J+II 5. pR,R)v,l/O = Ey0 {quantum) , (5)
where J denotes (J1.... ,Jy-),J+ 115 denotes (J1 +1061,... . J}-+/t5,-). and the operator ppis (f )¢ 7R in ti
coordinate representation. The unperturbed wave function Y. denoted now by l"/ng' is

‘png = Jing(R) exp k%:;I 2aimp iy . (6)

where /5, p(R) is the radial wave function, one which may depend on some or all of the m;,’s. as well as
onk. ‘
The perturbed problem has a classical hamiltonian /.

H(J,pp,,R)= Ho(d.bp R) + H(d.pp, i, R) , (D
w_here Hj is the perturbation. The Schridinger equation now reads
H(J+ 15, pg, w,RY Y = EY . @ 8)

The asymptotic (i.e., short wavelength, WKB) approximation is made in the usual way by introducing an
expansion for ¥ into (8) [10],

V= exp [(i/BNB+ KDy + H25g +... )] . (9
applymg the operator H, equating equal powers of /[, so solving for P. P .09. ..., and finally retaining
only the first two terms in the ex1nnsxon In this way. one finds [2] that @ is given by

7

= -2 kZ_‘,l wy, Sk, ’ (10)
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where ¢ satisfies the classical Hamilton—JaeoBl equa_tibh_,r e S R
H(aw,’aw,ato/ER w R) =E. - - - ) ) '. ‘ _ 1)

o1 is found to be a pure imaginary. Writing exp 1“’1 as A, the new expressmn tor lp (neglectmg wz and
higher terms. in the usual WKB manner) is - . .
z . - i
=A i(0-25 2 10,8, w) /il . L T - . . (12)
W exp [i( I = £0p 1 _

The pre-exponential factor A is found to satisfy an equation for conservation of probablhty flux (cf also
Keller [4]).

v-(4%q) = _ S - ' (13)

where q is a vector with velocity components along the +1 coordmate axes and where V is also ex-
pressed in terms of components along those coordinates.

4. S-MATRIX

The S-matrix elements can be defined in terms of the coefficients of outgoing scattered waves, at
large R [1]:

-17 -1/2.0 ~-1/2 0
E’J(,:g ( » / o exp[—1k,,R+ —mln] - E Smn n ‘["mw exp[lk R znlm]) . _ (14)

-

where I,; and I;;; are incident and final orbital a.ngular momenta and represent one of the » {'s and m;'s
respectively (e.g.,l;, = ny,lhy = niy).

When an incident wave of the form of the first term in (14) is used for an ingoing wave, the outgoing
wave can be determined by solving eqs.(11) and (13) for ¢ and A. We found, in this way [2], that

+) -1 -1/2 0 . -1/ - . :
(nE R™ (o Wae el kR + 2rily] - v ZI?“';'/E“‘]QI explw*/ﬁ]) ' (15)
where j&u;, cu]0| is an 7 x 7 determinant and where ¢*
- ow;
Z)U Iy dwy v dy ] [ deR+p Rq + dn(ly+1)F - ZrZ}w ;651 . (16)
Ry

l

(0* is 0-27 27 w;5;5 + Lal(l,+ 1)k )
?

'In eq. (16) #9, J,,. ,Rg and p?z are initial values of @, J;, R and pp on the trajectory; the integrals are
along the characterlstxcs The equations of the characterlstlcs are the solutions of Hamilton's equations
of motion,

w; = eH/ed; , R=oH/epy . Jdj=-eH/dw;, pp=-cH/R . . : (17
z R 7 z R N .

A schematic example of the characteristics and of the behavior of v as a functlon of a uniformized
R-variable wg is given in figs. 2 and 8 respectwelyt L. . T

I Gauss!’ theorem was applied in ref. {2] lo the heavy solid-line enclosure in fig. 2. to solve eq (13) and obtam eq. (15).
The wp in fig. 3. deﬁﬁed {2] in terms of an xntegral along the classical- trajectory -

wg = (2/383) f ppdR .

Ry
by analogy with the usual angle variables. is used only for convenience of illustration of fxg 3. The decrease of v
by an amount 7/2. indicated in fig. 3, reflects a typical change in phase at the turning-point of the. radial motion.
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" Fig. 2. Plot of characteristics describing collision using Fig. 3. Plot of phase ¢ versus angle variables («.wp).
(«c ,R) coordinates.

characteristics

One can extract an expression for the S-matrix elements from (14) and (15). To this end, one may
use the following identity, proven by integration by parts (Green's theorem) {12]:

Sod W - HOW deRndw - (2/2m) i [..[ Woneulaser) - uShey’ o erTax; , (18)
w,R w 4
where U is the reduced mass of the collision partners. Introduction of (14) into {18) leads to
Smin = Oy - (/20) lim. R2 .. f WO aeyller)...ulkewl . sar)] aw; . (19)
ll’

aﬂd introduction of (15) into (19) leads to

1
. , -1/2 .
Smn = lim ... [ lewg2@dl ™2 [0 4 0,)/2wme) ? expia) TT dw; . (20)
R~ w1=0 i=1
where the velocity v is pp/u1 and v,, is k), it/1L. A is
AT R
A=27 'El fO (7; -n)dw;+ f kdR - ky Ry - kR + 27 Z‘l (i -mpw; + 55(ln + Ly + 1), (21)
=1 4 R ]
i 0

where 72; is a continuously varying quantity, defined in terms of J; by

(; +8)h = J;. (22)

So defined, 7; equals n; initially.
In (21) k is defined as pp/ Fand so has both a sign and a magnitude; %k is the magnitude ofp /I and,

since p is negative, %, equals - IJR /K. Initially, % equals -ky. As in (16), the integration path in (21)
is along the characteristics of the motion.

5. SOME APPLICATIONS

In the case of a purely elastic collisional system the integral in (20) is readily evaluated and this S,
can be shown to reduce to the standard WKB expression for elastic collisions [2]. In the inelastic case
(nj —m;), an asymptotic method may be used to evaluate the integral in (20).. The latter's integrand has
saddle-points, () ,...,;.), which occur at values of (wi,... ,y) where 8A/3w; vanishes, and hence
‘where, accordmglto (21),

Tmy=m; (at a saddle-point) . (23)
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At this point. too. the velocity ¢ equals ,, (i.e., &)y h‘, p.) by energy conservatmn. Usually there are
several saddle-points for a given final state (m1,... ,m,) and given initial state (nl, .-~ 7,.).” When the
saddle-points are not too close to each other, application of the method of steepest descents to (20)
yields [2] -

SV 2} u-zw/rm,rujl expiA' . L | (24)

Smn = 23 [pwi/@ w; f
wr
where A'. the value of the A in (20) at a saddle-point «'', is found to be
. . B ' . -
A = —27_2] widﬁi—j Rdk + gally +1y + 1) - T : (25j
L on by -

the integration path once again being along the characteristic. The summation over w' in (25) is over all
saddle-points satisfying (23), i.e.. contributing to the transition n; —- m;.

When the transition is classically accessible, the saddle-point (w].... ,w;.) lies on the real axis of
each - variable (regarding each «'; variable as a complex variable).” When the transition is classically
inaccessible, ' has an imaginary component [2,6]. The S-matrix element is found to depend exponential-
ly on the area o enclosed between an # versus w plot and the straight line 7 = m, with a closely related
vesult for the case where these two plots do not intersect |2|. The latter case.is the classically inaccessi-
ble one. In this case a simple geometric construction was possible and permitted the definition of a re-
lated area. ¢ . but now S,);,, depends exponentially on isf.

When two saddle-points appropriate to 7 — m are near each other. cognizance ‘must be taken of their
proximity in evaluating (20) by the steepest-descents method. and (24) becomes inadeqguate. For the case
of a single ;. this proximity when it occurs. is fairly readily treated [2.6].

Detailed eguations for Sj,,, may be found in ref. [2], eqs.(7.9). (7.11), (7.13), {7.14) and (7.27).

6. CANONICAL PERTURBATION THEORY

To relate eqs. (20) and (24) to common approximations for transition"probabilities in the literature a

canonical perturbation theory was also formulated in ref. {2] for the phase ¢. yielding
o0

olg.a) = VZ;') unlg.a) , : : (26)

where v is the solution for the unperturbed Hamilton-Jacobi equation. and where the other terms are
defined in appendix I. Various terms in eq. (26) have been tested in part in recent publications from our
laboratory. by numerically comparing exact and approximate classical mechanical results for various
molecular collisions [7]. An example is given by the plots in ref. [13].

Eq. {26) can also be used to obtain information on the position of the saddle-points in several-dimen-
sional systems and on the chance of their being close to each other [2]. In conjunction with eq. (20)
eq. (26) provides insight into the topic of collisional selection rules and into the usefulness of symmetry
arguments in reducing the number of saddle-points about which detailed separate calculations need be
made in evaluating (20) or (24) {2].

1. EXTENSIONS AND CONCLUDING REMARKS

To obtain the S-matrix elements a partial wave was employed for w,fE. as in eq. (15). Had an incident
plane wave been used instead. one would have obtained the differential cross section for the transition.
instead of the S-matrix elements. The procedure of so obtaining do,g7 ‘dQ is outlined in ref. [2], and the
detailed equations will appear in a subsequent paper.

The identity in eq. (18) is applicable not only to inelastic collxsmns but also to reactlve ones as well
[2]- In this case H( and i will vary with the chemical constitution in the products chz_mn.el. Apart from a
restriction regarding the nature of the motion along the radial coordinate in each channel, the subse-
quent equations are also applicable to reactions, but further investigation into the restriction is needed.

A variety of approximations for treating collisions in the literature (e. g , sudden, eikonal, and others)
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can be dlscussed [2] in terms of eq. (20) for S, ,» using the canonical perturbation theory expressed by
- eq. (26). -
There is consxderable scope for applying the present WKB formalism to a wide variety of differential
cross sections which have appeared in many phenomena and have been admirably summarized recently
[14]. . The now-extended WKB formalism has a broad potentiality for applying various asymptotic methods

‘to the mtegral expressions for Sy;» or dcra‘;/dﬁ The richness of the complex variable field offers much
promise in this connection.

APPENDIX I

Definilion of levms in eq. (26).
In eq. (26) ¢ is the solution of the unperturbed Hamiiton-Jacobi equation,

(0}

H(p.q) =E | (27)

0).. . . .
where I)(z- ) is 2wplg.a)/2g;. the a being the constants of the motion: vy for N> 1 is

onlg.a) = - j!KN(q"'(T),a)d.- . (28)
where @;(7) satisfi;: the unperturbed Hamilton equation of motion

7 = 3”0/31’(,'0) . A0 ?Ho eq; (29)
The §;(7) in (27) must be chosen so as to equal ¢; at 7=/; the first few KN’s are

Ki(q. = - Hy(a, /%), ' (30)

Kolg,0) ={w1, M1} + (172D {e1.{01. Ho}} . (31)
where

{x,v}= E [EX/eq;Ne v ep (0)) - (ex/e (0))((}’ q;)) - (32)

i=1

The ¢'s in these equations denote all the wi's and the R. The A in eq. (20) is related to the phase v by
the equation

v
A=(0,B)-2r 03 (m; +8;)wwj -k R+ sa(ly, +l+1) . (33)
i=1
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