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Natural collision coordinates and a zeroth-order vibrational-adiabatic approximation are used to treat
linear reactive collisions. Nonadiabatic effects on barrier transmission and on vibrational state of products
are calculated. The present results are classical and are compared with exact classical numerical results
for the H-+Hj reaction in the range 7-20 kcal/mol of initial relative translational energy. The agreement is
encouraging and the results support the concepts introduced earlier of statistical adiabaticity and of non-
adiabatic leak. At low energies the reaction is adiabatic on the average (initial vibrational phase average),
thus justifying activated complex theory for this system. The relative importance of reaction path curvature
and of vibrational frequency variation along the reaction path in inducing nonadiabatic effects is described. -
Implications for a quantum treatment, activated complex theory, and highly nonadiabatic systems are

noted.

INTRODUCTION

A formalism for the mechanics of nearly vibrationally
adiabatic chemical reactions, A4+BC—AB+-C, was de-
scribed in earlier papers of this series.!? In the classical
version? the Hamilton-Jacobi equation, expressed in
terms of natural collision coordinates and action-angle
variables, was used. A number of applications of these
natural collision coordinates have recently appeared®-®
and include numerical (quantum and classical) and
adiabatic treatments.

Action-angle variables, which were used to treat
atomic and molecular structure many years ago,® have
been used more recently in this laboratory to treat in-
elastic and reactive collisions.2™? Their use led to rela-
tively simple approximate expressions for energy trans-
fer and other properties. Encouraging agreement with
exact results was obtained for the inelastic systems.”8
The method provided information about alternative
quantum approximations (near static vs near adiabatic),
because of the close relationship which the Hamilton-
Jacobi equation bears to the Schrédinger equation and
which the action variables J; bear to the quantum
numbers n;(J;/k=n;+3% or n; depending upon co-
ordinate). The approximations are particularly suited
to near-elastic or near-adiabatic systems.

The rearrangement reaction H--Hy—>H;+-H has been
intensively studied both classically’®™'"® and quantum
mechanically,l2514-18 ]Jargely though not exclusively
numerically. The present paper calculates and compares,
for the first time, nonadiabatic corrections with exact
numerical results. Some quantum mechanical implica-
tions are noted in a concluding section. Results on re-
action in a plane will be given in a subsequent paper.

EXACT CLASSICAL EQUATIONS WITH NATURAL
COLLISION COORDINATES

As in Paper IV, the reaction coordinate and the
vibrational coordinate are denoted by s and p, respec-
tively; a suitable curve C is drawn in a mass-weighted
configuration space (in the center-of-mass system), s
being the arc length along this curve (e.g., Fig. 1).

The Cartesian coordinates of the space are z and Z.
The curvature of curve C, x(s), is a function of s.
The reaction corresponds to a suitable motion of a
point of mass u from region I to region II in Fig. 1.
Hamilton’s equations of motion in natural collision
coordinates, s and p, are obtained from Eqs. (3) and
(4) of Paper IV in the standard way,"”

de/ds)p: 8V
p= 222, (1a)
&= p./un?, (1b)
Po=(xps*/un®) — (8V/0p), (1c)
15=Pn/11, (1d)

where the p’s denote momenta conjugate to s and p
and where
n=1+xp. (2

The force components in.Egs. (1) along the natural
collision coordinates, —dV/3p and —aV/ds, are ob-
tained from the interatomic forces using the “chain
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where ¢*=3$, p, Q'=3,Z, and Ry, Ry, and R, are the
internuclear distances. The four simultaneous differ-
ential equations (1) can be integrated numerically.

APPROXIMATE EQUATIONS FOR THE
VIBRATIONAL p-MOTION

The potential energy function V(p,s) is written? in
terms of its value on curve C, Vi(s), and the increment
to a finite p at this 5, Va(p, s),

V(p, s)=Vi(s)+Va(p, 5). (4)

The motion along the reaction coordinate creates a
mean “internal centrifugal potential” acting on the p
motion a potential arising from the kp/un® term in
(1c) and denoted by a(s)/x?, with &(s) defined below.
It is sometimes useful, but not necessary, to incorporate
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the a/n* term in the zeroth-order treatment of the p
motion, and we do this in the present case®:
The effective potential U(p, s) for the p motion when
a/n? is included is?
Ulp, 3) = Va(p, 5)+ (a/nz) ’ (S)

where a(s) denotes the average p,2/2u in the adiabatic
approximation’$;

a(s)/nt= E— Eyix*3(s) — V1(s) — Va(py, 5),

where

(6)

(6)
The po(s) and the adiabatic vibrational energy
[Een*(s)] in (6) are given below. a(s) is found by
solving (6), (7), and (9) iteratively or simultaneously.

[An iteration can be initiated by setting Vi(po, s)=0
in (6) and 82U/dp*=3?V/dp? in (9) in the first step.]

o= 1-4kpy.

-2 24 26 28 2 30 32 34 36

F16. 1. Potential energy contour map for Hs (relative to H, He
as zero) in the (z, Z) plane for linear configurations. Curve C
(-:+=) is chosen graphically as the curve which is steepest
descent from the saddle point down to the reactant and product
valleys, respectively. ’

The value of p which minimizes U(p, s) at any s is
denoted? by po(s),

8U(p,5)/3p=0 at p=po(s). (7)

The vibrational variables p and p, can be expressed,
at any s, in terms of local action-angle variables for the
p motion, J, and w,, respectively.? In physical systems
the initial value of w, is random in the interval (0, 1).
In the adiabatic approximation J, is a constant of the
motion. When the p motion is treated as locally har-
monic, we have? :

U(p, $)=2U (po, 5) +3n*(p—p0)?, (8

ANALYTICAL MECHANICS OF CHEMICAL REACTIONS. V

TaBre I. The points chosen for least-square fit of the reaction
path (i.e., Curve C) and their potentials along the reaction path.

g (a.u.) Z (an.) Vi(s) (au.)
1.4731 2.5515 0.014563
1.4229 2.5855 0.014344
1.3908 2.6103 0.013975
1.3484 2.6500 0.013240
1.3150 2.6856 0.012505
1.2951 2.7128 0.012000
1.2870 1.7263 0.011767
1.2668 2.7736 0.011033
1.2554 2.8035 0.010600
1.2524 2.8266 0.010298
1.2419 2.8849 0.009562
1.2342 2.9351 0.008975
1.2261 3.0186 0.008091
1.2214 3.1096 0.007239
1.2191 3.1838 0.006620
1.2140 3.3988 0.005147
1.2138 3.5911 0.004149
1.2136 3.8490 0.003151
1.2134 4.2314 0.002150

where
wt(s)=0U(p, s)/3p* at p=p(s). (9

E.i has a very simple form for a locally harmonic

oscillator,?
Eoip= J0(5) /2. (10)

The adiabatic value of E.p is obtained for a reaction
by setting J, equal to its initial value, J,,

E.®(s) = Jw(s)/2x. (10')
In the local harmonic approximation, which we now

adopt in the present section, the equations of motion
for J, and w, are?

jp’—‘" — 2po(peomr J ,) V2 sin2rw,— (Jp‘:’/w) cosdmw,, (11)
w,= (w/2w) —}py(pw/ J,m) " cos2mw,
+ (&/4nw) sindmw,.  (12)

To remove the singularity in the differential equa-
tions (11) and (12) at J,=0, 2 transformation of

Tasre II. The least-square fitted coefficients of the reaction
path (i.e., Curve C).

~0.50>9>—0.90a.n.

0.52v>—0.50a.u. and 0.50<v<0.90

4o 2.9469511 2.8374358
A 0.81743033 2.2616786
4y 4.5372891 . ~1.8003946
Ay . —8.5215932 " 1.2827108 ..
A " —4.0067625 —0.5147454
4s 16.367035 0.08376852
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INTRODUCTION

A formalism for the mechanics of nearly vibrationally
adiabatic chemical reactions, A4BC—AB+-C, was de-
scribed in earlier papers of this series.!? In the classical
version? the Hamilton-Jacobi equation, expressed in
terms of natural collision coordinates and action-angle
variables, was used. A number of applications of these
natural collision coordinates have recently appeared®®
and include numerical (quantum and classical) and
adiabatic treatments.

Action-angle variables, which were used to treat
atomic and molecular structure many years ago,® have
been used more recently in this laboratory to treat in-
elastic and reactive collisions.2"=? Their use led to rela-
tively simple approximate expressioris for energy trans-
fer and other properties. Encouraging agreement with
exact results was obtained for the inelastic systems.”:
The method provided information about alternative
quantum approximations (near static vs near adiabatic),
because of the close relationship which the Hamilton—
Jacobi equation bears to the Schrodinger equation and
which the action variables J; bear to the quantum
numbers n;(J:/k=n;+3% or n;, depending upon co-
ordinate). The approximations are particularly suited
to near-elastic or near-adiabatic systems.

The rearrangement reaction H+H,;—H;+-H has been
intensively studied both classically’®™!® and quantum
mechanically,’5.4-16 |argely though not exclusively
numerically. The present paper calculates and compares,
for the first time, nonadiabatic corrections with exact
numerical results. Some quantum mechanical implica-

tions are noted in a concluding section. Results on re- -

action in a plane will be given in a subsequent paper.

EXACT CLASSICAL EQUATIONS WITH NATURAL
COLLISION COORDINATES

As in Paper IV, the reaction coordinate and the
vibrational coordinate are denoted by s and p, respec-
tively; a suitable curve C is drawn in a mass-weighted
configuration space (in the center-of-mass system), s
being the arc length along this curve (e.g., Fig. 1).

The Cartesian coordinates of the space are z and Z.
The curvature of curve C, x(s), is a function of s.
The reaction corresponds to a suitable motion of a
point of mass u from region I to region II in Fig. 1.
Hamilton’s equations of motion in natural collision
coordinates, s and p, are obtained from Egs. (3) and
(4) of Paper IV in the standard way,"”

de/ds)p: oV
p= D22, (1a)
8= po/ pn?, (1b)
Po= (xps*/un®) — (3V/3p), (1c)
B= Do/ by (1d)

where the p’s denote momenta conjugate to s and p

and where
n=1+xp. (2)

The force components in.Eqgs. (1) along the natural
collision coordinates, —3V/dp and —aV/ds, are ob-
tained from the interatomic forces using the “chain
rule,”

avV _ 3 2,4V aRu3Q!
3g* =1 =1 0R:0Q 3¢*’
where ¢*=s, p, Q'=3,Z, and Ry, R;, and R are the

internuclear distances. The four simultaneous differ-
ential equations (1) can be integrated numerically.

APPROXIMATE EQUATIONS FOR THE
VIBRATIONAL p-MOTION

The potential energy function V(p, s) is written® in
terms of its value on curve C, Vi(s), and the increment
to a finite p at this s, Va(p, $),

Ve, 5)=V1(s)+Vs(p, 5). 4)

The motion along the reaction coordinate creates a
mean “internal centrifugal potential” acting on the p
motion a potential arising from the xp}/un® term in
(1c) and denoted by a(s)/x? with a(s) defined below.
It is sometimes useful, but not necessary, to incorporate
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the a/7* term in the zeroth-order treatment of the p
motion, and we do this in the present case?®:

The effective potential U(p, s) for the p motion when
a/n? is included is?

U(p, s) = Valp, 5)+ (a/n"), (5)

where a(s) denotes the average p,2/2u in the adiabatic
approximation’®:

a(s) /nt= E— Eyip*d4(s) — Va1(s) ~ Va(py, $),

where

(6)

(6")
The po(s) and the adiabatic vibrational energy
[Ew*4(s)] in (6) are given below. a(s) is found by
solving (6), (7), and (9) iteratively or simultaneously.

[An iteration can be initiated by setting Va(go, s) =0
in (6) and 32U/3p*= 092V /dp? in (9) in the first step.]

0= 14xpy.
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FIG. 1. Potential energy contour map for Hs (relative to H, Hy
as zero) in the (g, Z) plane for linear configurations. Curve C
(-:+=) is chosen graphically as the curve which is steepest
descent from the saddle point down to the reactant and product
valleys, respectively. ’

The value of p which minimizes U(p, s) at any s is
denoted? by po(s),

dU(p, 5)/9p=0 at p=po(s). (7)

The vibrational variables p and p, can be expressed,
at any s, in terms of local action-angle variables for the
p motion, J, and w,, respectively.? In physical systems
the-initial value of w, is random in the interval (0, 1).
In: the adiabatic approximation J, is a constant of the
motion. When the p motion is treated as locally har-
monic, we have? :

U(p, $)=2U (oo, 5) + 3w’ (p—p0)?, (8)
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TaBLE 1. The points chosen for least-square fit of the reaction
path (i.e., Curve C) and their potentials along the reaction path.

s (a.u.) Z (a.u.) Vi(s) (a.u.)
1.4731 2.5515 0.014563
1.4229 2.5855 0.014344
1.3908 2.6103 0.013975
1.3484 2.6500 0.013240
1.3150 2.6856 0.012505
1.2951 2.7128 0.012000
1.2870 1.7263 0.011767
1.2668 2.7736 0.011033
1.2554 2.8035 0.010600
1.2524 2.8266 0.010298
1.2419 2.8849 0.009562
1.2342 2.9351 0.008975
1.2261 3.0186 0.008091
1.2214 3.1096 0.007239
1.2191 3.1838 0.006620
1.2140 3.3988 0.005147
1.2138 3.5911 0.004149
1.2136 3.8490 0.003151
1.2134 4,2314 0.002150

where
wt(s) =8°U(p, 5)/3p* at p=p(s).  (9)
Eqi, has a very simple form for a locally harmonic

oscillator,?
Eyp= Jw(s)/27. (10)

The adiabatic value of Eyip is obtained for a reaction
by setting J, equal to its initial value, J.°,

Euip2d(s) = J Lw(s) /2. 10)

In the local harmonic approximation, which we now
adopt in the present section, the equations of motion
for J, and w, are?

o= —2po(pom J,) V2 sin2ww,— (J o/ w) coshmo,, (1)
= (w/2m) =4 py(uews/ J ) /2 cos2rw,

+ (@/4rw) sindrw,. (12)

To remove the singularity in the differential equa-

tions (11) and (12) at J,=0, a transformation of

TasLE II. The least-square fitted coefficients of the reaction
path (i.e., Curve C).
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F1G. 2. Reaction coordinate po/v) as a function of coordinate

v for three initial relative translational energies, Eirand=9.5,
11.5, and 15.5 kcal/mol.
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variables from (J,, w,) to canonically conjugate vari-
ables ¢ and ¢* can be performed? where a is
J 2 exp(—2miw,), yielding?
d= —iwa+ipo(uwr) 2 — (va*/2w).
a* is the complex conjugate of a.
When the & term in (13) is treated as a perturbation,

integration of (13) yields (cf. Eqs. 93 and 94 of Paper
V) .

Jo=JA=2(J 0" f ‘ [ﬁo(uw‘lr)”’

X sin ( f g wdt”-l-a,,)] v+ 1 f ' [ﬁo(pmr)l”
0 —

s ‘ d 74 1

X exp(z/"w ¢ )]a‘t

EFFECTIVE FREQUENCY  (v)

(13)

A, (14)

i
Erm"sﬂls.ﬁ KCAL‘!OL
TRANS IS KCALA, o

i
ESrans 9.5 KCALL

1 1
-06 -04

1 1 1
04 0.6 08

-alz 0602
COORDINATE Vv

F16. 3. Effective frequency w(v) of the vibrational p motion as
a function .of coordinate v for three initia] relative translational
energies, Eyransf=9.5, 11.5, and 15.5. kcal/mol.
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where A is the perturbation due to the & term:

A=— J,-,o ./" [g cos2 (/" wdt"-l'ﬁp)] dar. (15)
— 0

When both the g and @ terms in (13) are treated as
perturbations to first order, Eq. (14) is again obtained,?
apart from the §,independent term (the third term)
on the right-hand side of (14). In effect, therefore,
Eq. (14) treats the & term to first order and the po
term to second or higher order.

APPLICATION TO THE H+Hs—H,+H REACTION

A. Potential Energy Surface, Curve C, and
Other Properties

A number of studies have been made on obtaining
the best potential energy surface for Hs system.® We
employ the Porter and Karplus surface,” previously
used in extensive trajectory and other scattering cal-
culations.! The contour of the potential energy surface
expressed in the skewed-coordinates is plotted in Fig. 1.
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Fi1c. 4. Comparison of exact calculations for AE,q’s based on
natural collision coordinates ( ® ) and on ordinary coordinates (A);
linear collision of H+H; system having Eyraq,* =9.5 keal/mol,

A curve C can be obtained from the contours, for ex-
ample, by drawing the curve of the steepest descent
from the saddle point. For numerical purposes this
curve (the points of which are given in Table I) was
fitted to a polynomial by least-square method. If the
(s, Z) axes of Fig. 1 are rotated by 30° about the
saddle-point into (#%, v) axes to utilize the symmetry of
the surface, the polynomial equation describing curv
C is, in these (%, v) coordinates, -

u=—(30)"242r, for v<—09a.u., :
u=(3v)12427, for v>09a.u,

S .
u= Y, Ap? for —09<r<0.9a.u., (16)
=0
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where 7, is the equilibrium bond length (in reduced,
mass-weighted units) and where the coefficients 4, are
.given in Table II. The saddle-point occurs at =0, v=0.
Using this curve C, po(s) and w(s) were calculated
from Eqgs. (7) and (9) for various energies, and are
shown for several energies in Figs. 2 and 3. As secn
from these plots both quantities have already effec-
tively approached their asymptotic values at | v| =0.9
a.u. Thus, it is a good approximation to truncate the
calculation at this [v].
~ Both py(s) and w(s) were fitted to a polynomial in »
by the least-square method to obtain an analytical ex-
pression for these quantities.
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Fi6. 5. Comparison of exact claculations for AE,;,’s based on
natural collision coordinates (@ ) and on ordinary coordinates (A);
linear collision of H-Haz system having Eqrensf=10.55 kcal/mol).

B. Comparison of Exact Calculations Based on Egs. (1)
with Those Based on Cartesian
Coordinates, z and Z

Before comparing the results based on Egs. (14)
with those based on exact (numerical) integration in
ordinary center-of-mass coordinates, it is useful to com-
pare the results of the latter with those based on the
exact integration of (1). The results of these purely
numerical integrations are compared as a function of
initial vibrational phase in Figs. 4 and 5. To obtain
these figures the equations of motion in each set of co-
ordinates [Eq. (1) for natural collision coordinates and
the usual equations for ordinary coordinates?] were
integrated by a fourth-order Runge-Kutta-Gill method
with the appropriate boundary conditions.® A total
number of 36 vibrational phases were calculated for
each initial relative translational energy. The agree-
ment for the reactive collisions is seen from Figs. 4 and
5 to be excellent.

Examination of Eqs. (1) and (2) shows that the use
of natural collision coordinates introduces a singularity
at ko= —1, and indeed an ambiguity in the coordinate
definition in this region.® If a trajectory approached
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FiG. 6. Vibrational-translation energy transfer in a linear
collision, as a function of initial vibrational phase: —, exact
classical calculation; —<—, approximate calculation, for Eirand' =
8.5 kcal/mol.

this singularity or reached points corresponding to nega-
tive values of 14xp, i.e., points on the other side of the
singularity from curve C in Fig. 1, an error would re-
sult from the use of these natural collision coordinates.
The excellent agreement of the two calculations for the
reactive collisions shows that the singularity was not
approached closely (at least’ for the cases treated in
those figures). Figure 4 gives perhaps an indication of
some difference for the nonreactive case, and indeed, as
an examination of nonreactive trajectories will show
later, that the system came closer to the singularity in
this case.

C. Approximate Results Based on Eq. (14)
The adiabatic solution for s(¢) satisfies’
§=[2a(s)/p]"(1+xp0) " (17)
where a(s) is given by ’(6). Instead of s({) the co-
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of initial vibrational phase: —, exact class-
approximate calculation, for Eiiand® =9.5
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F16. 8. Vibrational-translational energy transfer in a linear
collision, as a function of initial vibrational phase: —, exact
classical calculation; —-—, approximate calculation, for Eirans'=
10.55 kcal/mol. The circled points refer to nonreactive collisions.

ordinate v(¢) defined earlier can be used, in which case
(17) would become

9=[20:(s) /u]"*[ 1+ (du/dv) T 2(1+xpo) 2. (18)

While there was little advantage in using v(f) instead
of s(), provided the line s=0 was chosen to lie along
the symmetry axis L of Fig. 1, i.e., at v=0, (18) was
used instead of (17).

The phase §, in (14) is the vibrational phase when the
system crosses the symmetry axis L in Fig. 1, i.e., the
activated complex line. The trigonometric terms in
(14) and (15) can be rewritten using the addition
formulas, so that the phase 8, appears outside each
integral. Integrals denoted by S, Cy, S;, and C; may
be defined:

Si= /0 (pwr)V2 sin27rw,’dt,
o
C= /’° () 12 cos2mw,’dt,
—ro
Sp= /o 2sin4‘n-w‘,’dl,
o @

Ce= f 2 costrw,'dt, (19)
.

where —7y is the initial time, i.e., the time when v=—uv,,
and where the w,” in (19) denotes

¢
Y, = f wdt. (19
: 0

J, at the (truncated) final time (¢=7y) is found from

(14) to be

Jo(t=10) = J S—4(J 2) 28} cosd,+4S2+2J ,°C, sin25,,
' (20)
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J, at the saddle point, J,(¢=0), is similarly found to be
Jo(t=0)= J 90—2(J 9)'2( S, cosd,+C) sins,)
+ S*+Ci>+ (Ce sin28,— S; c0s25,) J,0.  (21)

The §,° used to represent the approximate results in
Figs. 6-11 is related to 5, by

0
80=06,— / wdl.
—ro

The integrals in (19’) and (22) were computed using a
six-point Gauss-Legendre quadrature for an integration
inverval, Av=0.005 a.u. The integrals S;, C, S,, and
C: in (19) were next calculated by Simpson’s rule.
The value of J, was then obtained from (20) and (21)
at the product and saddle-point regions, respectively.
The integrals are tabulated in Table III.

The change of vibrational energy AE.m was cal-
culated both from the exact Hamilton’s equations of
motion and from the above equations for a series of
initial relative translational energies, Eirans'=8.5-15.5
keal/mol, and initial vibrational phases.” The results
are given in Figs. 6-11.

Equations (6) and (17) yield the adiabatic threshold
for reaction. However, for certain §,, the actual vibra-
tional energy Eviv(s, §,) may exceed E.ip(s) and so
cause reflection at energies above the adiabatic thresh-
old. Reflection occurs when the actual § vanishes,
namely, when

E—Eun(s, 8) = Vi(s) = Va(po, ) <O (23)

at some s. Equation (23) can be solved for &, and for s,
which will be near s=0 since V;(s) has a maximum
there. If s=0 is used in (23),% and the latter is solved
for §,, the nonreactive collisions so defined are indi-
cated by vertical lines on the abscissas in Figs. 6-11.
The range of nonreactive phase is seen to increase, and
therefore, the reaction probability decreases, with in-
creasing initial relative translational energy, at the
higher energies, in the energy range considered.
Comparing the reactive portion in Figs. 6-11, we see
that there is good agreement between the exact and

(22)

TasLe IIL. Values of integrals, S, Ci, S;, and C;.

Elrlﬂli
(keal/mol) S G S2 G
7.5 0.005330 ~0.037280 0.080769 0.088301
8.5 ~0.014951 —0.049132 0.093976 0.126385
9.5 —0.033779 -0.056788 0.103261 0.164801
10.55 —0.052518 —0.062774 0.112568 0.204917
11.5 —0.068083 —0.068069 0.112378 0.229329
12.5 —0.084476 —0.072271 0.115724 0.255077
13.5 —0.099598 —0.076646 0.117835 0.283105
14.5 —0.114736 —0.079938 0.121419 0.303617
15.5 -—0.128878 —0.083120 0.121589 0.327182
16.5 —0.142668 —0.086128 0.125010 0.347025
17.5 —0.156488 —0.088406 0.120778 0.370785
19.5 —0.180849 —0.093940 0.128212 0.400339
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approximate calculations of the phase-dependent AEi,
for most of the reactive regions. (In some instances
the approximate curve sinusoidally winds around that
of exact calculations in these figures, due to the char-
acter of the approximate Fourier series expansion em-
ployed.)

The phase-averaged vibrational energy change
(AE.s) accompanying the reaction is plotted for 2
series Of Eirans® in Fig. 12. The vibrational phase-
averaging procedure for the approximate calculation is
merely the phase average over cosd, and sind, in Eqgs.
(20) and (21). The average is over the range of reac-
tive 8,’s, with 8, being random in this region. In Fig. 12
it is seen that the agreement between exact and approxi-
mate calculations of (AEn) is good on an absolute
basis.

aEvig (1M KCALAL L)

ONE VIBRATIONAL PERIOD
Fic. 9. Vibrational-translational energy transfer in a linear
collision, as a function of initial vibrational phase: —, exact

classical calculation; —-—, approximate calculation, for Eeans=

11.5 kcal/mol. The circled points refer to nonreactive collisions.

(AE) is seen in Fig. 12 to be small at initial rela-
tive translational energies appropriate to the usual re-
action temperatures of 500-1200°K. (It can be shown
that this range corresponds toE tans’ in the neighbor-
hood of 8.2-10.3 kcal/mol.) Implications for activated
complex theory are noted later.

The maximum po contribution and the maximum &
contribution to (14), obtained by maximizing each
contribution with respect to 8,, are plotted in Figs. 13
and 14. The p term and the & term are roughly equally
effective in introducing nonadiabatic transitions at the
lower energies. At the higher energies, the p term is
larger than the & term (and the same remark applies to
the phase-dependent 4 term alone). This behavior sup-
ports the treatment which led® to (14), since at low
energies both terms need be treated only to first order
while at higher energies the larger (go) contribution
should be treated to higher order.

The reaction probability for the exact classical cal-
culation is

Reaction Probability= (A8,°) reactive/2m,  (24)

ANALYTICAL MECHANICS OF CHEMICAL REACTIONS. V'

AEyig (v KCAL/yor)
o __m
N\,

N
T

ONE VIBRATIONAL PER!OD

F1G. 10. Vibrational-translational energy transfer in a linear
collision, as a function of initial vibrational phase: —, exact

classical calculation; —~, approximate calculation, for Eqrans'=
13.5 kcal/mol. The circled points and dashed line refer to non-
reactive collisions.

where (A8,%)reactive is the sum of intervals of initial
vibrational phases for which the classical trajectories
are reactive. The reaction probability is plotted versus
initial translational energy in Fig. 15 and compared
with one obtained using the approximate equations and
the condition (23) at s=0.27 The reaction probability is
seen in Fig. 15 to rise rapidly to unity at energies above
threshold and to provide a transmission at energies be-
low the adiabatic threshold, i.e., to provide a “non-

- , J
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ONE VIBRATIONAL PERIOD

F1c. 11. Vibrational-translational energy transfer in a linear
collision, as a function of initial vibrational phase: —, exact
classical calculation; —+—, approximate calculation, for Eirans'=
15.5 kcal/mol. The circled points and dashed line refer to non-
reactive collisions.



S. WU AND R:i A. MARCUS

o
T
L
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El'm; w keal/mol
F1G. 12. Phase average of the vibrational-translational energy

transfer for linear collision, as a function of initial relative transla-
tional energy: - @ -, exact; —- A-—; approximate.

adiabatic leak.”® This same leak is responsible for the
negative values of exact (AE.p) at low initial transla-
tional energies in Fig. 12.

The vibrational action computed from Eq. (14)% is
given as a function of the coordinate s in Figs. 16 and
17 for two initial translational energies and various
vibrational phases. Several not unexpected points
emerge in these figures: (1) The rate of change of J,
along s is least at large | s |, where there is no inter-
action, and at small s, i.e., in the vicinity of the saddle
point, where the velocity § along the reaction coordi-
nate is least. (2) The region where E— Eyi(s, 8,)—
V1(s) — Va(po, s) becomes negative probably does not
necessarily occur at s=0, although V,(s) is a maximum
there, since Evin(s, 8,) [= Jo(s)w(s)/2w] sometimes has
a local minimum at or near s=0. (3) Because of the
increase in J,(s)w(s) after passage through s=0 in

03 L] T T T L] T T

3 waxtuum R contaiBuTion
3, .
~
.7 [- 1] o4 -
MAXIMUM ) CONTRIBUTION
c—
[+ 1o o
VI L 1 1 1 2 1
6 8 10 12 19 16 18 20

E‘I'RANS (IN KCAL/MOL)

F16. 13. Maximum contributions from gy and & terms to the
action J, at the saddle-point region (maximum over-all vibra-
tional phases) as a function of initialrelative translational energies.
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Fic. 14. Maximum contributions from po and & terms to the
final action J, (maximum over-all vibrational phases) as a
function of initial relative translational energies.

some instances, reflection and hence nonreactivity oc-
curs after the system has passed through the saddle-
point region. This reflection, involving as it does a re-
crossing of line L, leads to a decrease in validity of
activated complex theory at high energies.

To explore the last and other points a number of
trajectories were plotted in Figs. 18 and 19. For these
collisions, which have more than sufficient translational
energy to overcome the adiabatic threshold, the non-
reactivity is seen to occur as a result of reflection after
the system has crossed the activated complex line L
(s=0). Several other observations from these figures
may also be made:

(1) There are two trajectories (No. 1 and one near
No. 3, hereinafter referred to as No. 3) which are sym-
metric about the activated complex line L, and for
these, of course, =0 and p—po=0 on line L. Thus,

2 8 & &

Reaction Probability

£

"6 12 4 16 (8 20 a2 24 28 16
E totar (10 keat /ol

F16. 15. Reaction probability for linear collision as a function
of total energy: —, exact classical calculation; - - -, approximate
calculation based on Eqgs. (23) and (14).
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such trajectories cross line L at a turning point of
‘vibrational p motion. These points lie to the left of the
saddle point, as expected from the internal centrifugal
force term a/%?. According to Figs. 18 and 19 for the
exact trajectories, Ev at line L and J, at line L
should be less for the symmetric trajectory 1 than for 3
since the vibrational potential energy is smaller in the
former case and both have zero vibrational kinetic
energy. This observation is also in agreement with the
results for the approximate J,’s based on Eq. (14) and
given in Figs. 16 and 17, where trajectory 1 has a
smaller J, at s=0 than does trajectory 3.

(2) All the reactive trajectories were found to cross
line L in an interval (a, b), which is roughly bisected
by the reaction coordinate. Thus, the ensemble of
systems crossing L are more “centered” on the reaction

Eih'nm 1S kealimal

ACTIVATED=COMPLEX LINE L.

1 L 1 1 1 1 ] 1
-03 -05 -04 -2 (7] o2 s o6 os

COORDIRATE S

F1c. 16. Time evolution of the vibrational action J,(s) in a
linear collision for Eirans=11.5 kcal/mol. The corresponding
initial vibrational phases are indicated in Fig. 9.

coordinate than on the curve of steepest descent (the
“reaction path”), curve C in Fig. 1. Thereby, as pre-
dicted in Ref. 1, the use of a reaction coordinate which
includes the dynamical curvilinear effect, as in the pres-
ent case, provides a better zeroth-order separability
between the vibrational and translational motions of
the system than the use of the “reaction path” alone.

An effort was made to see if even better agreement of
approximate and exact calculations in Figs. (6)-( 11)
could be made by integrating the approximate Egs.
(13) exactly.® Agreement was somewhat better in some
regions, somewhat worse in others, and that more hy-
brid procedure was not explored further.

ANALYTICAL MECHANICS OF

CHEMICAL REACTIONS. V

€ trans o188 kealfay

ACTIVATED-COMPLEX LINE L o}

1 1 L L
-08 -08 -04 -0.2 7] 0.2 oA 05 o8

COGRDINATE S

_ F1c. 17. Time evolution of the vibrational action J,(s) in a
linear collision for Eirand=15.5 keal/mol. The corresponding
initial vibrational phases are indicated in Fig. 11.
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Fi1c. 18. Plot of classical trajectories on the potential energy
surface near the saddle-point region, for the five vibrational
phases indicated in Fig. 9; —, reactive trajectory; ---, non-
reactive trajectory. (Eyanst=11.5 keal/mol.) Curve C (-- =)
and the reaction coordinate (—+~) are also plotted.
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Fi16. 19. Plot of classical trajectories on the potential energy
surface near the saddle-point region, for the five vibrational
phases indicated in Fig. 11: —, reactive trajectory; - - - non-
reactive trajectory. (Eirans’=15.5 kcal/mol). Curve C (_....)
and the reaction coordinate (—+-) are also plotted.

CONCLUSIONS

Application of the Hamilton-Jacobi equation in the
near-adiabatic approximation, and of local action-angle
variables, was made to the linear reactive H+4-H, sys-
tem. Good agreement was found between the exact and
approximate calculation for the absolute value of the
vibrationally phase-averaged vibrational energy change
(AE.i,) accompanying reaction, in the region in-
vestigated ( Etrans® from 7 to 20 kcal/mol). (At the usual
reaction temperatures of 500-1200°C, the Eyrans® con-
tributing significantly to the reaction collisions on this
surface would be in the neighbaorhood of 8-10.5 kcal/
mol.) Good agreement for the phase-dependent AE.i
was also found for the data in Figs. 6-11. In effect, the
curvilinear [go] term in (14) was treated as a perturba-
tion to second or higher order, while the & term was
treated as a perturbation to first order, a method which
later proved to be consistent with the findings in Figs.
13 and 14. Again, the phase-averaged vibrational en-
ergy change, (AEvn ) in Fig. 12, was small for Eirqn® in
the range appropriate to the usual reaction tempera-
tures of 500-1200°K.

The centering of the reactive trajectories on the re-
action coordinate defined by Eq. (7), as those trajec-
tories crossed line L, lends further support to the con-
cepts employed in (7)—(10). In the corresponding
quantum mechanical treatment, a more truncated
vibrational basis set can be used at each s if that set is
centered upon a mean reaction coordinate curve [de-
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fined by some po(s) ] as compared with centering it on
the curve C in Fig. 1.

On the basis of these results one can expect that the
corresponding quantum treatment will attain similar
good agreement, at least when tunneling effects in
the s motion can, as in the present classical case, be
neglected. Tunneling can, incidentally, lead to one
difficulty in the case of the present coordinates: It
causes a “negative” internal centrifugal force' since
a(s) in Eq. (6) is negative, and can thus cause the
system to come near the singularity at 14-xp=0 if
curve C is selected as in Fig. 1. In such cases it may
be necessary to use as curve C a curve appreciably dis-
placed from the steepest descent curve in Fig. 1, or to
solve the problem in the presence of the singularity.

The findings of a small (AEx) at low energies in
Fig. 12 indicate that the reaction is statistically adiaba-
tic® at the usual reaction energies, even though, as
Figs. 6-11 show, it is not exactly adiabatic.® Thus,
upon energy averaging at a particular temperature,
activated complex theory should be valid for describing
the reaction rate in the classical system described in
this paper. Deviations could nevertheless occur at low
translational energies and hence at low temperatures
because of the nonadiabatic leak, at least in the present
case. Deviations would also occur at very high energies,
and, thereby, at extremely high temperatures, due to
the recrossing of the activated complex line L discussed
in the preceding section. :

This concept of adiabaticity has provided a zeroth-
order basis for separating the motions perpendicular to
the reaction coordinate from that parallel to that co-
ordinate. This separation is the more valid the more
slowly the molecular properties (such as the rate of
change of vibrational frequency and the rate of change
of tangent vector of the reaction curve) vary along
that curve. Natural collision coordinates are particularly
suited to such system, and hence to understanding
activated complex theory. They should become less
useful when the molecular properties vary rapidly
along the curve C, e.g., when the curvature x(s) be-
comes very large. Such reactions are strongly non-
adiabatic and are undoubtedly better treated by an
impulse type of approximation.
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