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A quantum-mechanical counterpart to the classical mechanical variation of constants method is derived,
with initial values of coordinates and momenta as “constants.” Use is made of a formal operator solution
for nonautonomous or autonomous systems in classical mechanics, which we published earlier, and of the
correspondence between Poisson brackets and commutators. An alternative unified Lie-algebraic derivation
is also given. It is shown that the Schrédinger, Heisenberg, and interaction pictures in quantum mechanics
do not correspond directly to the method of classical mechanical variation of these “constants.” A fourth
picture, termed “mixed interaction,” is introduced and shown to so correspond. It complements the previous
three in a symmetrical manner, bearing the same relation to the Heisenberg picture that the Schrodinger
picture bears to the interaction one. The group-theoretic relationship to the interaction picture is noted,
as is the relation to the usual variation-of-constants methed in wave mechanics. For completeness, the
classical counterparts of the Heisenberg and interaction pictures are also given. The present results arose
from a comparison of quantum and classical treatments of collisions.

I. INTRODUCTION]

In quantum mechanics the three pictures frequently
employed are, as is well known, the Schrédinger, Heisen-
berg, and interaction (Dirac) pictures,! while in classi-
cal mechanics a commonly used method is that of
variation of constants.? In a detailed comparison of a
classical and quantum-mechanical perturbation treat-
ment of transient phenomena (collisions), with initial
values of coordinates and momenta as the “constants,”
we noticed that none of the three pictures corresponded
directly to the cited classical method. In this paper we
establish this point and, in the process, derive a fourth
picture for quantum mechanics, i.e., one which provides
the correspondence and which complements in a sym-
metrical manner the three customary pictures. It bears
the same relation to the Heisenberg picture that the
Schrédinger picture bears to the interaction picture.
To avoid confusion with the usual variation of con-
stants method® in quantum mechanics, which differs
from the present one, we call the present method the
“mixed-interaction picture’” and denote it by M.

The essential features of the analysis are outlined in
Sec. II. The classical mechanical variation of constants
method and a formal solution are summarized in Sec.
III, the quantum-mechanical counterpart is obtained
by correspondence of Poisson brackets and commutators
in Sec. IV, and a unified Lie-algebraic derivation of the
classical and quantum expressions is given in Sec. V.
The classical counterpart of the Heisenberg and inter-
action pictures is derived for completeness in Appendix
A.
In Sec. V, a group-theoretic relationship [denoted
there by (ii) ] is noted between evolution operators for
observables in the mixed-interaction picture and for
wavefunction in the interaction picture. The relation-
ship is similar to that between evolution operators for
observables in the Heisenberg picture and for wave-
function in the Schrddinger picture,

The notation used in the present paper is discussed
at some length in Appendix B.

II. DERIVATION IN BRIEF

In a classical mechanical variation of constants
method, with initial values of coordinates and momenta
as ‘“‘constants,” the original variables ¢; and p; (con-
jugate coordinates and momenta) are allowed to evolve
via an unperturbed Hamiltonian Hy(¢), from initial
values denoted by ¢/ and p., at time #. The evolution
may be described in terms of a single equation involving
an arbitrary C= (i.e., infinitely differentiable) function
Jof g; and p;:

f(QJ P) = (T*(t)f)(q", pM); (2.1)

where T*(f), the relevant time-evolution operator, is
unity initially. ¢ and p denote the totality of ¢,’s and
pi’s (i=1,++- N); ¢ and p™ denote the totality of
¢’s and p,’s. The notation in (2.1) indicates that the
function T*()f is evaluated at the point (g™, p¥) in
a 2N-dimensional space. An explicit expression for
T*(¢) has been given in terms of multiple Poisson
brackets involving Hj.# The asterisk and other symbols
in (2.1) are discussed in Appendix B.

The ¢ and p/M, which are constants of the motion
in the unperturbed problem, evolve in time in the
perturbed problem from initial values ¢.° and . They
satisfy* ‘

af(g¥, p*) /dt={ f(g¥, p"), Ha(g, p, )}, (2.2)

where H, is the perturbation and { , } denotes a Poisson
bracket. The ¢ and p in H, are expressed in terms of
¢ and p* using (2.1), before integrating (2.2).

The quantum-mechanical counterpart to Eq. (2.2),
obtained by Dirac’s correspondence’ of brackets and
commutators, is

ihdf(q¥, p¥) /di=[7(a¥, p*), Hi(q, p, )], (2.3)
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where f(q¥, p¥) represents an arbitrary admissable
operator-valued function of (g, p*). (Boldface type
will be used for the ¢’s and p’s to avoid confusion of
classical and quantum symbols.) Using the quantum-
mechanical counterpart of (2.1), it can be shown that

[7(a%, p*), Ha(q, p, ) 1=/, Us ' Hr(1) Uad(q", P¥),
(24)

where U, is the usual evolution operator for the wave-
function of the unperturbed problem [Hamiltonian
Ho(1)]. In Eq. (4), [f, UotHi(t) Uy] is evaluated at the
point (g, p™). Since Uy *H:1(¢) U is usually denoted by
H,’(1) ® the right-hand side of (2.4) can be written as
[/, Hi'(1) J(q¥, p¥), and latter introduced into (2.3).

Equation (2.3) can be integrated, and the solution
is found to be (as may also be verified by direct sub-
stitution)

J(a¥, p¥) = (Ur'fUn) (¢, P), (2.5)

where Ur denotes Uz (2, 1) and is the evolution operator
in the usual interaction picture, Ur(f, f) is unity,
and U;'fUr is evaluated at the point (q°, p°).

The quantum-mechanical picture corresponding to
the variables ¢ and p is readily deduced. Since
expectation values are invariant to a unitary trans-
formation, we have

Ws | (% p°) | ¥s)= (ar | (0¥, PM) [ W), (2.6)

where ¢s and y¥ux are the wavefunctions in the
Schrodinger and mixed-interaction pictures. Introduc-
tion of (2.5) shows that

Ws | £(2, p°)| W)= War [(Ur'fUD (¢, p°) | ¥ ),

(2.6")
and, thus, that

4’3(% t) = Uf(tr 10)%( (9: t) . (27)

Inasmuch as ¥i(g,f) equals Ui(?, to)¥u(g), where
¥r(g,t) and yu(g) are the wavefunctions in the inter-
action and Heisenberg pictures, the mixed-interaction
picture bears the same relation to the Schrodinger
picture that the Heisenberg picture does to the inter-
action one. The evolution operator Ux (!, b} is defined
by

¥ar(g, 1) = Un (4, L) ¥a (g, fo) - (2.8)

Since ¥s(g, 1) equals U (¢, &) ¥s(g, k), and since ys(g, &),
Yau(g, 1), and ¥u(g) are all equal, (2.7) and (2.8)

yield
Use(t, ) = Ut (8, ) Uty to) = Ut (4, ) Ulty ) U (L, o).
(2.9)

Thereby, the mixed-interaction picture differs from the
other three.
In terms of an expansion in eigenfunctions of ¢, of a
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time-independent Hamiltonian Hy, we have
Y= 2 &n(l)Pn,
Y= 3 on(to) on exp[—i(i—k) En/R],
Yr= 2 a.(!)en,
Vs= 3 an(t)@n exp[—i(i—to) Ea/R].

Thus, the fourth picture complements in a symmetrical
way the three customary pictures.

The customary variation-of-constants method in
quantum mechanics involves obtaining equations for
variation of the a.(£)’s and so [as is seen from (2.10)]
corresponds to a calculation in the interaction picture.®

(2.10)

III. CLASSICAL MECHANICAL VARIATION
OF CONSTANTS

We recall now the method of variation of constants
in classical mechanics? and a formal solution! in more
detail. The canonically conjugate coordinates and mo-
menta, ¢; and p;, are first expressed in terms of some
constants of the motion, ¢;* and p., of the unperturbed
problem. In this paper we choose ¢ and p to be the
initial values of g; and p;. Thereby, one first solves the
equations of motion for the dynamical path (¢:(¢), pi(t))
in the following unperturbed problem:

dqf/dt= aHo(Q: p: t)/aP";
dpi/dt=—aH,(q, p, ) /3¢,
gi=gM, pi=pH (=),

where Ho(q, p, t) is the Hamiltonian of the unperturbed
problem. In terms of Poisson brackets, (3.1) can be
rewritten as

3.1

dq:'/dt= {Q:', HO(Q: b t) } ’
dp;/dt={ﬁ.', Ho(?» P: l)},
gi=gqM, pi=pH (t=1).

Any C* function of ¢ and p, f(g, ), varies with time
because g and p are time dependent:

v 5(2) (). (A0 0]
(3.3)

(3.2)

Equations (3.1) and (3.3) yield

df(Q: P)/dt: { f(q7 ), HO(Q: ? N,
pi=pM (I=h).

The advantage of using (3.4) compared with (3.1) is
that it leads to a coordinate-free description of the
evolution, as in Eq. (3.9) below. As noted in Appendix
B, (3.2) is a particular case of (3.4).

A perturbation Hi(g, p, t) causes the “constants” of
the motion of the unperturbed problem, ¢ and p¥,
to vary with time?24 Just as (3.1) led to (3.4), the

(3.4)

= "Ma
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equations of motions for g (t) and pX(¢) lead to
df(g¥, p™)/dt={ f(g¥, p™), Hi(q, p, 1)}, (3.5)
gM=q8 pM=pS (1=1),

where the ¢ and p in Hy(q, p,t) denote the solution of
(3.4); g2 and p denote the true initial values of ¢; and
p: (i.e., the values at {=1y) and hence of the ¢ and
p# defined earlier.

The equations to be solved are (3.4) and then (3.5);
in (3.5) the ¢s and p.'s are first expressed in terms of
gM’s and [z." ’s using the solution to (3.4). Elsewhere,
we have given a formal solution to (3.4) and (3.5) in
operator form,* and we employ it there. To describe
the solution, we deﬁne a functlon’ B:

_B(C, t’ to)’—- . C(ldtl‘{" 5'/‘ {CIZ)[ C“dtx} dtz
0 0 0

1 ts I
+ - {Clv/ {Clza/ Cudtl} dtg} dly

4 to to

1 ¢ t3 ts
+ ﬁ 4/;0 {{Clu o Ctzdtz} ’ lu qutl} dlsg+ ++ o

(3.6)

where C|, is a function C at time {;. It is also convenient
to introduce a notation ad B of Lie-algebraic origin®:

exp(ad B) =1+ ad B+ (1/2!) (ad B)?
+(1/31) (ad B)3+ .-+

=1+4(B, }+(1/2){B, {B, }}
+(1/3D){B, {B, {B, }}}+ ---,

the ad B in (7) denoting the operator {B, }.
The formal solutiont to (3.4) is (3.8), which also
serves to identify the T#(¢) in (2.1):

J(g, p) = {[exp ad B(Ho(1), ¢, )1} (g™, p*), (3.8)

where this B is the B in (3.6), with C,, replaced by
Hy(t). The g™ and p¥ are treated as constants in
(3.8).

When (3.8) is applied to Hi(g, p, ¢), we have

(3.7

Hy(q, 9, ) = H,' (1) (g¥, p*)=H"(¢¥, p™, 1), (3.9)
where Hy7(?) is defined as
H (1) =[exp ad B(Ho(t), 1, &) JH:1(t). (3.10)
Equations (3.5) and (3.8) yield
daf(g™, pM)/dt=1{ f, Fa" (1) } (¢, p™), (3.11)

gM=qd, pM=pF =k

The formal solution to (3.11), and therefore to (3.5),
can be written as!

f(g*, p¥) = {[exp ad B(H (1), ¢, )11} (&%, 1°).
' (3.12)
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A classical mechanical variation of constants solution
to the equations of motion of the perturbed problem is
given by (3.8) and (3.12). This description is coordi-
nate free: For example, according to (3.8), the dynamics
can be described in terms of the evolution of a function
S to a function {[exp ad B(H(!), ¢, b)]f}, both evalu-
ated at the initial point (¢, p*). Any point, (¢¥, p¥)
for example, is invariant to coordinate transformations.

IV. QUANTUM-MECHANICAL COUNTERPART TO
CLASSICAL VARIATION OF CONSTANTS

To obtain the quantum-mechanical counterparts to
Egs. (3.4)-(3.12), we use Dirac’s correspondence of
Poisson brackets and commutators®

#{, }el, 1. (4.1)

Later, a direct Lie-algebraic derivation of (4.14) and
(4.15) is given instead. With use of (4.1), the quantum-
mechanical counterparts to the previous equations can
be written as

iRdf(q, p)/dt=[f(q, p), Ho(q,p,H)], (4.2)
u=q#, pi=pM (I=h),

ihdf (p™, q¥) /dt=[ f(q™, p¥), Hi(q, p,#)], (4.3)
qQM=qf pHM=p® (I=bh),

where the q and p in Hi(q, p, f) denote the solution of
(4.2), expressed in terms of (q¥, p¥,f). A quantum-
mechanical operator B is defined via (4.4). (This sym-
bol will be the only boldfaced one, apart from the q’s
and p’s, since here there could be some chance of con-
fusion.)

~B(C, L= [ Cudit 7

x [ ;[c,,, j " c.,d:1 dlz'l‘ X ﬁ)s
X f‘ o [C.,, /‘o [C‘,, [ C,,d:,] dz,] dot e (m)a
x [ ' [[c,., [:'c,ﬁa], /’o' C,ldh]dta-l- voey (44)

where C,, denotes C(¢;). The following notation is also
employed:

1+ad B+ (1/2!) (ad B)?

+(1/31) (2d B)*+ -
=1+[B, ]+(1/2)[B, [B, ]
+(1/3)[B,[B, B, JI]+ -+-. (4.5)

Thereby, the adjoint operator denotes a commutator in
quantum mechanics and a Poisson bracket in classical
mechanics.

exp ad B=
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The quantum-mechanical counterparts to (3.8),
(3.12), and (3.10) then are

f(q, p) = {[exp ad B(Hs(4), ¢, L)1 f} (a™, p¥) (4.6)
and

f(q*, p¥) = {[exp ad B(H:' (1), ¢, 4)]1f} (¢, p°), (4.7)
where
Hy!(t)={[exp ad B(Ho(#), 1, %) ]} Hi(1) (4.8)

and the notation has the same meaning that it did in
classical mechanics. For example, in (4.6) the operator
f, evaluated at a point (q(¢),p(#)), equals
[exp ad B(Hq(t), ¢, b)]f, evaluated at the point
(g, p¥).

Equations (4.6)-(4.8) can be rewritten in terms of
the familiar evolution operators Uy(?, &) and Ur(4, &),
i.e., in terms of the solutions to

ihdU(1, o) /dt=Ho(t) Us(ty 1), (4.9)
hdU1(1, to) /dt= (Uo Hy () Up) Ur(t, ), (4.10)

by first noting that the solution to (4.9) is"
Us(t to) = exp[—B(Ha(1), 4, k)] (4.11)

Application of a Baker-Hausdorff identity® to (4.8)
and use of (4.11) then yield a well-known result,

H;I(l) = Uofﬂj,(t) Uo. (412)
The solution! to (4.10) is then
Ul(t: 10) = exp[_B(HlIU)i !, tO)]' (413)

Equations (4.6) and (4.7) can now be rewritten,
with the aid of the Baker-Hausdorff identity' as

f(q, p) = (Ua"fUo) (4™, p*) (4.14)

f(a¥, p¥) = (Ur'fUr) (¢, p°),

which is the same as that cited earlier (2.5).

The arguments leading from (2.5) to (2.9) now
apply and lead to the conclusions drawn in Sec. II
regarding the mixed-interaction picture M. The fact
that the series in (4.4) is a formal series, in that con-
vergence questions have not been considered, does not
affect the discussion in Sec. II.

The expressions for the operators in (4.6)-(4.13)
simplify only when the relevant Hamiltonians are time
independent. Normally, the only ones for which this
situation can occur are Hy and H. All commutators in
(4.4) then vanish, and Egs. (4.6), (4.11), and (2.9)
become

f(q, p) =L (exp ad i(i—4) Ho/R) f1(a™, p¥)
= {[exp i(¢—to) Ho/R] flexp —i(t—t) Ho/R ]}
X (9¥, p¥), (4.16)
Uo(L, o) = exp(—i(t—1t) Ho/R). (4.17)
Un(t, to) =[exp i(t—to) H/B ] exp —i(t—to) Ho/h ]
X[exp —i(t—t)H/R). (4.18)

and
(4.15)
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V. LIE-ALGEBRAIC DERIVATION

The results in the Sec. IV were derived from the
classical ones in Sec. III using the correspondence be-
tween Poisson brackets and commutators. Equations
(3.8), (3.12), (4.6), and (4.7), classical and quantum,
are derived in the present section in a unified algebraic
manner instead.

The canonically conjugate variables in any of the
preceding equations are denoted by =, ** ¢, %x [e.g.,
the ¢’s and p/’s in (3.4)], and form a 2N-dimensional
vector space. The equations of motion in Sec. IIT or
Sec. IV can be written as

df(x)/di=—ad (=, 1) f(#), (5.1)

where ad denotes a Lie bracket, which is the Poisson
bracket in the classical case and the commutator in
the quantum one. 3¢(x, {) is the appropriate Hamil-
tonian. For example, in Eq. (3.4) 3¢(x, ¢) is Ho(g, 2, 1)-
When (3.4) is solved, as in the manner given below,
the Hi(g, #,¢) in (3.5) then becomes Hi’(g¥, p¥, 1),
which in turn becomes the 3¢(x, £) for (3.11). Similarly,
in Eq. (4.2) 3¢(x, {) would be Ho(q, p, £)/if while the
solution of (4.2) (as given below) would then convert
the Hi(q, p, t)/ik in (4.3) to Hi'(q¥, p¥, 1) /ih, which
in turn becomes 3¢(x, £) for that equation.

An operator ad 3C(¢) can be defined for later use by
rewriting Eq. (5.1) as

df (x) /dt=—[ad 3c(¢) f](x). (5.2)

A solution of (5.1) is given below. It is a Lie-alge-
braic extension of the method which we used in Ref. 4
for classical mechanics (and for other systems of ordi-
nary differential equations). In Ref. 4 the present Eqs.
(5.3)-(5.4) were postulated and then justified a posteri-
ori, but here they are derived instead.

If 3¢(¢) in (5.1) did not depend explicitly on time,
integration would be immediate, the solution being

f(x) = (Cexp[— (t—~k)ad 3]f]) (),

3C independent of £, (5.3)

where 2° is the initial value of #, e.g., it is (¢¥, p¥) in
(3.4), (¢ 7°) in (3.5), etc.

When 3C represents Hy?, it normally depends ex-
plicitly on ¢, even when H, and H; do not. For an
3c(x, t) which is explicitly ¢ dependent, the integration
of (5.1) over a sufficiently very small interval (o, b+
é¢) would again yield (5.3), but with ({—%) replaced
by &. The value of f(x) at f)8¢ then serves as an
initial value for a subsequent integration of (5.2) over
an interval 48! to 4126, the integration of which
yields another exponential.® In this way, f(x) is ulti-
mately expressed as a product of exponentials, members
in fact of a Lie group. Such a product of Lie-group
elements can be expressed as a single exponential of a
sum of members of the corresponding Lie algebra
(Baker-Campbell~Hausdorff theorem),* an algebra
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generated by the time-dependent infinitesimal generator
ad 3¢(¢) as ¢ varies. We may then write, instead of

(5.3),
J(@)=(T*()f) ("),

where
T*(t)= exp ad ®(2). (5.5)

ad ®(#) is a sum of Lie elements generated by ad Jc(#)
as { varies, and is to be determined.

Some information is already available about ad 3¢(¢)
and ad ®(¢): These elements are “derivations,” re-
gardless of whether the adjoint indicates a Poisson
bracket or a commutator. We recall that when applied
to a product, denoted by f°g, a derivation D is an opera-
tor satisfying'®

D(f°g) =/f°(Dg)+ (Df) . (5.6)

In the present instance we are interested in products
which are Lie products, in which case (5.4) can be
rewritten as

D((adf)g)=(adf) (Dg)+(ad (Df) ).  (5.7)

On replacing D by ad 3¢(¢) or by ad ®(¢), Eq. (5.7)
is seen to be merely Jacobi’s identity’, and so (5.7)
and hence (5.6) are applicable in the present case.
Since the exponential of a derivation is known to
convert products into products,” i.e., to be an auto-
morphism, Eq. (5.5) now yields
T*(8) (fo8) = (T*(D)f)(T*()g)- (5.8)

Equation (5.8) is immediately extended to ‘“‘poly-
nomials” of f(x), generated by the multiplication e:
If P,(f(x)) denotes such a polynomial, then it follows
from repeated application of (35.8) that

Po(f(2))=[Pu(T*()N)J(s") = (T*(1) Pa( 1)) ().
(5.9)

This result can then be extended to continuous functions
of f(x) using a well-known argument (polynomials are
dense in the space of such functions) . One such function
is ad 3C(x, £)f(x). Hence,

ad 3¢(x, 1)f(x) = (ad 3¢(4) T*(1)/) («°)
=(T*(1) ad 3e())f) ().
Equations (5.1), (5.4), and (5.10) thus yield
L@T*(0)/d)f1(a") = — (T*(1) ad 3 ()f) (+). (5.11)

Omission of the arbitrary initial point #* and then
omission of the arbitrary function f yields

dT* (1) /di=— T*(1) ad 3¢(0).

(54)

(5.10)

(5.12)

This equation, with T*(#) replaced by a ¥-! and
with ad 3¢(¢) replaced by a — A(¢), is now the same as
that solved by Magnus®® in Ref. 9, and his solution,
applied to (5.12), yields a T*(f) given by (5.5) with
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ad ® given by
t 17t
—ad ®@= ad 3Ci,dt;+ - [ad 3Cey,
to 2 20

173 ¢
X | ad w:,dh] dty+ '1‘ j [ad 34y,
1) 4 to

t 3
x [ [ad s, / " ad sc,xdz,] dz,] diy

to to

1 13 i3
+= [ ad 3¢, f ad 30, dh |,
12 J,, to

t3
X / adsc.,dtl]dlﬁ e, (5.13)
to

where ad 3C;, denotes ad 3C(£;).

The solution to (5.1) is provided by (5.4), (5.5),
and (5.13). The various equations derived in Sec. III
and Sec. IV then also follow from this solution.

Several algebraic relationships in the M picture be-
tween the classical and quantum-evolution operators,
whose application to collisional treatments is discussed
separately, may be noted:

(i) The Lie algebra associated with the evolution of
the classical ¢ and p;¥ is identical with that for the
evolution of the quantum g,/ and p/¥, since both obey
(5.1)-(5.13), with the correspondence (4.1). Further,
this Lie algebra is the adjoint representation of that
generated by HI(t) in the time evolution of Ur*(t, ).

(ii)) The Hermitian adjoint Urt(¢, &) of the evolu-
tion operator U(!, &) for the wavefunction in the inter-
action picture is related to the evolution operator for
arbitrary functions f(q¥, p¥) of the “constants” in the
M picture. Equations (4.13) and (4.15) show that the
relationship is one of adjointness, in that

J(a¥, p¥) = (Urt(t, ) fU (4, 1) )(Q°, P*)
=|:(ad UI?(‘: t) )f](qoi p°), (5.14)

where the notation ad g for the adjoint of a group
element g is described in Ref. 20.

The relationship in (ii) is similar to that between the
Hermitian adjoint U*(¢, &) of the evolution operator
U(t, to) of the Schrodinger wavefunction y¥s(g, &) and
the evolution operator, ad U*(¢, &), of the dynamical
variables (q, p) in the Heisenberg picture,

(g, p)=(ad U(¢, {6)f) (" %, (5.15)

for the latter is an abbreviation for (UfU) (q% p?).
Another relationship, reflecting (ii), between the
mixed-interaction and interaction pictures is the fol-
lowing: In the mixed-interaction picture, variation of
constants involves variation of observables ¢ and p¥.
(There is no “variation of constants” qf and p! in the
interaction picture, a fact clear in Appendix A, for
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example.) In the interaction picture, variation of con-
stants involves variation of the wavefunction, e.g., vari-
ation of the a,(f)’s in (2.10). [There is no “variation of
constants” a,(%) in Eq. (2.10) in the mixed-interaction
picture.]
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APPENDIX A: CLASSICAL COUNTERPARTS OF
THE HEISENBERG AND INTERACTION
PICTURES

A. Heisenberg Picture
The equations of motion are represented by
"ﬁf(q) p) /dt= [f(a,p), H(q,p,1) ]y

;=98 p:=pd, i=h,

whence application of the solution in Sec. V with
ad 9¢(x, t) being [H(q, p, ?), ] yields

f(a,p)={[expad BCZ (1), 4, )1/} (¢, p°) (A2)
whose classical counterpart, obtained by (4.1), is

7(g, p)=1{[exp ad BCH(®), 4, 1)1/}(¢", ). (A3)

B. Interaction Picture

(A1)

Here, operators g7 and p.f are introduced, which
evolve with time from initial values q.° and p,® via the
unperturbed Hamiltonian, Ho, and in (A4) and (AS)
several results are recalled:

mdf(q’, p’)/dt= I:f(qili pt't) t)a HO(qI1 pI’ t) ]: (A4)
4/=q" pS=p I[=h

Also, in the interaction picture, when qf and p’ evolve
to q and p, any admissible function f evolves according

to
7(q,p) = (Ur*(t, ) fUr(t, 1) (@7, P7).  (AS)

Unlike the ¢ and p¥, the ¢ and p’ are not constants

in the unperturbed problem.
The solution to (A4), obtained by the method of

Sec. V, is
(q,p") = {[exp ad B(Ho(#), 1, 1)1} (&, P°), (AS6)
and, with the correspondence (4.1), yields
f(q", p7) = {[exp ad B(Ho(?), 4, 0)1/} (¢’ 1) (A7)
Equations (A5) and (4.13) yield
7(q, p) ={[exp ad BAH' (), 4, )1/} (', p), (A8)
whose classical counterpart, obtained with (4.1), is

7(g, p)={[exp ad B (1), 4, b1} (g%, 7). (A9)
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Parenthetically, we remark that since the q,/’s and
pi’’s in (A8) are time dependent, the q;/’s at different
times do not usually commute, nor do the p;”’s. Similar-
ly, in (A9), the Poisson bracket of ¢:!’s at different
times usually does not vanish, nor does that of the
p:!’s. In contrast, since the g” and p¥ in (3.4) are
treated as constants in (3.4), the problem of lack of
commutativity does not arise in (4.6). Related remarks
apply to the latter’s classical counterpart (3.8).

Finally, we note that in addition to the Heisenberg,
Schrodinger, interaction, and mixed-interaction pic-
tures there are, of course, an infinitude of others, all
related by unitary transformations, but the present
fourth one bears a particularly symmetrical relationship
to the other three.

APPENDIX B: NOTATION

Any notation in a physical article usually involves
some compromise between precision, brevity, and
clarity. We employ the following notation, one which
adapts that in Ref. 21 to the present topic.

Each problem, classical or quantum, in the variation-
of-constants method is subdivided into two problems:
The first, which is connected with an evolution under
the influence of a Hamiltonian Hy(¢), and the second,
which is connected with an evolution under the influence
of a Hamiltonian H,’(#). The following remarks are
couched in terms of the symbols used for the first prob-
lem, but they apply to the second problem after a
straightforward relabeling of symbols [¢¥’s and p*’s
replaced by ¢%’s and #%s; ¢’s and p’s replaced by ¢*’s
and pM’s; T*(t) changed from meaning exp ad B(Hy(¢),
{, 1)) to meaning exp ad B(Hi'(1), ¢, &)]. The remarks
are also immediately transposed into the quantum-
mechanical symbols. In particular, the evolution re-
ferred to then is to that of the operators q(¢), p(?),
qM (1), pM(2), etc.

We begin with a 2N-dimensional phase space with
coordinates g, *++ gnp1 - pn. The coordinates could
be transformed, if one wished, into some new set of
coordinates, g’ -+ - p»’, and any point or any curve in
the space is invariant to such changes. On this phase
space are defined functions f. The value of f at some
point (g, #) is f(g, #). A dynamical path in the phase
space is described by specifying a mapping #—(g(?),
p(4)). If the initial point on such a path (g(&),
p(k)) is denoted by (¢4, p*), then one can introduce
an operator T'(#) which maps the point (¢¥, p*) intoa
point (g, p) at a later time ¢,

gi=T(D)gM, pi=T(t)pM. (B1)

One can also describe this evolution by an operator
T*(t) which acts on the space of functions f:

fg, )= (T*(1) ) (g™, p"), (B2)
where ¢ and p are g(f) and p(¢). An example of (B2) is
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the choice of f to be ¢; or p;. We then have

= (T*(1)g:)(g¥, p™), pi=(T*(1)$:) (g™, p),
(B3)

where the ¢; and p; on the left-hand side describe ¢;(¢)
and p;(#). The ¢; and p; on the right-hand side describe
particular f’s.

While 7'(¢) acts directly on points of the phase space,
T*(t) acts on functions f, including “constant func-
tions” ¢; and p;. Following one typical usage in mathe-
matics, the starred notation is reserved for operators
acting on functions. (The asterisks could therefore
have been added to some other symbols which act on ¢
in this paper, for consistency.)

There is, of course, some possibility of confusion in
the above notation, i.e., g; and p; have the following
two meanings:

(i) They are coordinates of the phase space and, as
such, describe any point in that space. Except where
they appear as initial points [in which case they denote
9i(f) and pi(fo)], they can be regarded as abbrevia-
tions for ¢;(f) and p;(t); for example, in f(g, ) in Eq.
(3.4) or in the left-hand sides of Egs. (B1)~(B3).

(ii) They are examples of “constant functions” f,
as in their usage in T*(f)g; and T*(f) p; in Eq. (B1).

The meaning (ii) should involve no confusion in the
main body of text, since f is always used there instead
of the symbol g; or p; in that context. To apply the
equations of the text to obtain ¢;(¢) and p;(¢), the func-
tions f=g; and f=p; are used together with (B3).

The double meaning, (i) and (ii), could be avoided
by using additional notation. For example, if a path
starting at (g¥, p¥) were denoted by a(.,¥)(f),2
then f(g, ) could be written as f(a* ,*,(f) ), and one
would replace (B1) by

Jla@ ()= (T*()/Ng", p¥).  (B4)

However, even here, the notation in (B3) is so con-
venient that its equivalent is used in Ref. 21(b).

APPENDIX C: NOTATIONAL COMPARISON
WITH REF. 4

In Ref. 4, a common notation was employed. The
present paper uses the more modern notation discussed
in Appendix B, one which has a conceptual advantage
in that it leads to coordinate-free results. An operator
D(t) defined in Eq. (B3) of Ref. 4 would, in present
notation, when operating on a function f and then
evaluated at £, yield (D(¢)f)(%), defined by

DON(E) = T hi(F,of(2)/02:.  (C1)
Equations (4)-(6), (10), and (24) of Ref. 4 would be
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written as the following:

df()/dt=(D(ON)(E), 124, (C2)
Ee=20, i=l,

J(&) =[(exp(t—1) D)/](), (C3)

(%) = (expo(1)f) (&%), (C4)

L@D(1) /) 1(#) = D) D(1))(F), (CS)

1(@, p) = (expo ())&, 7). (C6)
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