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An expression is derived relating state-selected or state-averaged molecular beam reaction cross sections
of endothermic reactions to observed rate constants for the inverse (exothermic) reactions. An approxi-
mation of Anlauf, Maylotte, Polanyi, and Bernstein is used, together with bimolecular microcanonical
activated complex theory [R. A. Marcus, J. Chem, Phys. 45, 2138 (1966) J.

INTRODUCTION

In a previous paper' a microcanonical ensemble of
reacting pairs of molecules in bimolecular reactions was
considered and a quasiequilibrium assumed between
the pairs and activated complexes moving in a positive
direction along the reaction coordinate.? As noted pre-
viously, this microcanonical version of activated com-
plex theory is related to the usual version by means of a
Laplace transform.?

Recently, in an interesting and most stimulating
Communication, Anlauf, Maylotte, Polanyi, and Bern-
stein® have calculated rates of formation of a particular
vibrational-rotational-translational state (some most
probable state) of products of an endothermic reaction,
as a function of initial quantum state of reactants at
fixed total energy. They used infrared chemilumines-
cence data on the (inverse) exothermic reaction, plus
microscopic reversibility and two approximations,
including one to describe the most probable state.

In the present paper we employ one of their assump-
tions, together with microcanonical activated complex
theory, to calculate molecular beam reaction total cross
sections of an endothermic reaction, as a function of
the initial vibrational-rotational-translational state in
the incident beam, using rate constants of the (inverse)
exothermic reaction [Eq. (11)]. An expression is also
given for a velocity-selected internal state-averaged
cross section [Eq. (11’)] since in practice the beams are
not usually state-selected. The relation of Eq. (11) to
the results of Ref. 4 is described in a subsequent section.

Previously, bimolecular microcanonical activated
complex theory! was used to formulate a reaction cross-
section theory® (as a function of initial quantum state)
for a different class of reactions, “‘nearly vibrationally
adiabatic” ones. It was also used,! in conjunction with
available computer data, to test certain aspects of
activated complex theory. In both cases the theory was
in good agreement with the computer results without
introducing adjustable parameters.!® The results in
Ref. 1 have been illustrated by application to specific
cases recently.’

THEORY

If a rotational-vibrational state of reactants C4D
in an gndothermic reaction

C+D—A+B (1)

(endothermic)

is denoted by #’ and that of the products A+B, by #,
then the equation of microcanonical activated complex
theory can be written in the present case as?

S k2 (w') X o' (nk | n'k') = 3 kg(n) Z, a(n'k' | nk)

(2

where the cross sections o’ and ¢ are averages over the
spatial degeneracy of the rotational angular-momen-
tum states; k=uV/h, B'=u'V'/h, and the primes refer
throughout to the properties of C+D [u'=reduced
mass, V' is the initial relative translational velocity,
g'(n’) is the rotational state degeneracy, #’ is the
totality of internal state quantum numbers, apart
from those describing the rotational degeneracy of C
and that of D, ¢’ is the reaction cross section for
n'k'—nk]. Unprimed quantities refer to properties of
A+B. Summations in (2) are over all states consistent
with a total energy E; N*(E) is the number of quantum
states of the activated complex with total energy equal
to or less than E.

By examination of classical trajectories for the exo-
thermic reaction

A+B—C+D

=WN:(E);

3)

the authors of Ref. 4 suggested that the distribution of
states n’ produced in Reaction (3) was approximately
independent of the initial distribution of A+B states,
kn, at any E. It would then follow that the cross section
a(n'k’ | nk) for Reaction (3) is proportional to a factor
(denoted here by «') dependent on »'%’ and one
dependent on nk. On normalizing by «* by summing
over all final states n’ at the given E in Reaction (3)
it follows that

(exothermic),

oc(nW'k' | nk) /3 a(w'k' | nk) =x", > xv=1, (4)
! nl
where the summation is over all states consistent with

the given E,

The desired total cross section for the endothermic
reaction (1) from a state n’%’ of C+D is denoted by
o' (n'k’). It equals

o (k) = T o' (nk | w'k'). (5)

604



605

The second equality in (2), together with (4), yields
¥ Bg(n)a(n'k' | nk) =aN*(E)x". (6)

The last two equations and microscopic reversibility.?

Bg(n)o(n'k | nk)=k"g (n)d'(nk|n'k"), (7)
yield an expression for o’ (k') :
o' (W'k') =aN*(E) ' /("% (n) ). (8)

«' is readily expressed in terms of known quantities,
as follows: The rate constant of the exothermic reaction
(3), to form C and D in state n’, is denoted by kz".
Throughout this paper, rate constants will be designated
by R subscripts. x™ equals Vo(n'k’|nk), suitably
averaged over n# and k'

Ex'= 3 g(n) /E : Vo(n'k' | nk)
Xexp(— E/ksT)Kdk/2°Q  (9)

where £z and Q are Boltzmann’s constant and the
rotational-vibrational- (and in center-of-mass system)
translational partition function of A-+B, for unit
volume. The over-all rate constant kg of the exothermic
Reaction (3) is
k= E k™.
nl

It follows from (4) and the last two definitions that
k' =kp" [ kr (10)

which, together with (8), yields the final result for the
cross section of Reaction (1):

o (k') =aNY(E)[kx™/ke]/[R?%'(n") ] (11)

Equation (11) refers to state-selected incident beams,
When, as is normally the case, the beams are velocity-
selected but internal-state averaged, the comparison of
the measured and calculated cross sections would be
made for a cross section averaged over #', ¢'(k'), as a
function of &' (k'=np'V'/R):

o (K)= 2 o' (W) p' (')

n! .

= X NH(Bu+ En) ke ke 100 (#) /£ (4]

(11")

where Ey is the translational energy in the center-of-
mass system, E, is the vibrationial-rotational energy of
state n’' of C+D, and p'(»") is the rotational-vibra-
tional distribution function of C and D in the incident
beams. When the internal-state distribution in the

incident beams (or beam) is an equilibrium one, we
have

PO¥) _ exp(~Eu/ksT)

g'(n) (Qtat’) ’
Qio’ being the product of the rotational-vibrational
partition functions of C and D.

(11")

BIMOLECULAR ACTIVATED COMPLEX THEORY

Expressions for N*(E) in (11), and hence for
N¥(Ew +E,) in (11'), are given later, but first we
compare Eq. (11) with the results in Ref. 4.

RELATION TO THE INVESTIGATION OF ANLAUF,
MAYLOTTE, POLANYI, AND BERNSTEIN

Since the rate constants kg™ in Reaction (3) to
yield state n’' of C+D were Boltzmann averages of
Va(n'k | nk) [Eq. (9)], a “microcanonical rate
constant” to form state kn from state ks’ in Reaction
(1) can be defined in a quite natural manner as

ke’ (nk | wW'k)=V'd' (nk | n'k). (12)

This rate constant depends on n'k'V’, and so depends
on the total energy. Equation (12) together with micro-
scopic reversibility [Eq. (7)], the approximation in
Eq. (4), and Eq. (10) yield

ke’ (nk | w'k') =[g(n) /¢ (w') JV'B/VE?)
X[k /ke]V T o (n'¥' | nk).  (13)

When Eq. (13) is specialized to the case of an atom
plus diatomic molecule, and when %k is replaced by some
“most probable” value, 7k, and S Va(n'k | iik) then
replaced by kg, Eq. (2) of Anlauf, Maylotte, Polanyi,
and Bernstein is obtained.! For 7t a thermal equilibrium
value was assumed, and for k a value was used which,
in effect, treated the relative translational motion as
being the effective motion in overcoming the barrier.!
[For the main purpose of these authors, namely, ob-
taining relative values of kz'(7ik | n'k) as a function
of #’ and %', no assignment for 7 and & was needed.] A
rigorous definition of the true % can be obtained by
defining it to be the implicit solution of the equation

14 );: o(wk | 7k) = (VX o(n'k' | nk)),  (14)

for then it would follow that!?
k' (Ak | k') =[g(#) /g’ (n') Jer™Thu/k'u'], (15)

which is equivalent to Eq. (2) of Ref, 4. One sees from
(14) that 7 and k do not depend on #’ but do depend on
the total energy E. (The summations over #’ are at
constant E.) The solution of (14) for 7 and k would be
formidable, except for simple cases, such as one which
assumes o(n'k’ | nk) to be independent of n.

The relation between (12) and (13) on one hand,
and Eq. (11) on the other is readily established: When
(12) and (13) are summed over all # at the given E,
and Egs. (4) and (6) introduced, Eq. (11) is obtained.

Comparison of (11) and (15) shows that the former
depends on %'’ by a proportionality to ke~/k"%g’(n’),
while the second has a proportionality to kz"'/k'g'(n').
Thus, the plots in Ref. 4 for the relative values of
kg’ (k | n'k’), when multiplied by a factor proportional
to 1/%’, immediately provide plots of the relative values
of the molecular beam reaction cross section o’ (#'%’).
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Equation (2) of Ref. 4, and hence Eq. (13) above,
are restricted to calculations at constant total E, the
calculations being made for different relative amounts
of E,, and Ep. Equations (11) and (11') are not
restricted in this manner, since #' and %' are inde-
pendently variable there. To use (11) or (11°) to cal-
culate absolute values of ¢/ (n'%’) or o/ (k) it is necessary
to know kgz™'/kg and to calculate N*(E).

PARTICULAR EXAMPLES OF N!(E) IN EQ. (11)

In Eq. (11), when kg"'/kg is measured for Reaction
(3), only N*(E) remains to be determined. Different
models of the activated complex give different values
of N¥(E) and hence different predicted values for
o' (n'k’). As usual, the measurement of the pre-exponen-
tial factor and activation energy of kz for Reaction (3)
provides some insight into the activated complex and,
hence, into N*(E).

The number of vibrational and vibrational-rotational
states of energy-rich molecules has been calculated by a
variety of methods in the case of unimolecular reac-
tions.”® Analogous methods can be employed to evaluate
N*(E) in bimolecular reactions. For example, the
partition function of the activated complex in the
center-of-mass system is

QF= Z; exp(— Ea*/ksT),

where the summation is over all rotational-vibrational
states of the activated complex (degenerate ones
included). The number of such states with energy equal
to or less than E,} is denoted by #*(E.,;); i.e.,

n}(Ew) = N*(E), (17)
where the relation between E,; and E is given later by

Eq. (22).
#t(Eny) is a step function, but in the sense of a

Stieltjes integral Eq. (16) can be written as
0= f © dni(E))

E}
e (- i) et 09

dn}(E,t)/dE,t contains delta functions at each step of
n(E,?). Equation (18) yields

Q%= (ksT)* L — n¥(E,}) exp (-— f;;) dE,}  (19)

on integration by parts [since #*(E,*) vanishes at
E,'=0]. If (ksT)!is denoted by s and (19) treated as
a Laplace transform,'¢!* inversion yields

Tz exp(sE,t)ds. (20)

(16)

c+io0
wh (B = 2mi)t [
The total energy E in Eq. (17) can be written as
E=E,+ /2
= En k" 24"+ AV,

= Bugrk VR0 20, (21)
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where V! is the potential energy of the activated
complex!¢ (relative to that of the most stable configura-
tion of A+ B taken as zero), AV} is the change of poten-
tial energy for Reaction (3), and the E,, are the energy
levels of the activated complex; u* and k¢ are the effec-
tive mass and wavenumber for motion of the latter
along the reaction coordinate. The maximum accessible
value of E.; at a total energy E is the largest value
consistent with E—V,}:
E,y(max) SE-V, (22)
In activated complex theory, V. * is obtained from
the activation energy of Reaction (3) at 0°K, EJ, or
that at temperature T, E;7":

Ea0= V,,"}-Eot—Eo,

Ea= Vp3+E0t':—E0+kT+ (Enz_ ED:)"“ (Eu—Eﬂ),
(23)

where the Eg's are the relevant vibrational zero-point
energies and the averages are thermal averages.

For concreteness two common simple limiting models
and the resultant N¥(E)’s will be considered in the
present section. These particular models are the loose
and rigid activated complexes,’® the former being assoc-
jated with reactions having unit collision efficiency

_when the activation plus centrifugal barrier is exceeded

by the radial portion of the translational energy of
relative motion, The second activated complex is
associated with reactions have appreciable steric effects
(found when rotations of the reactants becoming
bending modes of the activated complex).

When the activated complex is a loose one, the usual
expression written for Q* [when divided by s for use in
(20)] is'®

Q(s) /5= (21'/o*h?s*) Qr* (5)Qv* (),

where s is (ksT)~; It is uR%?, R? being the separation
distance of A and B in the activated complex; o? is 2 if
A and B are identical, and unity otherwise; Qr*(s)
is the product of the rotational partition functions of A
and B, and Qv*(s) is the product of their vibrational
partition functions. The corresponding equation for the
rigid activated complex is given later in Eq. (31).
Most of the remaining discussion in this section is
given for concreteness and completeness. More detailed
discussions are found in Refs. 13, 14, 19, and 20. Ac-
cording to Eq. (20) applied to Qr* and nx?, the inverse
transform of Qr¥(s) /s is the number of rotational states
net(Eg?) with rotational energy less than Eg?. Simi-
larly, Qv'(s)/s is the number of vibration states
nyt(Ey?) with vibrational energy less than Ey*. The
minimum value of Ey? is Eg, the zero-point energy of
the activated complex. Application of the convolution

(24)
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theorem to (20) and (24) yields
N}(E) =n*(E.})
Ent
= (2[’/0%2) [ nvt(Ev‘) nn‘(E,.‘-—EV‘) dE[f2
0

(25)

where, in virtue of (22) and of treating E,® now as a
“continuous” variable, we have

El=E—V,. (26)

For an atom plus diatomic molecule, Qr?/s equals
(2I/0,h%?), where I and o, are the moment of inertia
and symmetry number for the diatomic molecule. Thus,
inversion via (20), applied now to nz* and Qgl/s,
yields®

12} (Ead— Ey*) =0 (Eat<EyY)
= (2/oJ?) (B3~ Ey)  (B'>EpY).
(27)

If, instead, A and B are, say, nonlinear polyatomic
molecules, Qr’/s is (A24,A4.B.B,B,)Y*(8x /0,051 /5,
where the A’s and B’s are principal moments of inertia
of A and of B, and #g(E,— Ey*) equals this coefficient
of 574, multiplied by (E,— Ey?*)4/4\.

When E is small enough that no vibrational excitation
of the activated complex occurs, only the leading term
in Qv*/s contributes, namely s~ exp(—sEq}) for a non-
degenerate lowest vibrational state, Inversion via (20)
yields the expected result,

nv*(Evt) =0 (EV3<E0*)
=1 (Ev'>E), (28)

and (25) and (26) yield, for example, for an atom plus
diatomic molecule,

NY(E) = (21} /%) (21/ai?) (E— V'~ Eot)¥/2 (29)

(e*=1 here).

If, instead, the energy E is high enough for vibra-
tional excitation of the activated complex to occur,
more general expressions than (28) must be used, for
example,’®

nv*(Byt) = (By'~ B+ aEd) M/ (M1 fI ) (30)

where M is the number of vibrational degrees of free-
dom (frequencies »:}) of the activated complex, and @
is unity at high Ey? and a known function of Ey* at
lower Ey!.® Many comparisons of (30) with exact
computations are available.®

In case of a linear rigid activated complex, the rota-
tional partition function is 27%/c%h?s, while for a non-
linear rigid activated complex it is (8x7.1,%1,%)¥3/h3s%2,
Writing it in either case as Az/s?H, where ¢=0 in the
first instance and 4 in the second, and where A4y is the

BIMOLECULAR ACTIVATED COMPLEX THEORY

relevant constant, one has

0Hs) _ (An/st)00H(s)

§ s

(31)

Inversion via (20) and the convolution theorem yields
NHE) =n(E.})
Bat
=A3/ (E,,t—Evt) qﬂv’(Ev’)dEv’/P(g-’-l)
0

(32)

where E,? is given by (26), and I is the gamma func-
tion. When there is no vibrational excitation, #y*(Ey?)
is given by (28), and integration of (32) yields

NYE)=(E—V,*~Es*)*"'4x/T(¢+2). (33)

At high E,} Eq. (30) can be introduced for ny? into
(32).
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