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A time-dependent perturbation solution is derived for a system of first-order nonlinear or linear ordinary
differential equations. By means of an ansatz, justified a posteriors, the latter equations can be converted to
an operator equation which is solvable by several methods. The solution is subsequently specialized to
the case of classical mechanics. For the particular case of autonomous equations the solution reduces to
a well.known one in the literature. However, when collision phenomena are treated and described in a
classical “interaction representation” the differential equations are typically nonautonomous, and the
more general solution is required, The perturbation expression is related to a quantum mechanical one and
will be applied subsequently to semiclassical and classical treatments of collisions.

INTRODUCTION

Classical mechanics has been used extensively to treat
experimental data on reactive collisions,! in part
because exact calculations can be made. The corre-
sponding exact quantum calculations in three dimen-
sions are absent at present. Exact classical calculations
of rotational-vibrational-translational energy transfer
have also been useful? The latter, in conjunction with
classical approximations, provide insight into quantum
approximations,® as do the several exact quantum
results.®

In the present paper a “high-order” perturbation
theory is developed in a form which gives final state
properties in terms of integrals over initial state ones
and so is suited to collision phenomena.s It permits
systematic development of certain approximations in
classical mechanics and, in conjunction with a cor-
respondence principle for collisions,® permits an ap-

proximation of semiclassical matrix elements which
occur in some collision problems.

In the present paper a perturbation theory is derived
first for a system of ordinary differential equations
more general than those characterizing classical
mechanics and is later specialized to classical mechanics.
In passing it may be noted that in a variation of con-
stants treatment (e.g., of collisions in classical me-
chanics’) the differential equations for the “constants”
are typically nonautonomous.

The first step in the over-all derivation is a conversion
of the system of equations to an operator equation.?
To this end an ansatz [Eq. (6) ] will be introduced, one
which is then justified & posteriori. The resulting opera-
tor equation can then be solved by one of several
methods. Using one of these? we obtain Eqgs. (6) and
(15), and for classical mechanics Egs. (24) and (26).
[Using another method (iteration) one obtains instead
(15’), while a time-ordered method yields instead (15").]
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Several applications of the present cquations are
given in subsequent articles.

PERTURBATION THEORY

The initial value problem for the system (=1, +++,#)
of differential equations, nonlinear or linear,

dxi/dt=hy(x, ) =h2(x, ) +hMx, ) (=),
(t=t), (1)

is considered, where 4 and k! are the unperturbed
and perturbing terms; x denotes the totality of x/s.
We shall be mainly interested in applications where
hi* vanishes as /4, and as t— . This vanishing may
occur either because of an explicit dependence of k! on
{ or, even when this dependence is absent, because of
the range of x of interest? in the neighborhood of &
and =4,

Solution of the unperturbed problem yields constants
of the motion ;. In the perturbed problem, when the
above vanishing of 4! occurs, these £’s vary from their
initial values at ¢=1{, to final constant values at i~e.
Transformation from xs to &’s (‘“‘variation of con-
stants’) yields

dz/dt=hi(%, 1)

T;=%

xXi= x.~°

(IZ 10) ’
(l = to) ) (2)

where ; vanishes when %! does and where £ denotes the
totality of £s. Even when (1) is autonomous (i.e., A
depends on x alone), Eq. (2) is generally nonautono-
mous in collision phenomena, as noted earlier. In the
case of classical mechanics Eq. (2) would form a
classical counterpart of an “interaction representation”
in quantum mechanics.® The ensuing results will apply
to Eq. (2) and, when the barred symbols are replaced by
unbarred ones, to Eq. (1) as well.

A first-order partial differential operator D({),
acting on the space of functions of # and containing fasa
parameter, can be defined®

D(t) = X hi(#, 1) (8/9%:). 3)
The system (2) can be rewritten as
df(2)/dt=D)f(%)  (I2h),
Ti=2%x; (t=1), (4)

where f(£) is an arbitrary differentiable function of %,
since df (%) /di equals X_.9f(%) /0%:(dZ:/dt).

If the system (2) were autonomous, and D(1) then
written as D, the solution of (2) or (4) would be?

f(&) =[{exp[ (t—t0) D]}f(%) Jome. (5)

To treat the more general system (2) we seck instead a
generalization of (5), and shall assume that f (%) can
be written as

J(£) =[{exp0($) }f (&) Joes, (6)
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where 9(?), like D, is to be a first-order partial differ-
ential operator. O(f) contains { as a parameter. Later,
in Eq. (15), an explicit expression for this operator is
given. For brevity exp0(f) will be denoted by O(/):

D) = exp8(f) = 35 (1) /. ™
Equations (4), (6) and (7) yield
(O /d=DW)[(ONF) at =2, (8)

where d/d! acts only on the ¢ in ©D(¢), because of the
restriction =29,

Because of the properties of the exponential of a
first-order partial differential operator! one may write,
for any function g(%, #),

gOW%, 1) =Dg(£ 1), at =3 )
Thus, (8) can be rewritten as
[39(1) /d)f (%) =D D()f (%), at &= (10)

Omission of the arbitrary initial point £=3° and the
arbitrary function f(%) yields the operator equation

dO(t) /dt=0() D(¥). (11)

One form of solution? to a differential equation for an
operator U({, k),

AU/dt= AU, Ulh, b)=1, (12)

is

U (4, bo) = exp®(L, L), (13a)

where?

4 1 t 12
e= [ Avdtt - [A . f A,,dll] dh
to 2 to to

1t 3] i3
+ - [A 3 / [A te) A “dll] db):l dlz
47y to to

L M'a f“A dl] f‘.A dl]dt
+E ‘o[[ wf, il |, ; 1yl | digoe.

Ay, denotes the operator A(%), and [, ] denotes the
commutator. Comparison of (11) and (12) shows that
instead of (12) we need the equation satisfied by U™,
the inverse of U:

(13b)

(19

obtained by differentiation of UU~!= 1 and introduction
of (12). Comparison of (14) with (11) shows that they
are of the same form, but with U~* and A replaced by
© and — D, respectively. Since the inverse of exp0 is
exp(—0) one finds from (13) that the O in (6) is

dU~Vdt=-U"4, Uk b)=1,
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given by

¢ 1 t ig
o) = Dy dt— —/ [D:,,/ Dgl(ﬂx:l diy
to 2/ to

1 ¢ ¢y i2
+ " [Dlaf [Du,[ Dlldll] (”2] dl;
4 to to to

1 t ty ty
+ 2 [[Dl:) Dl:dtZ] y Dlldll] dia"l" ree.,
12 to to

(15)

where each D,, denotes D({). Since the commuta-
tors of this D,, at various times I; are, like Dy, itself,
first-order partial differential operators, 9(¢) is also, thus
justifying a posteriori the ansatz (6). [Thus, by
reversing the sequence of steps in the derivation one
can verify that the solution given by (6) and (15)
satisfies (2).]

Had (1) been used instead of (2), a solution identical
with (6) and (15) would have been obtained but having
i, 2, and ks instead of #;, 2, and &/’s. (The restric-
tion of £ need not be imposed then, except for possible
convergence questions at large ¢. This point is returned
to in a later section.) Solving the operator Eq. (11)
could also have been based on time ordering or on simple
iteration [cf. Refs. 13-15, or Egs. (15') and (15")
below].

When the system of differential equations (2) is
autonomous, the commutators in (15) vanish since the
D,,’s no longer depend on ¢;. Equation (15) then reduces
to the well-known result (5).

The ansatz (6), leading from (4) to (11), could
undoubtedly be replaced by a more basic Lie-algebraic
argument, a point to which we shall return in a later
communication, D({) being an infinitesimal generator
of a Lie algebra. However, the argument given earlier
suffices for the immediate purpose. Again, the results
(6) and (15), together with (24) and (26), may be
known to workers in that field, but have not to our
knowledge been published explicitly.

An iterative solution of (11) or (5) leads to a known!
result for f(Z):

J(&) =[O(0)1(%) J=e’,
where

t t 3
D(t) = 1+ j: D“dll+ ( D“Dudt]) (”2
0

40 to

t i3 33
+ [ [ ( D,lD,,D,,dll) dlz] dtyt-++, (15
fo to to
a result consistent (after some manipulation) with

(7) and (15).
A time-ordered solution of (11) yields instead

1&) =[O (Bomsr, DO =Pexp [ ‘Dudn, (15")

where P denotes the time-ordering operator.!®*
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APPLICATION TO CLASSICAL MECHANICS

The preceding solutions can be specialized now to the
case where the independent variables occur in canoni-
cally conjugate pairs. The classical mechanical equa-
tions of motion for a system with generalized co-
ordinates ¢;, canonically conjugate momenta p;, and
Hamiltonian H(g, p, ¢) are

dq;/dt=aH/6p.-, dﬁ/d[—_—‘ —aH/aq.'. (16)
(Throughout, ¢ and p will denote the totality of gi’s
and p/’s, respectively.)

The Hamiltonian is the sum of unperturbed and
perturbed terms, Hy and H;:

H(Q7 ? t)=H0(q1 P t)+Hl(Q7 ? 1. (17)
Transformation to new variables §; and P; which are
constants of the motion of the unperturbed problem is
conveniently made by means of a generating function
W(qg, §, !) satisfying the Hamilton-Jacobi" equation
for the unperturbed problem,

Ho(?; P’ ‘)+3W(q, ﬁ, t)/al=0. (18)
The transformation equations are
gi=0W/ap:,  pi=3W/dgs. (19)

The generating function W transforms H to a new
Hamiltonian H (g, #, {),

A(g,p,0)=H(q, p, 1) +3W (g, 5,1)/3!, (208)

which in virtue of (17) and (18) becomes
H(q, D, l) =Hl(Qs ? I)- (20b)
[Thus, to obtain A, the solutions ¢(g, 5, ¢) and p(§, 5, )

of the unperturbed problem are introduced into
Hi(g, p, t).] The new equations of motion are

dgi/dt=0H §,p,?)/0ps
dpi/di=—dH (§, p,1)/0G:. (21)
The operator D(t), defined by (3), thus becomes't®
D(y=—{HW , } (22)
where { , } denotes the Poisson-Bracket:
{X,¥}= Z (0X/8G:0Y/3p:—0X/0p:dY /0G:). (23)

The solution to (21) is

f(@:, 5s) =[(expO)f(§, P) Jomi®7=3° (24)
for any function f of the §’s and s, where O is given
by (15) and (22). If the iterative solution (13). or
time-ordered one (15'") were employed, exp® would
be given by © in (15’) or (15”), respectively, where
now (22) is introduced. When (15) is used instead,
(26) is obtained, as follows.

Since D is now a Poisson-Bracket, Eq. (15) can
first be simplified: One readily verifies that Jacobi’s
identity® for Poisson-Brackets can be rewritten in
operator form as

X, Y]={(X, 7}, }, (258)

where

X={X,} and Y={V, }. (25b)
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Consequently, (15) becomes

0={B, }, (26a)

where

¢ 1rt 2 _
_B = f H“dll+ - [Ht,, f 2}I“(Iﬁ,] dtz
0 2 to to

1 3 13 12 _
‘+‘ Z [Hg,,/ [ﬁl,, Hudll] (”2] dta
to to to

1 ¢ - ts _ s _
+ a " [[Hln A Hl:dlﬂ] ’ /‘o H“dll] dlgt<e-.
(26b)

We note that the symbol exp{B, } arising from (24)
and (26a) represents

exp{B, j=14+{B, }+(1/2!){B: {B, }}
+(1/3){B, (B, {B, }}}+---. (27)

The solution to (21) is given by (24) and (26).
Had (1) been used instead of (2) as a starting point,
(26) would again have been obtained, but with G, P, &,
7°, and H replaced by g, p, ¢°, #°, and H.

In some problems interest lies in the perturbation of
variables ¢; (e.g., the orbital elements in celestial
mechanics®) which are functions of the canonically
conjugate pairs, rather than the pairs themselves.
Equations (24) and (26) can still be applied.®

An alternative derivation of (24) and (26), but not of
(6) and (15), can be given® using a quantum mechanical
expression and the correspondence between classical
and quantum mechanics.

COMPARISON WITH PREVIOUS WORK

Grobner® has employed an operator formalism
(“solution by Lie series”), particularly for the case
that the system (1) is autonomous.?' Solutions were
made iteratively or by other'® methods, though not
employing Magnus’ result. When the system of equa-
tions (1) is autonomous, D (with x’s and A’s instead of
#'s and R's) becomes the operator which enters into
Lie’s theory of ordinary differential equations.” An
iterative solution for nonautonomous systems was
noted previously.”

Operator methods were introduced into classical
mechanics by Koopman# A rather different operator
formalism has been employed by Garrido in a per-
turbation theory for classical mechanics. He noted that
the operator  defined in

P _ore (222 2),
at 7 \0pidgq; 93p; 0gi

is a linear differential operator and that, for that
reason, the equation for the evolution of a function of
phase space, F(g, p), is equivalent to an operator
equation™

(28)

dF/dt=[Q, F], (29)

if Fin (29) is reinterpreted in an operator acting on
the space of functions of phase space. An automorphism
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was next tacitly assumed,® by analogy with a known
quantum mechanical result, and a solution was obtained
both in terms of a time-ordered product and iteratively
(Magnus’ method was not employed). Appealing to
another analogy® between an ordinary and an operator
equation, he obtained an expression for the time
evolution of the function F. The present method of
derivation of (15’) and (15”) can be regarded as
providing a more rigorous derivation of his final results.”

Garrido’s final equation has been applied to rota-
tional-translational energy transfer in a plane.?®
Similarly, the present results can be applied to collision
phenomena, either using the solutions (24) and (26) or
using (15’) or (15”).

In the perturbation treatment of (1) or (2) we were
particularly interested in the case where 40 as
t— o0, In problems such as forced harmonic oscillator

g=p, DP=uwi’q+a sinwt,
where clearly 20 as t—, the series for O(f) ter-

minates after the second term, and no difficulty arises.
However, in problems such as the anharmonic oscillator
g=p, p=uw'q+ag’,
secular terms develop. They can be avoided by re-
sorting to other methods, such as Lindsted’s proce-
dure® or canonical perturbation theory.® In the latter
theory, some old variables appear as a perturbation
series in terms of the new. In collision problems on the
other hand, one is much more interested in an expression
for the new variables (i.e., the new constants of the
motion) at {=2c in terms of the old, as for example
in the solution given by (24) and (26).
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