High-Order Time-Dependent Perturbation Theory for Classical Mechanics and for Other Systems of First-Order Ordinary Differential Equations*

R. A. Marcus

Noyes Chemical Laboratory, University of Illinois, Urbana, Illinois 61801 (Received 24 November 1969)

A time-dependent perturbation solution is derived for a system of first-order nonlinear or linear ordinary differential equations. By means of an ansatz, justified a posteriori, the latter equations can be converted to an operator equation which is solvable by several methods. The solution is subsequently specialized to the case of classical mechanics. For the particular case of autonomous equations the solution reduces to a well-known one in the literature. However, when collision phenomena are treated and described in a classical "interaction representation" the differential equations are typically nonautonomous, and the more general solution is required. The perturbation expression is related to a quantum mechanical one and will be applied subsequently to semiclassical and classical treatments of collisions.

INTRODUCTION

Classical mechanics has been used extensively to treat experimental data on reactive collisions,¹ in part because exact calculations can be made. The corresponding exact quantum calculations in three dimensions are absent at present. Exact classical calculations of rotational-vibrational-translational energy transfer have also been useful.² The latter, in conjunction with classical approximations, provide insight into quantum approximations,³ as do the several exact quantum results.⁴

In the present paper a "high-order" perturbation theory is developed in a form which gives final state properties in terms of integrals over initial state ones and so is suited to collision phenomena.⁵ It permits systematic development of certain approximations in classical mechanics and, in conjunction with a correspondence principle for collisions, permits an ap-

proximation of semiclassical matrix elements which occur in some collision problems.

In the present paper a perturbation theory is derived first for a system of ordinary differential equations more general than those characterizing classical mechanics and is later specialized to classical mechanics. In passing it may be noted that in a variation of constants treatment (e.g., of collisions in classical mechanics) the differential equations for the "constants" are typically nonautonomous.

The first step in the over-all derivation is a conversion of the system of equations to an operator equation.⁸ To this end an ansatz [Eq. (6)] will be introduced, one which is then justified a posteriori. The resulting operator equation can then be solved by one of several methods. Using one of these⁹ we obtain Eqs. (6) and (15), and for classical mechanics Eqs. (24) and (26). [Using another method (iteration) one obtains instead (15'), while a time-ordered method yields instead (15").]

Several applications of the present equations are given in subsequent articles.

PERTURBATION THEORY

The initial value problem for the system $(i=1,\dots,n)$ of differential equations, nonlinear or linear,

$$dx_i/dt = h_i(x, t) \equiv h_i^0(x, t) + h_i^1(x, t) \quad (t \ge t_0),$$

$$x_i = x_i^0 \quad (t = t_0), \quad (1)$$

is considered, where h_i^0 and h_i^1 are the unperturbed and perturbing terms; x denotes the totality of x_i 's. We shall be mainly interested in applications where h_i^1 vanishes as $t \rightarrow t_0$ and as $t \rightarrow \infty$. This vanishing may occur either because of an explicit dependence of h_i^1 on t or, even when this dependence is absent, because of the range of x of interest¹⁰ in the neighborhood of t_0 and $t = +\infty$.

Solution of the unperturbed problem yields constants of the motion \bar{x}_i . In the perturbed problem, when the above vanishing of h_i occurs, these \bar{x}_i 's vary from their initial values at $t=t_0$ to final constant values at $t\sim\infty$. Transformation from x_i 's to \bar{x}_i 's ("variation of constants") yields

$$d\bar{x}_i/dt = \bar{h}_i(\bar{x}, t) \qquad (t \ge t_0),$$

$$\bar{x}_i = \bar{x}_i^0 \qquad (t = t_0), \qquad (2)$$

where h_i vanishes when h_i does and where \bar{x} denotes the totality of \bar{x}_i 's. Even when (1) is autonomous (i.e., h_i depends on x alone), Eq. (2) is generally nonautonomous in collision phenomena, as noted earlier. In the case of classical mechanics Eq. (2) would form a classical counterpart of an "interaction representation" in quantum mechanics. The ensuing results will apply to Eq. (2) and, when the barred symbols are replaced by unbarred ones, to Eq. (1) as well.

A first-order partial differential operator D(t), acting on the space of functions of \bar{x} and containing t as a parameter, can be defined⁸

$$D(t) = \sum_{i} \bar{h}_{i}(\bar{x}, t) \left(\partial / \partial \bar{x}_{i} \right). \tag{3}$$

The system (2) can be rewritten as

$$df(\bar{x})/dt = D(t)f(\bar{x}) \qquad (t \ge t_0),$$

$$\bar{x}_i = \bar{x}_i \qquad (t = t_0), \qquad (4)$$

where $f(\bar{x})$ is an arbitrary differentiable function of \bar{x} , since $df(\bar{x})/dt$ equals $\sum_i \partial f(\bar{x})/\partial \bar{x}_i (d\bar{x}_i/dt)$.

If the system (2) were autonomous, and D(l) then written as D, the solution of (2) or (4) would be⁸

$$f(\bar{x}) = \lceil \{ \exp[(t-t_0)D] \} f(\bar{x}) \rfloor_{\bar{x}=\bar{x}}.$$
 (5)

To treat the more general system (2) we seek instead a generalization of (5), and shall assume that $f(\bar{x})$ can be written as

$$f(\bar{x}) = [\{\exp\Theta(t)\}f(\bar{x})]_{t=t}^{\bullet}, \tag{6}$$

where O(t), like D, is to be a first-order partial differential operator. O(t) contains t as a parameter. Later, in Eq. (15), an explicit expression for this operator is given. For brevity $\exp O(t)$ will be denoted by O(t):

$$\mathfrak{D}(t) = \exp \mathfrak{O}(t) = \sum_{n=0}^{\infty} \mathfrak{O}^{n}(t)/n!. \tag{7}$$

Equations (4), (6) and (7) yield

$$df(\mathfrak{Q}(t)\bar{x})/dt = D(t)f(\mathfrak{Q}(t)\bar{x})$$
 at $\bar{x} = \bar{x}^0$, (8)

where d/dt acts only on the t in $\mathfrak{D}(t)$, because of the restriction $\bar{x} = \bar{x}^0$.

Because of the properties of the exponential of a first-order partial differential operator¹¹ one may write, for any function $g(\bar{x}, t)$,

$$g(\mathfrak{Q}(t)\hat{x}, t) = \mathfrak{Q}(t)g(\bar{x}, t), \text{ at } \bar{x} = \bar{x}^0.$$
 (9)

Thus, (8) can be rewritten as

$$\lceil d\mathfrak{D}(t)/dt \rceil f(\bar{x}) = \mathfrak{D}(t)D(t)f(\bar{x}), \quad \text{at} \quad \bar{x} = \bar{x}^0.$$
 (10)

Omission of the arbitrary initial point $\bar{x} = \bar{x}^0$ and the arbitrary function $f(\bar{x})$ yields the operator equation

$$d\mathfrak{D}(t)/dt = \mathfrak{D}(t)D(t). \tag{11}$$

One form of solution⁹ to a differential equation for an operator $U(t, t_0)$,

$$dU/dt = A(t)U, U(t_0, t_0) = 1,$$
 (12)

is

$$U(t, t_0) = \exp \mathfrak{B}(t, t_0),$$
 (13a)

where12

$$\mathfrak{G} = \int_{t_0}^{t} A_{t_1} dt_1 + \frac{1}{2} \int_{t_0}^{t} \left[A_{t_2}, \int_{t_0}^{t_2} A_{t_1} dt_1 \right] dt_2$$

$$+ \frac{1}{4} \int_{t_0}^{t} \left[A_{t_3}, \int_{t_0}^{t_3} \left[A_{t_2}, \int_{t_0}^{t_2} A_{t_1} dt_1 \right] dt_2 \right] dt_3$$

$$+ \frac{1}{12} \int_{t_0}^{t} \left[\left[A_{t_3}, \int_{t_0}^{t_3} A_{t_2} dt_2 \right], \int_{t_0}^{t_3} A_{t_1} dt_1 \right] dt_3 + \cdots$$
(13b)

 A_{ti} denotes the operator $A(t_i)$, and [,] denotes the commutator. Comparison of (11) and (12) shows that instead of (12) we need the equation satisfied by U^{-1} , the inverse of U:

$$dU^{-1}/dt = -U^{-1}A, \qquad U^{-1}(t_0, t_0) = 1,$$
 (14)

obtained by differentiation of $UU^{-1}=1$ and introduction of (12). Comparison of (14) with (11) shows that they are of the same form, but with U^{-1} and A replaced by $\mathfrak D$ and -D, respectively. Since the inverse of $\exp 0$ is $\exp (-0)$ one finds from (13) that the 0 in (6) is

given by

$$\mathfrak{O}(t) = \int_{t_0}^{t} D_{t_1} dt_1 - \frac{1}{2} \int_{t_0}^{t} \left[D_{t_2}, \int_{t_0}^{t_2} D_{t_1} dt_1 \right] dt_2 \\
+ \frac{1}{4} \int_{t_0}^{t} \left[D_{t_3}, \int_{t_0}^{t_3} \left[D_{t_2}, \int_{t_0}^{t_2} D_{t_1} dt_1 \right] dt_2 \right] dt_3 \\
+ \frac{1}{12} \int_{t_0}^{t} \left[\left[D_{t_3}, \int_{t_0}^{t_3} D_{t_2} dt_2 \right], \int_{t_0}^{t_3} D_{t_1} dt_1 \right] dt_3 + \cdots.$$
(15)

where each D_{t_i} denotes $D(t_i)$. Since the commutators of this D_{t_i} at various times t_i are, like D_{t_i} itself, first-order partial differential operators, O(t) is also, thus justifying a posteriori the ansatz (6). [Thus, by reversing the sequence of steps in the derivation one can verify that the solution given by (6) and (15) satisfies (2).]

Had (1) been used instead of (2), a solution identical with (6) and (15) would have been obtained but having x_i , x_i^0 , and h_i 's instead of \bar{x}_i , \bar{x}_i^0 , and \bar{h}_i 's. (The restriction of h_i^1 need not be imposed then, except for possible convergence questions at large t. This point is returned to in a later section.) Solving the operator Eq. (11) could also have been based on time ordering or on simple iteration [cf. Refs. 13–15, or Eqs. (15') and (15") below].

When the system of differential equations (2) is autonomous, the commutators in (15) vanish since the D_{t_i} 's no longer depend on t_i . Equation (15) then reduces to the well-known result (5).

The ansatz (6), leading from (4) to (11), could undoubtedly be replaced by a more basic Lie-algebraic argument, a point to which we shall return in a later communication, D(t) being an infinitesimal generator of a Lie algebra. However, the argument given earlier suffices for the immediate purpose. Again, the results (6) and (15), together with (24) and (26), may be known to workers in that field, but have not to our knowledge been published explicitly.

An iterative solution of (11) or (5) leads to a known¹⁵ result for $f(\bar{x})$:

$$f(\bar{x}) = [\mathfrak{O}(t)f(\bar{x})]_{\bar{x}=\bar{x}^0},$$

where

$$\mathfrak{D}(t) = 1 + \int_{t_0}^{t} D_{t_1} dt_1 + \int_{t_0}^{t} \left(\int_{t_0}^{t_2} D_{t_1} D_{t_2} dt_1 \right) dt_2 + \int_{t_0}^{t} \left[\int_{t_0}^{t_2} \left(\int_{t_0}^{t_2} D_{t_1} D_{t_2} dt_1 \right) dt_2 \right] dt_3 + \cdots, \quad (15')$$

a result consistent (after some manipulation) with (7) and (15).

A time-ordered solution of (11) yields instead

$$f(\bar{x}) = [\mathfrak{D}(t)f(\bar{x})]_{z=z^0}, \quad \mathfrak{D}(t) = P \exp \int_{t_0}^t D_{t_1} dt_1, \quad (15'')$$

where P denotes the time-ordering operator.16a

APPLICATION TO CLASSICAL MECHANICS

The preceding solutions can be specialized now to the case where the independent variables occur in canonically conjugate pairs. The classical mechanical equations of motion for a system with generalized coordinates q_i , canonically conjugate momenta p_i , and Hamiltonian H(q, p, t) are

$$dq_i/dt = \partial H/\partial p_i, \qquad dp/dt = -\partial H/\partial q_i.$$
 (16)

(Throughout, q and p will denote the totality of q_i 's and p_i 's, respectively.)

The Hamiltonian is the sum of unperturbed and perturbed terms, H_0 and H_1 :

$$H(q, p, t) = H_0(q, p, t) + H_1(q, p, t).$$
 (17)

Transformation to new variables \bar{q}_i and \bar{p}_i which are constants of the motion of the unperturbed problem is conveniently made by means of a generating function $W(q, \bar{p}, t)$ satisfying the Hamilton-Jacobi¹⁷ equation for the unperturbed problem,

$$H_0(q, p, t) + \partial W(q, \bar{p}, t) / \partial t = 0.$$
 (18)

The transformation equations are

$$q_i = \partial W / \partial \bar{p}_i, \qquad p_i = \partial W / \partial q_i.$$
 (19)

The generating function W transforms H to a new Hamiltonian $\bar{H}(\bar{q}, \bar{p}, t)$,

$$\vec{H}(\bar{q}, \bar{p}, t) = H(q, p, t) + \partial W(q, \bar{p}, t) / \partial t,$$
 (20a)

which in virtue of (17) and (18) becomes

$$\bar{H}(\bar{q}, \bar{p}, t) = H_1(q, p, t).$$
 (20b)

[Thus, to obtain \bar{H} , the solutions $q(\bar{q}, \bar{p}, t)$ and $p(\bar{q}, \bar{p}, t)$ of the unperturbed problem are introduced into $H_1(q, p, t)$.] The new equations of motion are

$$d\bar{q}_{i}/dt = \partial \bar{H} \ \bar{q}, \bar{p}, t)/\partial \bar{p}_{i},$$

$$d\bar{p}_{i}/dt = -\partial \bar{H}(\bar{q}, \bar{p}, \bar{t})/\partial \bar{q}_{i}.$$
(21)

The operator D(t), defined by (3), thus becomes 16b

$$D(t) = -\{\bar{H}(t), \}$$
 (22)

where { , } denotes the Poisson-Bracket:

$$\{X,Y\} = \sum_{i} (\partial X/\partial \bar{q}_{i}\partial Y/\partial \bar{p}_{i} - \partial X/\partial \bar{p}_{i}\partial Y/\partial \bar{q}_{i}). \quad (23)$$

The solution to (21) is

$$f(\bar{q}_i, \bar{p}_i) = [(\exp \mathfrak{O})f(\bar{q}, \bar{p})]_{\bar{q} = \bar{q}^0, \bar{p} = \bar{p}^0}$$
(24)

for any function f of the \bar{q}_i 's and \bar{p}_i 's, where Θ is given by (15) and (22). If the iterative solution (15') or time-ordered one (15") were employed, exp Θ would be given by Ω in (15') or (15"), respectively, where now (22) is introduced. When (15) is used instead, (26) is obtained, as follows.

Since D is now a Poisson-Bracket, Eq. (15) can first be simplified: One readily verifies that Jacobi's identity¹⁸ for Poisson-Brackets can be rewritten in operator form as

$$[X, Y] = \{ \{X, Y\}, \},$$
 (25a)

where

$$X = \{X, \} \text{ and } Y = \{Y, \}.$$
 (25b)

Consequently, (15) becomes

$$\mathfrak{O} = \{B, \}, \tag{26a}$$

$$-B = \int_{t_0}^{t} \bar{H}_{t_1} dt_1 + \frac{1}{2} \int_{t_0}^{t} \left[\bar{H}_{t_2}, \int_{t_0}^{t_2} \bar{H}_{t_1} dt_1 \right] dt_2$$

$$+ \frac{1}{4} \int_{t_0}^{t} \left[\bar{H}_{t_2}, \int_{t_0}^{t_2} \left[\bar{H}_{t_2}, \int_{t_0}^{t_2} \bar{H}_{t_1} dt_1 \right] dt_2 \right] dt_3$$

$$+ \frac{1}{12} \int_{t_0}^{t} \left[\left[\bar{H}_{t_2}, \int_{t_0}^{t_2} \bar{H}_{t_2} dt_2 \right], \int_{t_0}^{t_2} \bar{H}_{t_1} dt_1 \right] dt_2 + \cdots.$$
(26b)

We note that the symbol $\exp\{B, \}$ arising from (24) and (26a) represents

$$\exp\{B, \} = 1 + \{B, \} + (1/2!)\{B, \{B, \}\} + (1/3!)\{B, \{B, \{B, \}\}\} + \cdots.$$
 (27)

The solution to (21) is given by (24) and (26). Had (1) been used instead of (2) as a starting point, (26) would again have been obtained, but with \bar{q} , \bar{p} , \bar{q}^0 , \bar{p}^0 , and \bar{H} replaced by q, p, q^0 , p^0 , and H.

In some problems interest lies in the perturbation of variables c. (e.g., the orbital elements in celestial mechanics19) which are functions of the canonically conjugate pairs, rather than the pairs themselves. Equations (24) and (26) can still be applied.20

An alternative derivation of (24) and (26), but not of (6) and (15), can be given using a quantum mechanical expression and the correspondence between classical and quantum mechanics.

COMPARISON WITH PREVIOUS WORK

Grobner⁸ has employed an operator formalism ("solution by Lie series"), particularly for the case that the system (1) is autonomous.21 Solutions were made iteratively or by other18 methods, though not employing Magnus' result. When the system of equations (1) is autonomous, D (with x's and h's instead of \bar{x} 's and \bar{h} 's) becomes the operator which enters into Lie's theory of ordinary differential equations.22 An iterative solution for nonautonomous systems was noted previously.15

Operator methods were introduced into classical mechanics by Koopman.28 A rather different operator formalism has been employed by Garrido14 in a perturbation theory for classical mechanics. He noted that the operator Ω defined in

$$\frac{dF}{dt} = \Omega F \equiv \sum_{i} \left(\frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial q_{i}} - \frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial q_{i}} \right) F \qquad (28)$$

is a linear differential operator and that, for that reason, the equation for the evolution of a function of phase space, F(q, p), is equivalent to an operator equation24

$$dF/dt = \lceil \Omega, F \rceil, \tag{29}$$

if F in (29) is reinterpreted in an operator acting on the space of functions of phase space. An automorphism was next tacitly assumed,25 by analogy with a known quantum mechanical result, and a solution was obtained both in terms of a time-ordered product and iteratively (Magnus' method was not employed). Appealing to another analogy26 between an ordinary and an operator equation, he obtained an expression for the time evolution of the function F. The present method of derivation of (15') and (15") can be regarded as providing a more rigorous derivation of his final results.27

Garrido's final equation has been applied to rotational-translational energy transfer in a plane.28 Similarly, the present results can be applied to collision phenomena, either using the solutions (24) and (26) or using (15') or (15").

In the perturbation treatment of (1) or (2) we were particularly interested in the case where $h_i \rightarrow 0$ as t→∞. In problems such as forced harmonic oscillator

$$\dot{q} = p$$
, $\dot{p} = \omega_0^2 q + a \sin \omega t$,

where clearly $h_i^1 \rightarrow 0$ as $t \rightarrow \infty$, the series for O(t) terminates after the second term, and no difficulty arises. However, in problems such as the anharmonic oscillator

$$\dot{q} = p$$
, $\dot{p} = \omega^2 q + aq^2$,

secular terms develop. They can be avoided by resorting to other methods, such as Lindsted's procedure29 or canonical perturbation theory.30 In the latter theory, some old variables appear as a perturbation series in terms of the new. In collision problems on the other hand, one is much more interested in an expression for the new variables (i.e., the new constants of the motion) at $t \cong \infty$ in terms of the old, as for example in the solution given by (24) and (26).

* Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. This research was also supported by a grant from the National Science Foundation at the University of Illinois.

¹ See, e.g., N. C. Blais and D. L. Bunker, J. Chem. Phys. 41, 2377 (1964) and references cited therein; M. Karplus and L. M.

2377 (1964) and references cited therein; M. Karpius and L. M. Raff, *ibid.* 41, 1267 (1964) and subsequent articles in this journal, P. J. Kuntz, E. M. Nemeth, J. C. Polanyi, S. D. Rosner, and C. E. Young, *ibid.* 44, 1168 (1966), and subsequent articles of this series.

²R. J. Cross, Jr. and D. R. Herschbach, J. Chem. Phys., 43, 3530 (1965); S. W. Benson and G. C. Berend, *ibid.* 44, 4247 (1966), references cited therein; 47, 4199 (1967); J. D. Kelley and M. Wolfsberg, *ibid.* 44, 324 (1966); R. G. Gordon, *ibid.* 44, 3083 (1966); D. Secrest, *ibid.* 51, 421 (1969).

³ See a. g. M. Attermeyer and R. A. Marcus, J. Chem. Phys.

³ See, e.g., M. Attermeyer and R. A. Marcus, J. Chem. Phys. 52, 393 (1970); A. O. Cohen and R. A. Marcus, *ibid.* 52, 3140 (1970); see also comparison of classical and quantum results in C. C. Rankin and J. C. Light, *ibid.* 51, 1701 (1969) and R. Russell and J. C. Light, *ibid.* 1720 (1969).

Russell and J. C. Light, *ibid*. 1720 (1969).

⁴ Exact numerical quantum calculations for inelastic energy transfer using smooth potential energy surfaces and several open channels (e.g., j=0, ±2) are given by B. R. Johnson and D. Secrest, J. Math. Phys. 7, 2187 (1966); A. C. Allison and A. Dalgarno, Proc. Phys. Soc. (London) 90, 609 (1967): W. A. Lester, Jr. and R. B. Bernstein, Chem. Phys. Letters 1, 207, 347 (1967); B. R. Johnson, D. Secrest, W. A. Lester and R. B. Bernstein, *ibid*. 1, 396 (1967); B. R. Johnson and D. Secrest, J. Chem. Phys. 48, 4682 (1968); W. Erlewein, M. von Seggern, and J. P. Toennies, Z. Physik 211, 35 (1968). For a recent rapid exact quantum mechanical method for this energy transfer, competitive in time (at low quantum numbers) with the classical competitive in time (at low quantum numbers) with the classical one, see R. G. Gordon, J. Chem. Phys. 51, 14 (1969); A. S. Cheung and D. J. Wilson, *ibid*. 51, 3448, 4733 (1969).

⁵ This method may be contrasted with others. Surveys of other methods are given in (a) R. Bellman, *Perturbation*

Techniques in Mathematics, Physics and Engineering (Holt, Rinehart and Winston, Inc., New York, 1964); (b) W. F. Ames, Nonlinear Ordinary Differential Equations in Transport Processes (Academic Press Inc., New York, 1968); (c) Differential Equations and Dynamical Systems, J. K. Hale and J. P. LaSalle, Eds. (Academic Press Inc., New York, 1967).

6 R. A. Marcus, J. Chem. Phys. (to be published):

7 Compare A. O. Cohen and R. A. Marcus, J. Chem. Phys.

13, 348 (1963), which came to our attention after submission of the present article. It contains a quite different derivation of (11), lengthier than the present though self-contained.

W. Magnus, Commun. Pure Appl. Math. 7, 649 (1954).

10 For example when (1) represents a system of equations of classical mechanical motion for a collision of two particles, h_i^1 reflects their interaction. In a conservative system neither his nor h_i depend explicitly on time l, but nevertheless h_i vanishes as $t \to \pm \infty$, because in the usual collision problems the particles are then far apart. (l_0 is chosen to be any arbitrary time in the region where the initial interaction of the particles is negligible.)

W. Grobner, Ref. 8, p. 17.

12 In a related problem, coefficients of the Baker-Campbell-Hausdorff series have been calculated to a high order by computer Hausdorff series have been calculated to a high order by computer [R. D. Richtmyer and S. Greenspan, Commun. Pure Appl. Math. 18, 107 (1965).] Applications of Magnus' solution are given in D. W. Robinson, Helv. Phys. Acta 36, 140 (1963); P. Pechukas and J. C. Light, J. Chem. Phys. 44, 3897 (1966); S. Chan, J. C. Light and J. Lin, *ibid.* 49, 86 (1968); E. H. Wichmann, J. Math. Phys. 2, 876 (1961); R. M. Wilcox, *ibid.* 8, 962 (1967) and references cited therein; M. Lutzky, *ibid.* 9, 1125 (1968). Sometimes the third term of the series is written were commerciable, but the present form due to Magnus. more symmetrically, but the present form, due to Magnus, emphasizes that the series terminates if Au and

$$\int_{t_0}^{t_i} A_{li} dt_j$$

13 E. H. Abate and F. Hofelich, Z. Physik 209, 13 (1968). 14 (a) L. M. Garrido, Proc. Phys. Soc. (London) 76, 33 (1960);

J. Math. Anal. Appl. 3, 295 (1961); (b) L. M. Garrido and F. Gascon, Proc. Roy. Soc. (London) 81, 1115 (1963).

15 See, e.g., K. T. Chen, Ref. 8; J. Diff. Equations 2, 438 (1966); for classical mechanics see L. M. Garrido and F. Gascon, Ref. 14,

Eq. 12, a result discussed later.

16 (a) For example E. Merzbacher, Quantum Mechanics (John Wiley & Sons, Inc., New York, 1961), p. 464. (b) Thus, as seen from (21) D now becomes for the system (20), the "Liouville operator," defined, for example, in R. W. Zwanzig, in Lectures in Theoretical Physics, W. E. Brittin, B. W. Downs and J. Downs, Eds. (Interscience Publishers, Inc., New York, 1961), p. 107.

17 (a) See, e.g., H. C. Corben and P. Stehle, Classical Mechanics (John Wiley & Sons, Inc., New York, 1960), 2nd ed., pp. 178, 184; (b) E. W. Brown and C. A. Shook, Planetary Theory (Cambridge University Press, London, 1933), p. 125

bridge University Press, London, 1933), p. 125.

¹⁸ Reference 17(a), p. 221.

¹⁹ See, e.g., T. E. Sterne, An Introduction to Celestial Mechanics (Interscience Publishers, Inc., New York, 1960), p. 100ff; S. W. Groesberg, Advanced Mechanics (John Wiley & Sons, Inc., New York, 1968), p. 306ff.

²⁰ Since the c_i° are functions of the q°'s and p°'s, (24) and (26) yield consult to exp 18.

field c_i equal to $\exp\{B_i, \}c_i^0$. Finally, the chain rule for dif-irentiation converts $\{B_i, \}$ to $\sum_{k,j} \{c_k^0, c_j^0\} (\partial B/\partial c_k^0) (\partial/c_j^0)$.

21 Nonautonomous systems were considered by adjoining i to yield c_i equal to $\exp\{B_i\}$ ferentiation converts $\{B_i\}$

the set of dependent variables. [See, however, G. R. Sell, in Ref. 5(c), p. 531. In our case the use of this device would have destroyed the similarity of classical and (the customary) quantum equations used elsewhere in applications.

²² See, e.g., R. Hermann, Differential Geometry and the Calculus of Variations (Academic Press Inc., New York, 1968), Chap. 6; E. L. Ince, Ordinary Differential Equations (Dover Publications, Inc., New York, 1956), Chap. IV.

²³ B. O. Koopman, Proc. Nat. Acad. Sci. 17, 315 (1931); cf. J. von Neumann, Ann. Math. 33, 587 (1932); E. H. Wichmann, Ref. 12.

²⁴ Reference 14(b), Eq. (5).

25 Compare assumption of Eqs. (6) and (7) in Ref. 14(b) whose analog in our case would be our ansatz (6), leading to the automorphism represented by our (9)

²⁶ Analogy was made by comparison of Eq. (3) of Ref. 14(b)

with the "operator equation" there, Eq. (2).

The second of the second o in the present paper the second is employed, it being the standard one in classical mechanics. Both pictures are treated and compared in Ref. 6.

 Zefeznik, J. Chem. Phys. 47, 3410 (1967).
 Reference 5(a), p. 57.
 See, e.g., D. Ter Haar, Elements of Hamiltonian Mechanics (North-Holland Publishing Company, Amsterdam, 1961), p. 153; Ref. 17(a), p. 251ff.