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In Part I, the differential equations for molecular rotational~vibrational-translational energy transfer
were re-expressed in terms of action-angle variables. In the present paper, approximate integral solutions
and exact results for rotational-translational transfer are compared for a wide range of collisional and
molecular parameters at small fractional changes in translational energy. The results are in good agreement
over the range investigated except at low moments of inertia. Thereby, conditions where the present ap-
proximation is best correspond to some which are least accessible by approximate or numerical quantum
mechanical methods. The present approximation employs for zeroth order a classical analog of the static
approximation in quantum mechanics, rather than the adiabatic approximation, and the results have
implications for the ranges of molecular parameters where each should be preferable in the quantum case.

INTRODUCTION

In Part I' it was shown that the classical mechanical
differential equations for rotational-translational-vibra-
tional energy transfer in molecular collisions could be
usefully transformed into differential equations for
action-angle variables. Integration of the latter equa-
tions yields directly the change in quantities such as
rotational angular momentum j, its £ component m;,
etc. Since the action variables frequently vary only
slowly during a collision, the new exact differential
equations are easier to integrate than the original ones.

Several approximations can be introduced into the
equations. In the present paper, the approximate results
are compared with exact ones obtained from numerical
integration of the original equations of motion, for the
case of an atom colliding with a rigid linear molecule.
The results permit an analysis, via semiclassical argu-
ments, of various approximations in quantum treat-
ments of phenomena involving rotational-translational
energy transfer.? '

The change in rotational angular momentum j can be
calculated directly or, from the change in orbital
angular momentum 1, indirectly. Both methods are
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employed and compared in the present paper. Compari-
son of exact and approximate results is made for various
impact parameters, j’s, I’s, rotational and orbital phases,
and for various molecular parameters. In particular,
the effect of varying the repulsive and attractive
asymmetry parameters in a 6-12 potential is considered.
Comparisons are also made for several specific molecular
systems.

DIRECT CALCULATION OF Aj

The space-fixed coordinate system in Fig. 1 is used
for the direct calculation of Aj. The rotator is described
in terms of its action variables (2xj, 22m;) and the
conjugate angle variables (¥/2r, Bm,/2r), where  and
m; are the rotational angular momentum and its z
component and where ¥ and B., are given in Fig. 1.
[The usual polar coordinates (8, ¢) of the rotator are
related to these variables via Eq. (23) of Part I.] The
initial orbital plane of the elastic collision will be
chosen to be the xy plane. [Thereby, initially, 0=34x
in Eq. (22) of Part 1.]

Various approximations can be introduced into
Hamilton’s equations for the rate of change of the
above action-angle variables of the rotator and for the
variables describing the relative translational motion,
for example, the following:

1. The variables of relative motion (R, ©, ®) and
their conjugate momenta on the right-hand sides of
these equations are replaced by their elastic collision
values, and six coupled equations of motion are inte-
grated numerically.?

2. (a) All variables on the right-hand sides are
replaced by their elastic collision values, reducing the
problem to the evaluation of integrals; (b) the com-
ponents of Aj are calculated, and Aj obtained from
them; (c) an iteration based on (a) is used; (d) in
addition to (a)—(c), symmetrization of initial and final
translational velocities is used, so as to satisfy micro-
scopic reversibility.*

Approximation 1 is the low-mass approximation of
Cross and Herschbach,® expressed now in terms of
action-angle coordinates for the rotator, The approxi-
mations in 2(a)-2(c) are the principal ones used in the
present paper. It is shown later (Appendices A plus C)
that 2(b) represents a partial contribution to 2(c).
The computer time for approximation 1 is approximately
the same as that for solving the exact (all 10) coupled
equations of motion. For that reason, the principal
value of 1 lies in the physical insight it provides when
a comparison with exact results is made.

Symmetrization 2(d) can be omitted in the present
paper since the initial conditions employed lead to a low
fractional change in translational energy. The latter
condition, which is commonly assumed in approximate
theories of line broadening,® is also relevant to many
other phenomena which concentrate on small | Aj |7
° When approximation 1 is made for the relative motion
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Fi6. 1. Coordinate system used for the direct calculation of
changes in components of j.

the orbital plane for the elastic collision is the same as
the initial orbital plane, i.e., the xy plane in Fig. 1.
From Egs. (21) and (26) of Part I (setting ©@=4x) one
then finds

dj/dt=F (v, t)[cosi; cosy sin®’— siny cos®’], (1)
dmj/dt="F (v, t)[— cosi; siny cos®’'+ cosy sin®"], (2)
dy/dt="F (v, t)j! cosi; siny sin®’'+-5/1, 3)
dBm,/dt=—F (v, t)j~! sing sin®’, (4)

where I is the moment of inertia, 4;, v, and ®’ are the
angles (Fig. 1) between j and the z axis, between the
rotor axis r and the line of centers R, and between the
line of nodes and the line of centers of the two colliding
particles, respectively. In Egs. (1)-(4) we have

cosi;=m;/j, (s)
cosy= cosi; siny sin®’+ cosy cos®’, (6)
' =P —fn;. (7
F(y,!) is given by
F(v, ) = —aV,(R, cosy)/d cosy, (8)

where V, is the anisotropic part of the interaction
potential V,

1 : 4
Vo=V—> f V sinydy. 9)
0

Without loss of generality the distance of closest

approach in the elastic collision may be taken to occur
at {=0. The elastic collision values for y and ¢’ are

v= (/1) +8y=wi+dy, (10)
N
&= /o S ditie, (11)

where 8y and d¢-, the values of these angles at (=0, occur
randomly in (0, 27). w is the rotational angular fre-
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Fic. 2. Phases ¢ and ¢ indicating midpoint orientations of the
line of centers and rotor, respectively, for an elastic collision.

quency. R(¢) obeys (12),

- (2£E—V0—E,:— RN 4r, (1

where V, is the spherically averaged value of V [the
second term in Eq. (9)]. Ewt and k are the initial
rotational energy of the linear molecule and the initial
orbital angular momentum, respectively.

Approximation 2(a) is made for the rotational motion
by replacing i; and 8., in Egs. (1)-(4) by their initial
values and by using the elastic collision value for ¢.
The resulting value for Aj, which for reasons discussed
later will be denoted by Aj!l, is (13), where ¢ and &’
are given by (10) and (11):

Rupin

A= fw F(y, t)[cosi; cosy sin®' — siny cos®’]d!.

(13)

When F(v,!) and (6) are introduced into (13) and
the trigonometric addition laws for the various sines
and cosines are applied, the cosi;, the siné’s, and cosd’s
can be placed outside the integrals. The asymmetry
parameters ¢ also appear outside the integrals. Thus,
once the integrals are evaluated for a set of initial
conditions they have been evaluated for all &s, all 4,’s,
and all ¢’s.

In Appendix A it is shown that approximation 2(b)
yields

Aj=[(jot871)2+ (4 j+) ]2 —7a, (14

where A j!! is defined by (13) and (Aj7+)% by

(Aj1)*= sin¥, [( j: F(v, ) sin®’ cos;#dt)2

.j. ( /: F(v, ) sin®’ singbdt)z] . (15)

In Appendix C it is shown that an approximation
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which is complete through second order (in an expres-
sion for j?) in its allowance for the change of orientation
of the rotational plane during collision is given by an
equation [Eq. (C7) ] similar to (14) with one additional
second-order term included under the radical sign. The
influence of the latter is minor and is discussed later.

If (14) were expanded it would yield

A j==A 1+ (4 j+)*/ 2o (16)

Thus, only Aj!l contributes to the first-order term,
making it clear why A j* was not obtained in the first-
order calculation (13) for the change in magnitude of

4
Equation (14) would have been an exact equation,

simple vector arguments show, if Aj! and Aj+ had
denoted the exact components of Aj parallel to and
perpendicular to jo. Instead, (13) and (15) actually
represent approximations to these components (Ap-
pendix A), thus motivating the notation.

The exact (numerical) results for A7 will be com-
pared® with (14) and with its first-order contribution
(13).

It will be convenient to introduce two phases ¢* and
¢7, as in Fig. 2. ¢& and ¢* are the angles which the
projection of j on the orbital plane and which the pro-
jection of 1 on the rotational plane make with the line
of centers R(0) and with the rotor axis r(0), respec-
tively, at the midpoint of the elastic collision, with signs
indicated by Fig. 2. The phases dy and 8¢ of the direct
calculation are related to ¢” and ¢® by (17), as one sees
from Fig. 2,

dy=4r—9¢", ¢Y))
INDIRECT CALCULATION OF Aj

In this case the change in components of 1 is cal-
culated, and A j is then obtained from angular momen-
tum conservation. It is convenient to use the space-fixed
coordinate system given in Fig. 3, which is similar to
Fig. 1 but with the orbital and rotator planes inter-

dye=—}w— 9%,

Fic. 3. Coordinate system used for the indirect calculation of 4 j.
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TasBLE 1. Parameters and conditions for figures.®
Figure b 1 ER E 4 OB & N
4 LXR] oo eve (XX ] sew 7/3 o-r see
s . . . . e0e ese LE X J H '/6 one
6 LN sen .s o0 o see 21/9 vee
7 vee voe soe soe eee ves vee 0.1-0.9
8 0.1~2 3,0.1® .o 0.25,2b .oe wos .o
9 0.4,1 ves 0.5-5 oo XY .oe ooe oo
10 0.1,1 0-80 . —0.145x
11 LN 10-’-1 LA XN ] 2 see -‘0.145’ LE NS LX)
12 ere 0.005-3 ese oo eoe ~0.145x» een veo
13 eve 10-3—} ese Io X see 1/3 e
14 ses 1031 oo 107 .e =/3 ces
15 1031 .ve 1007 “oe .o =/3 ‘oo
16 0.1-2 vee cee cee .o von cos SeeFig.
17 e 0.0024 1.65 0.0064-1.85 . -x/3 —-x/2 0.11
18, 0.0685 7.86 0.0121-10.2 oo —-x/3 -a/2 0.18
19 0.392 1.39 4X10%-1.9 oo —-x/3 —x/2 0.22
20 0.1-2 oo see ves Xy eoe oo oo

8 Unless otherwise stated the conditions are b=1, I=3%, ER =3, E'=
0.2483, ij=x/4, @R =7 /6, ¢" =37/2, a3 =0.3.

changed. The angle-action orbital coordinates of the
former are 27, 2wm;, /2=, and B.,,/2%. The xy plane
in Fig, 3 is chosen to be the initial rotational plane. As in
the direct calculations various aproximations can be
introduced:

1. The four rotator variables on the right-hand sides
of the equations of motion are replaced by their elastic
collision values, and six coupled equations of motion are
integrated numerically.

2. (a) All variables on the right side of the equations
of motion are replaced by their elastic collision values,
and the components of Aj then calculated from those
of Al; (b) some iteration and/or symmetrization is used.

Approximation 1 is the flywheel approximation of
Cross and Herschbach® and, once again, its principal
and considerable virtue lies in the physical insight pro-
vided by a comparison of its results with the exact ones.
Approximation 2(a) is the subject of the present sec-
tion. The equations of motion for the orbital properties
are similar to (1)-(4), but with Jr M3y ¥, Bmiy &', 15 Brmy
replaced by /, m;, ¥, Bmy, d—PBm, i1, Bm, respectively.
However, R(t) is again given by (12). We have

A j=[(AL)H (AR) 2 ( Jo— Amy) ¥]V2—j,

since the initial value of (js 7y, j=) was (0,0, o)
in Fig. 3. In Appendix B it is shown that the calculation
of Al,, Al,, and Am; and the use of (18) yields (in
admittedly a slightly simpler manner) the result
already obtained in (14), (13), and (15) so that we
need not consider approximation 2(a) further, [Nor
wilt 2(b) be considered.]

(18)

b When E" =0,28, I = §; when E' =2, I =0.1, in Fig. 8.
¢ In Figs. 13~18, to keep w constant, E” was varied as I was vatied.

RESULTS

The potential used for simplicity in the comparison
of exact and approximate results is a Lennard-Jones
one with a Py(cosy) asymmetry, though the preceding
formulations permit, of course, any potential function:

V=4¢[ (R/7)12— (R/o)™]+ Vs (19
Vpo=4¢(R/0)2agPs(cosy) —4e(R/a) a4 Ps(cosy).
(20)

In the comparison below, all energies are expressed in
units of ¢, distances in units of ¢, and masses in units of
u, the reduced mass of the colliding pair. The angular
momenta are then in units of (o%ue)¥2, The impact
parameter, in units of ¢, is denoted by 4. The moment
of inertia of the rotator in units of uo?® is denoted by I,
and the initial translational and rotational energy in
units of e by E? and Er, respectively. The dimensionless
variables defining the system are 3, 7, E%, E’, i, ¢%, ¢",
and the a’s; ¢ is the initial angle between j and 1, and
¢® and ¢ are the orbital and rotational phases in the
elastic collision (Fig. 2). The initial angular momenta
are related to the energies E® and E* by J=>5b(2EF)\?
and j= (21 Er)13,

The effect of varying each of these properties was
studied. In many of the results the standard set of con-
ditions from which variations were explored was b=1,
I=%, ER=3, E=20.25, i=}r, ¢®=4mr, and ¢*=4%x.
The detailed conditions for each of the figures are listed
in Table I. In most of the cases i>>fo since ER>ET and
I==b*, However, in Fig. 10, E* was varied from 0-80,
and appreciable values of E" occur in portions of Figs. 8,
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Fic. 4. Angular momentum transfer as a function of the phase
of the rotor.

13-15, 17-19, and in 11 (cf. Table I). The method of
performing the exact calculations is indicated in
Appendix D.

In Fig. 4 the approximation A j, the A 4!l and exact
A j are compared versus rotational phase ¢7, in Fig. 5
versus orbital phase ¢#, and in Fig. 6 versus initial

(j, 1) angle, i;.

015 - v T T -
O Exact Aj
—— Approximate Aj
010 ——— A:’IF: J

005

aj [
0g

~005}

~0.10

-015

-0.20

AR 180

F16. 5. Angular momentum transfer as a function of the phase
of the line of centers.

314
v T T T T
)5\ O Exact Aj
— Approximate Aj
aos-~ QO _ A'j’ﬁ ) 3
\
1
)
A
p— \ -
Y
1
. \
Aj \
0 b
-008}- 4
1 1 2 L 2
0 60 i 120 180

F16. 6. Angular momentum transfer as a function of the initial
angle between 1 and j.

In Fig. 7 the comparison is made versus asymmetry
parameter 8. (a4=ar=as). According to Eq. (13) the
Aj!l is linear in a2 but, as seen from (14), Aj has an
additional quadratic component (ci. Fig. 7). In Fig.
8, a comparison is made versus reduced impact param-
eter b. The decrease at large & is due to decreased
interaction.

In Fig. 9, a comparison is made versus initial relative
translational energy ER, Aj tends to decrease with
increasing E® in Fig. 9, reminiscent of the similar
behavior in many other collision processes at high

035
o Exact Aj
0301 __ Approximate Aj °
| --- Aj" II'
//
azsf- .

0.20,

Aj ]
0.5 —
0.10 -
005 -

' 1 L L 1 i
0 02 04 06

F16. 7. Angular momentum transfer as a function of the
asymmetry parameter as. (a.=64=ag).
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0.20- o .

o Exact A) °
—— Approximate Aj
e Ai“
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8j
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=005

Fic. 8. Angular momentum transfer as a function_of impact
parameter for a slowly rotating molecule [w=(0.75)"] and for a
more typical rotating one [ (w= (40)**]. Here, angular frequency
wl = (2Er/I)!"] is in units of (¢/p0®)*? radians.

relative velocity R. This result is understood by noting
that the rotator phase (¢ in Fig. 1 and ¢ in Fig. 3)
varies little during the collision, under the conditions
of Fig. 9 and of many other figures. We transform d! in
(13) to dR/R and write R in terms of EF and b, as in
Ref. 3, where E— Ex= E® and l¢*=2E®}. The remain-
ing factors in the integrand now depend mainly on R,
and the reason for an inverse dependence (at small )
of Aj on E® becomes clear. At high w (w>>l/P?, the
“orbital frequency”) Aj would be expected to increase
initially with increasing E.

In Fig. 10 a comparison is made versus initial rota-
tional energy Er and hence with increasing rotational
frequency w. At high enough E* an increased w leads to
a decreasing Aj, shown by applying the Riemann-
Lebesque lemma® to Eq. (13) and noting that the
second-order term in (16) becomes negligible at large
enough jo. At low E” the A j!! given by (13) should tend
to a constant since the rotator phase is only slowly

L T A i

o ©-Exact Aj
020 \o—Approximate Aj |
. °_ e 'A]"

F1G. 9. Angular momen-
tum transfer as a function
of initial relative transla- .
tional energ{ atalowimpact 4] -

015

parameter (6=0.4) and at
an intermediate one (b= 0.0~
1.0). : i
0.05-
00 20 . 40
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o Exact 4j
———Approximate 4j n
- _Ajll

019

005

a0

-015}- .

oo 10 30

Fic. 10. Angular momentum transfer as a function of initial
rotational energy at a low impact parameter (6=0.1) and at an
intermediate one (b=1.0). Values of Er are plotted on a fourth-
root scale. Values of approximate A at £*=0 were obtained by
extrapolating Al from hiTher values of Er and, apart from sign,

taking Az=| Aj| = | Al]at Er=0.
005~ T T
- E" =20
o=
0.00t :

F1e. 11. Angular mo-
mentum transfer as a Aj F
function of the moment
of inertia of the rotor at -0.05}
a low initial rotational
energy. Values of I are r Al

-= 8)

plotted on a cube-root
scale. 010~ o Exact Aj N

| — Approximate Aj ° o -

- [ L 1 1
O —5 03 95 1

T M L] 1
005 Ef =0248 T
3 o Exact 4j
0 L
5t ' — Approximate A4j
-005
-010f
- L | I L i 2
0501 o1 05 12 3

Fic. 12. Angular momentum transfer as a function of the
moment of inertia of the rotor at a moderate initial rotational
energy. Scale is the same as in Fig. 11.
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0.20p— T T T

YO\ - “Fiywheel Aj
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L A T e
Aj i P‘\ Aj" b
lx' Exact Aj
Q05 e~ Low Mass Aj 7
]
.:'_. ]
00019t
1.3 1 1 1
o o 9.5 10

I
Fic. 13. Angular momentum transfer as a function of the

moment of inertia of the rotor at a constant low angular velocity
of rotation. Values of 7 are plotted on a square-root scale.

Tasre II. Reduced moments of inertias I.

He Ne Ar Kr Xe
H, 0.027 0.0184  0.0142 0.0131 0.0114
HI 0.059 0.0120 0.0059 0.0037 0.0024
HCI 0.050 0.0130 0.0073 0.0051 0.0041
N; 0.24 0.069 0.040 0.030 0.021
Co 0.26 0.073 0.043 0.032 0.026
O: 0.36 0.098 0.056 0.040 0.032
HC=CH 0.37 0.102 0.062 0.047 0.039
N,O0 1.05 0.26 0.144 0.099 0.078
CO; 1.10 0.28 0.156 0.110 0.087
Cly 1.55 0.36 0.183 0.116 0.088
CS, 3.28 0.74 0.38 0.24 0.178
Bry 4.53 0.91 0.44 0.24 0.172
I; 8.1 1.58 0.74 0.39 0.26

s The moment of inertia of linear molecule divided by the po? for its
collision with an atom. The I's were calculated from data in J. O. Hirsch-
felder, C. F. Curtiss, and R, B. Bird, Molecular Theory of Gases and Liquids
(John Wiley & Sons, Inc., New York, 1954), pp. 1110-1112; G, Herzberg,
Molecular Specira and Molecular Siructure (D. Van Nostrand Co.. Inc.
Princeton, N. J., 1950) Vol. 1, pp. 502-579; and G. Herzberg, Molecular
Spectra and Molecular Structure (D, Van Nostrand Co., Inc., Princeton,
N. J., 1966), Vol. 3. pp. 583-667,

T
1

010

Fic. 14. Angular mo-
41 mentum transfer as a
function of the moment
of inertia at a constant
moderate angular ve-
locity of rotation. Scale
for 7 is the same as in

aj i Aj'i\‘.A Flywheel Aj
I .-’...._'.*'.7._._-; Solxoltl
005}, O GG 6*6 .

tHe
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T T T
0050 b
0025+ 4 F16. 15. Angular mo-
mentum transfer as a
Aj function of the moment
\ Approximate Aj of inertia of the rotor at
QOG? v a constant high angular
1 N\~ Flywheel Aj velocity of rotation.
LO- T —_...] Scaleforisthesameas
T g0 0O 0O -O/ | Fg13.
-0025+ ‘( A" 1
Low Mass Aj
Exact Aj
-0.050—— —t . .

001 01 I 05 10

varying these and no other term in (13) depends on
Er,

In Figs. 11 and 12 a comparison is made versus the
reduced moment of inertia 7. At sufficiently high 7, w is
low and the instantaneous rotator phase is approxi-
mately constant during the collision, leading to a Aj
independent of I there. At low enough 7, w will tend to
infinity and so A j will eventually vanish.

In Figs. 13-15 a comparison is made versus [ at fixed
w. Here A j! and A j+ are each independent of I [Egs.
(10), (13), and (15)]. However, o is proportional to I
at fixed w, leading at low I to a change of A j from its

04

03

~01

<02
L---=" — Approximate Aj |
° Exact 4;
-03 L 1 1 I
00 05 10 b 15 20

Fic. 16. Angular momentum transfer as a function of impact
parameter for three different combinations of attractive and
regulsive asymmetry parameters. The upper set of curves (a4 =
0.3, ag=0.0) is for a purely attractive anisotropic potential,
while the lower set of curves (¢4=0.0, ap=0.3) is for a putely
repulsive one, The middle set of curves (a4=agp=0.3) is the
same set shown in Fig. 8 (Er=0.25, I=%). Two of the points
belonging to the upper set are labeled 4 to avoid confusion with
the middle set.
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Fie. 17. Angular momentum
transfer as a function of initial
rotational angular momentum
for HI+Xe. The size of the
circles indicates the precision
of the numerical calculations of
all three solutions. For HI+-

[
Xe, Aj was multiplied by a |/ Exact 4
conversion factor proportional : HI 4+ X
to (us%)'s, namely 78, to cal- -2} e i
culate Ajin A, .
L) ) _
—LO L i 1 .Z ' Is 1 (
Jo

high value. The w for Fig. 13 is low and since quan-
tization imposes a lower limit on theangularmomentum,
this low w is encountered in practice for systems having
I>0.1. The low-mass and flywheel approximations are
also given in Figs. 1315,

In Fig. 16 a comparison is made versus b for unequal
as and ap. At large impact parameters (>1.5) the
influence of ag is negligible, so that most of the preceding
curves also apply roughly to the case of small ez as
well (when ER is not large). When Ajll is a good ap-
proximation, one sees from (13) that the effects of the
a4 and @ terms are algebraically additive.

Comparison for several actual molecules is given in
Figs. 17-19. Units in Figs. 17-19 are # rather than
(uo%)2, The I of § used in most of the earlier figures
is close to that (0.74) estimated for CS;+Ne and to that
(0.74) estimated for Io+Ar. An EF of 3 corresponds to
about 0.8 and 1.5 kcal/mole, respectively, for these two
molecular systems. To convert the Aj’s in Figs. 4-16
to units of % for these two systems one must multiply
by about 25 and 60, respectively. Other typical I’s are
listed in Table II, for comparison with the earlier
figures. Asymmetry parameters are summarized in

07 4

Fi6. 18. Angular momentum transfer as a function of initial
rotational angular momentum for Nj+4-Ne. For this figure, a
conversion factor of 12 was used to calculate A f in A.
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o Exact Aj
— Approximate Aj |
caen Ajll

F16. 19. Angular mo-
mentum transfer as a 4; [
function of initial rota- i
tional angular momen-
tum for I3+Kr. For this
figure, a conversion
factor of 88 was used to
calculate A j in A,

Table III, though the asymmetric force law has usually
been assumed rather than established.

Other properties which are of interest in making
comparisons of spectral broadening theories and
scattering theories with experimental include «, the
angle between initial and final j. A typical plot is given
in Fig. 20,

In Figs. 4-19, Eq. (14) was used to calculate the
approximate A j. Equation (16) would yield results of
comparable accuracy for the approximate A in these

TasLE III. Attractive and repulsive asymmetry parameters.

Molecule aa ar References
H, 0.09,0.128 0.18,0.375 a,b,c,d
N; 0.18,0.13 0.15 a,b,e
0, 0.24,0.23 0.1 a,b,e
Cle 0.21,0.19 a,b
HCI 0.09,0.04,0.12 <0.61 a,b,f,f
HBr 0.08,0.06 <0.46 a,f,f
HI 0.11,0.03 <0.43 a,f,f
N0 0.31,0.33 0.05 a,b,e
Co 0.17,0.09 0.2,0.8 a,b,eg
NO 0.16 0.15, <0.45 b,e,f
CO, 0.26,0.27 -0.1 a, b, e
CS; 0.37 oee a

HCN 0.26 vos a
HC=CH 0.27,0.18 0.3 a,b,e
TIF 0.23 oee

8 Calculated from polarizability data in J. O. Hirschfelder, C. F. Curtiss,
and R. B. Bird, Molecular Theory of Gases and Liguids (John Wiley &
Sons, Inc., New York, 1954), p. 950,

b Anisotropy for 6328 A from N. J. Bridge and A, D. Buckingham, Proc.
Roy. Soc. (London) 295, 334 (1966).
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figures when A j/jo is small enough.”® Inclusion of the
A; term [Eq. (C8)] would not have significantly
improved the agreement between exact and approxi-
mate results,! except in two of the figures—Fig. 11 for
1<0.01 and Fig. 15 for 0.01<7<0.1.

FURTHER REMARKS

It is seen from the figures that except in cases of low /
(such as HX+Y, where m,>>my) the approximate 4 j
is a reasonably good one under the conditions investi-
gated in the present paper. The source of the error at
low I is not due to the approximation of replacing the
relative translational motion by its elastic collision
behavior since approximation 1 (“low mass”) agrees
well with the exact results there (Figs. 13-15) .12 Rather,
it is probably due to replacing, in the zeroth-order
behavior, the rotational motion by its unperturbed
motion. That is, the present paper we have used in
zeroth order the classical analog of the static approxi-
mation in quantum mechanics. Approximation 2(a)
(in the direct calculation of Aj) provides a first-order
calculation, one which corresponds in certain aspects
to high order in the quantum case (in its allowance for
the equivalent of many virtual-quantum jumps). Ap-
proximation 2(b) provides, with respect to reorienta-
tion of the plane of the rotor, the next higher order. At
low I the distortion of the rotational motion may be
large even in zeroth order, and one should then use some
adiabatic approximation there instead.

Conditions where the present approximation for Aj
is best correspond to some which are least accessible
by approximate or numerical quantum mechanical
methods. The expressions permit the ready investiga-
tion of various trends with molecular parameters.

The problem of . treating rotation-translational
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energy transfer has sometimes been simplified by
assuming the process to occur in a plane. It corresponds
to the case where #; in Fig. 1 (4; in Fig. 3) is 4=, and so
its error can be estimated for various conditions at
large enough 7 using (13)-(15).

In the evaluation of the relevant integrals in (13)
and (15) use could not be made of an analytical tech-
nique frequently employed in vibrational-translational
energy transfer. In the latter problem most of the
transfer is usually assumed to occur over a small range
of separation distance, where the perturbing force is
large, permitting a simple analytical evaluation of the
integrals by complex variable methods when those
integrals are small. In the present case, over the range
of parameters investigated, the transfer occurs over a
large spatial region of perturbing force, so that it was
not possible to apply such techniques.

The interpretation of many of the results in Figs.
4-20 was considerably simplified by defining the phases
(in the angle variables) relative to the midpoint
properties of the elastic collision, rather than as initial
values.

APPENDIX A. DERIVATION OF EQ. (16)
We first compute A 7z, A 7;, A j.. We have
J==7 sini; cos(Bm,—3m),
Jy=7 sini; sin(Bm,—37),
Js=7 cost;. | (A1)
Thus,
Aj.+iAj,=—iA[ j sini; exp(iBm)].  (A2)

Evaluating A f, Ai;, and ABa, to first order by integrat-
ing (1), (3), and (4) one obtains Aj: and Aj, as the
real and imaginary components of (A2). 47, is Am
obtained by integrating (2). Hence,

t
Aju=— sini; / F sin(&'+-B0,) sinyd, (A3a)

3
Aj,= sini; / F cos(&'+84,) sinydt, (A3b)

t s
A jy=— cosi; f F cos®' sinydi+ [ F sin®’ cosyd?.

(A3c)

From these values for Aj. Aj,, Ajs; Aj can be com-
puted as

8j=[(j2+A72)+ (5 +A53)*+ (52485 T"=je
(A4)

One obtains A j represented by Egs. (14), (13), and
(15).
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However, it is instructive to rewrite A jz, A j,, A, in
terms of components of Aj parallel to and perpendicular
to jo. The parallel component is the projection of Aj and
o and so equals

(=0 j=t7u8 jytjed jo) [o.
One then obtains (13) from (A3). Further,

Square of perpendicular component

=(487:)4(47,)*+(45)— (4% (AS)
From (A2) and (A3), we have
(Ajz)2+ (Aju)’:' | Aj=+iAju P
] 1
= sin%i; / F exp(i®'+i6n,) singdl | . (A6)

The 8. is next deleted without altering the right-hand
side. Again, from Eq. (13) for Aj!! and (A3) for Aj.
one obtains

(Afs)2— (A ")2= sin%; [([‘ F sin®’ cos#«lt)2

- ( j; ; F cos®’ sim,bdl)z] . (A7)

Introduction of (A6) and (A7) into (AS) yields (15).
APPENDIX B. INDIRECT CALCULATION OF Aj

Since I., I, I, equal !sin; cos(Bm—3%7), !sinisX
$in(Bm,—37), ! cosiy, it can be shown from the equations
for I, 7, and B, that

dl,/dl=F (v, 1) sin{; sin¥ sing (B1)

and
dl,/dt=—F (v, 1) sint; sin¥ cose. (B2)

We have
(Alz)z"l' (Nv)e'-— l Alz‘l'iAly lz

0 2 .
F{v, ) sin¥ expi¢dt | . (B3)

-0

= sin%;

Further, from the equation for 77; we have
¢
Amy= [ F (¥, t) (costy cos¥ sing’— sin¥ cosg’)dl.
—0

(B4)

Comparison of Figs. 1 and 3 shows that ¢; equals 4;;
the o’s are also equal; ¥ in Fig. 1 and ¢’ in Fig. 3
measure from the line of nodes the angle between the
latter and the rotator’s axis r; ' in Fig. 1 and ¥ in Fig.
3 measure from the line of nodes between the latter and
the -line of centers of the collision partners R. Thus,

¢=¢" P'=y,

ROTATIONAL-TRANSLATIONAL ENERGY TRANSFER. II

Comparison of (13) and (B4) then shows that they
are equal. Further, the ¢ in the last term in (B3) may
be replaced by ¢’ since multiplication of the integrand
by exp(—iB,) leaves the term unchanged. Comparison
of (B3) with (15) then shows that they are equal.
Finally comparison of (18) with (14) then shows that
they too are equal. Thus, the indirect calculation of
Aj yields an expression which is identical with the
calculation of A via (14).

APPENDIX C. DERIVATION OF EQ. (C7)
We use the notation C(¢) and S(&):

t
c() = [ F cosy sin®'d!,

—o0

t
S(t)= f F siny sin®'d!, (c1)
where all values on the right-hand sides denote elastic
collision values. We denote by Af the difference at time
t of a quantity f from its elastic collision value. With
the aid of (1), (2), and (5) one finds

A COS’i,'= (sin’i,-) C/ jo. (CZ)

Since the purpose of this appendix is to allow in the
right-hand side of (1) for the change in rotational plane
rather than for the change in j, we use the following
results obtained from (3) and (4) at constant j,

Ay=(cosi;) S/jo,  BPm=—5/jo  (C3)

The quantities A(cosy sin®’) and A(siny sind’) are
evaluated by expressing Alexp(#) sin®’] in terms of
Ay and ABn,, then using (C3), and finally recording the
real and imaginary parts. Similarly, A(cosy cos®’) and
A(siny cos®’) are obtained by considering

Alexp(i) cos®’].

One finds

A cosy sin®’ = (cosy cos®’— cosi; siny sin®’) S/,
(C4a)

A siny sin®’ = (siny cos®'+ cosi; cosy sin®’) S/jo,
(Céb)

A cosy cos®’ = — (cosy sin®'+ cosi; siny cos®’) S/,
{C4c)

A siny cos®’ = (— siny sin®’+ cosi; cosy cos®’) S/fo.
(C4d)

Equations (C2) and the relevant portions of (C4) are
next introduced into the right-hand side of (1), ne-
glecting products of A’s and later using the identity

2

G() f_; G(t)dt' = %’:‘:[ /_; G(t’)dt’] (CS)
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When products of AF and other A’s are neglected one
obtains

dj

d_ = F(cosi; cosy sin®’— siny cos®’)

sin%,{ (d/d!) (§4+-C9) ]
2o

where all values on the right side, except the indicated

F, are elastic collision values,

When both sides of (C6) are multiplied by 7, higher-

order terms neglected as before, an equation is obtained
which can be rewritten as

7= (ot A1)+ At (4 j4), (C7)

where A ji! and (A j+)? are symbols denoting the right-
hand sides of (13) and (15), respectively, and where

+ , (C6)

t
Ar=2 / AF (cosi; cosy sin®' — siny cos®’)d,  (C8)

and
AF = (8F/d cosy) (sin? 3; sin®’) (C sing— S cosy). (C9)

Thus, apart from the A, term Eq. (14) allows (to
second order in the j expression) for the change in
orientation of the rotational plane during the collision.

APPENDIX D. NUMERICAL INTEGRATIONS
Exact Aj

The exact results were obtained by numerically
integrating the set of ten coupled differential equations
in (D1) and (D2) from R=Riitiat through R= Ry

to R> Rinitial.
We have
X;=Pi/n, (D1a)
P;=—(3V/dR) (Xi/R)— (aV /9 cosy(d cosy/dXy),
(1=1,2,3), (Dib)

and

0=Py/1, (D2a)

¢=Py/I sin%, (D2b)
Py=—08V /804 Py cosf/I sin, (D2c)
Py=—av/a¢. (D2d)
Here,

cosy= X sinf cos¢-+ X sind sing-+ X3 cosd.

The X; are the cartesian components of R, while the
P; are their conjugate momenta. A coordinate system
similar to the one in Fig. 3 was used so that initially
sinf=1, and sind could only become small if j rotated
through approximately 3= during the collision. Initial
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values of ¢ and ¥ in Fig. 3 were obtained by integrating
the equations (D3) for elastic orbital motion from
R=Rpn to R=Rynjpial.
We then have,
R=Pg/y,

Y =lo/uR?,
Pp=—3V,/dR. (D3)

Here, V, equals V—V, in (9) or (19). Rnin was deter-
mined by numencally estimating the largest root of the
function in brackets in Eq. (12).

Nordsieck’s integration method® was used to eval-
uate the sets of coupled differential equations. Both
total energy and angular momentum were normally

- conserved to better than a few hundredths of a percent.

Test collisions integrated using seven! rather than ten
differential equations yielded the same result to five
significant figures.

Flywhee! and Low Mass Aj

The flywheel solution (indirect approximation 1) was
obtained by 1ntegratmg the six coupled differential
equations in (D1) using Nordsieck’s methed.”® The
elastic values for rotational motion (0=3}r, o=ju/I+
$initia1) were used. Then the flywheel A j was obtained
from Al using conservation of total angular momentum
(Aj=—Al).

The low mass solution (direct approximation 1) was
obtained by integrating the seven differential equations
in (D2) and (D3) using Nordsieck’s method.'* Com-
puter times for calculating the exact, flywheel, and low
mass solutions were comparable.

Aj! and Approximate Aj

For the potential in Egs. (19) and (20), Aj!, Am;,,
ABw;, and Aj+ can be expressed in terms of five integrals.
We have, for example,

A jIl=2F, sin%; sin2¢"— F4(1— cost;) sing™

+Fs(14 cosi;) sing—, (D4)
where
3
rie [ Vaut
4/,
3
Fo= - f Vra cos(2uwot) dt,
4/q
3
= - /Q Vra COSZ‘i’dl,
4Jq
Fi= 3(1— cosi)) f Vi cos(2uu-+28) di,
0
Fy= 3(1+ cosiy) / " Vs cos(2wl—28)d1. (DS)
)
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Here,
Vra= 46[01; (R/G') —2—g,(R/0)~%],

b= fo ‘ ”-%2 dt,
¢t =2¢"+2¢",
¢~ =2¢%—2¢",
wo=jo/1.

The integrals determining A j+ in Eq. (15) are also
easily expressed in terms of the F;:

F F(y, t) sin®’ cosydt= —2F; cosi; sin2¢”
—'2F3 SiIl¢B+F‘ sin¢++F5 sind:",

f F(v, 1) sin®’ sinydt=— 2F, cosi; — 2F, cosi; cos2¢"

—0

— 2F; cost; cos2¢®+ Fy cosgt—Fs cos¢~.  (D6)

The approximate Aj was calculated from Egs. (14),
(15), and (D4)-(D6).

The integrals in (DS) were evaluated numerically
by using Nordsieck’s method'® to integrate the set of
eight differential equations consisting of the ones in
(D3) and the five equations for dF;/dt (i=1-5) ob-
tained from (DS5).

APPENDIX E. MISPRINTS IN PART I

Part I contains a number of misprints made in
transcribing the results from Ref. 1 there to Part I:

In Eq. (6) for m; csc?© read mj? csc?@; in (15) and
(17) the minus sign should be deleted, as should the
first minus sign in the top line of Eq. (22). In (16) and
(18) the symbols ¢ and @ should be interchanged. In
(31) for u/2 read 2/u. Both in Fig. 1 and in the para-
graph preceding (20) the + 3= should be replaced by
—}m, wherever it appears.

In Ref. 17 it should have been added that ultimately,
in obtaining (14) to (18) there, the negative square
root sign was selected.
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