Vibrational-Translational Energy Transfer in the Near-Adiabatic Approximation*

MARY ATTERMEYER AND R. A. MARCUS Noyes Chemical Laboratory, University of Illinois, Urbana, Illinois 61801 (Received 31 March 1969)

Vibrational-translational energy transfer is examined in the near-adiabatic (or perturbed stationary states) approximation. The results are classical, and the method used is related to that of Marcus [J. Chem. Phys. 49, 2617 (1968)]. The results are compared with those of the more usual ("static") approximation and with the exact results. The PSS results were good at low energies at all mass ratios studied, unlike the static results. For certain mass ratios the static approximation fails badly, even at very low transition probabilities. For other mass ratios, the results are of comparable accuracy except at high energies where the static one is somewhat better. Reasons for the above behavior are discussed, and implications regarding existing infinite-order distorted wave and semiclassical calculations are noted. The relation to a recent correction of the Jackson-Mott calculation is described.

INTRODUCTION

For the most part the theoretical treatment of vibrational-translational energy transfer¹⁻⁷ in a molecular collision has been given in terms of a "static" (ST) approximation. The ST treatment has been quantum,² semiclassical,^{3,4} or classical.⁵ A principal ST feature lies in its zeroth-order approximation—an elastic collision in which the vibrational motion is that of an isolated molecule and in which the effective potential energy of relative translational motion is uninfluenced by the vibrational motion. A comparison7 of the exact classical numerical results with those of the classical ST approximation shows that it is excellent for certain

* Acknowledgement is made to the National Science Foundation and to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for the support of this research.

¹E.g., Recent reviews: (a) K. Takayanagi, Progr. Theoret. Phys. (Kyoto), Suppl. 25, 1 (1963); (b) K. Takayanagi, Advan. At. Mol. Phys. 1, 149 (1965); (c) D. Rapp and T. Kassal, Chem.

At. Mol. Phys. 1, 149 (1965); (c) D. Rapp and T. Kassal, Chem. Rev. 69, 61 (1969).

² E.g., (a) C. Zener, Phys. Rev. 37, 556 (1931); J. M. Jackson and N. F. Mott, Proc. Roy. Soc. (London) A137, 703 (1932); O. K. Rice, J. Am. Chem. Soc. 54, 4558 (1932); R. N. Schwartz, Z. I. Slawsky, and K. F. Herzfeld, J. Chem. Phys. 20, 1591 (1952); K. F. Herzfeld and T. A. Litovitz, Absorption and Dispersion of Ultrasonic Waves (Academic Press Inc., New York, 1959); D. Rapp, J. Chem. Phys. 40, 2813 (1964); B. Hartmann and Z. I. Slawsky, ibid. 47, 2491 (1967); S. L. Thompson, ibid. 49, 3400 (1968); (b) J. H. Weare and E. Thiele, ibid. 48, 513 (1968); E. Thiele and J. Weare, ibid. 48, 2324 (1968).

³ E.g., First order: C. Zener, Proc. Cambridge Phil. Soc. 29, 136 (1932); E. Bauer, J. Chem. Phys. 23, 1087 (1955); J. B. Calvert and R. C. Amme, *ibid.* 45, 4710 (1966).

⁴ E.g. Infinite order: E. Kerner, Can. J. Phys. 36, 371 (1958); C. E. Treanor, J. Chem. Phys. 43, 532 (1965). [Independent solutions of the linear forced oscillator time-dependent Schrödinger over the processing of the Secretary Processing Pr equation are given in M. S. Bartlett and J. E. Moyal, Proc. Cambridge Phil. Soc. 45, 545 (1949); R. P. Feynmann, Phys. Rev. 84, 108 (1951); G. Ludwig, Die Grundlagen der Quantenmechanik (Springer-Verlag, Berlin, 1954), Chap. 1; L. C. Biedenmechanic (Springer-Verlag, Berlin, 1954), chap. 1, D. Breutser barn and P. J. Brussard, Coulombic Excitation (Clarendon Press, Oxford, England, 1965), Chap. 5]; T. E. Sharp and D. E. Rapp, J. Chem. Phys. 43, 1233 (1965); C. E. Treanor, ibid. 44, 2220 (1966).

⁵ (a) L. Landau and E. Teller, Physik. Z. Sowjetunion 10, 34 (1936); (b) J. G. Parker, Phys. Fluids 2, 449 (1959); D. Rapp, L. Chem. Phys. 22, 735, (1960); K. Takayanagi Pof. 1(3); D.

J. Chem. Phys. 32, 735 (1960); K. Takayanagi, Ref. 1(a); D.

Rapp, Ref. 2(a).

⁶ F. H. Mies, J. Chem. Phys. 40, 523 (1964); 41, 903 (1964). ⁷ J. D. Kelley and M. Wolfsberg, J. Chem. Phys. 44, 324 (1966).

mass ratios but that it fails badly for others even when a classical analog of the transition probability is extremely small.

An alternative zeroth-order approximation is that of perturbed stationary states (PSS),8 which can also be described as the adiabatic approximation. According to the PSS approximation the zeroth-order (elastic) collision is one in which the vibrational motion is allowed to be distorted during the encounter and in which the relative motion is perturbed accordingly.9,10 The desirability of having such an approximation available is evident upon examination of a trajectory under conditions where the ST approximation failed, e.g., in Fig. 5 of Ref. 7 there is a large transient distortion of the oscillator coordinate during the collision.

Previous PSS calculations do not appear to have been made for vibrational-translational energy transfer. The classical PSS approximation is explored in the present paper and compared with the exact results of Kelley and Wolfsberg⁷ and Secrest.^{11,12} Because of correspondence arguments¹³ it may be anticipated that findings of the present study regarding the relative merits of ST and PSS approximations will be applicable to the quantum and semiclassical cases also, thereby yielding various predictions for these cases as described later.

A theoretical treatment analogous to that in Ref. 9(c) is used below. A corresponding quantum treatment is given in Ref. 9(a).

THEORY

For a collinear collision between an atom A and a harmonic oscillator BC, let x denote the coordinate of

⁸ N. F. Mott and H. S. W. Massey, *The Theory of Atomic Collisions* (Clarendon Press, Oxford, England 1965), 3rd ed.; K. F. Herzfeld and T. A. Litovitz, Ref. 2; K. Takayanagi, Ref.

⁽b).

(a) R. A. Marcus, J. Chem. Phys. 45, 4493 (1966) (Pt. I);

(b) 45, 4500 (1966) (Pt. II); (c) 49, 2617 (1968) (Pt. IV). In Eq. (93) of Pt. IV the $2J_{\rho}^{0}$). should read $2(J_{\rho}^{0})^{1/2}$.

(b) R. D. Levine, J. Chem. Phys. 49, 51 (1968).

(c) D. Secrest, J. Chem. Phys. 51, 421 (1969).

(d) Cher. highly, useful exact classical calculations (Penson and

¹² Other highly useful exact classical calculations (Benson and co-workers) are reviewed in Ref. 1(c) ¹³ Compare R. A. Marcus, J. Chem. Phys. (to be published).

TABLE I. Comparison of exact and approximate vibrational energy transfers.

C-B+A	E_0	μ	ΔE	$\Delta E^{PSS}/\Delta E$	$\Delta E^{ m ST}/\Delta E$	KW Case no.
1-12+1	0.00929	12.96	8.38×10 ⁻⁶	1.01	1.01	I-2
1-12-13	0.00232	4.899	8.62×10^{-10}	1.00	1.07	II-5b
	0.00929		1.05×10⁻⁵	1.01	1.07	I-5b
	0.0739		0.00494	1.05	1.06	I-5d
12-12+2	0.195	3.606	0.0290	1.15	1.12	IV-24b
	0.393		0.0781	1.29	1.13	I-7b
	0.781		0.180	1.55	1.14	II-7d
	3.12		0.800	2.76	1.15	I-7d
12-12+24	0.195	1.414	0.00691	1.16	2.34	II-13c
	0.393		0.00570	1.28	2.33	I-13b
	0.781		0.261	1.47	2.29	II-13d
	3.12		2.18	2.24	2.22	I-13d
1-1+24	0.0981	1.041	1.55×10⁻ ⁸	1.10	5.26	IV-10
	0.195		8.00×10 ⁻⁴	1.19	5.38	IV-27
	0.393		0.0134	1.34	5.60	I-18b
	0.781		0.0914	1.65	5.98	I-18c
12-1+13	0.334	0.4082	1.51×10 ⁻⁸	1.09	1260	II-26b
	0.666		2.75×10 ⁻⁶	1.35°	1670	IV-39
	1.34		6.11×10^{-8}	2.34	3810	I-26b
	2.66		6.29×10 ⁻⁴	116	574, 000	IV-37

[•] ΔE^{PSS} computed by method of Ref. 16(b).

Ref. 7 to which this calculation refers.

relative translational motion

$$\lceil x = r_A - (m_B r_B + m_C r_C) / (m_B + m_C) \rceil$$

and y denote the oscillator displacement from its equilibrium bond length r_e $(y=r_B-r_C-r_e)$. The Hamiltonian H is

$$H = \frac{1}{2} \left[(p_x^2/M) + (p_y^2/m) + m\omega_0^2 y^2 \right] + V(x, y), \quad (1)$$

where M and m are the reduced masses,

$$m_A(m_B + m_C)/(m_A + m_B + m_C)$$

and

$$m_B m_C / (m_B + m_C)$$
,

 $\omega_0/2\pi$ is the oscillator vibrational frequency, and V(x, y) is the interaction potential¹⁴; p_x and p_y are the momenta conjugate to x and y.

In the particular case that V has an exponential dependence on the r_{AB} distance, $r_A - r_B$,

$$V(x, y) = D \exp(-br_{AB}) = D \exp[-b(x-\lambda y - \lambda r_o)],$$

(2)

where λ is $m_C/(m_B+m_C)$ and b^{-1} is an effective range parameter, dimensionless quantities v, z, and \tilde{H} can be introduced¹¹:

$$\tilde{H} = \frac{1}{2}(p_z^2 + p_v^2 + v^2) + \exp(v - \mu z), \tag{3}$$

where \tilde{H} is $H(b\lambda/m^{1/2}\omega_0)^2$, v is $b\lambda y$, z is

$$[b(x-\lambda r_o)-\ln(Db^2\lambda^2/m\omega_0^2)]/\mu, \qquad (4)$$

 p_v and p_z are $dv/d(\omega_0 t)$ and $dz/d(\omega_0 t)$, and μ is 15

$$\mu = \lceil m_B (m_A + m_B + m_C) / m_A m_C \rceil^{1/2}. \tag{5}$$

When the rectilinear coordinates v and z are employed, the local adiabatic vibrational potential U is obtained by expanding the last two terms of (3) in a power series about the value of v, v_o , which minimizes U (at each z):

$$U(v, z) = U(v_e, z) + \frac{1}{2}\omega^2(v - v_e)^2 + \cdots, \qquad (6)$$

where v_o satisfies (7):

$$\partial \lceil \frac{1}{2}v^2 + \exp(v - \mu z) \rceil / \partial v = 0 \qquad (\text{at } v = v_a), \qquad (7)$$

and where ω^2 is $\partial^2 U/\partial v^2$ at $v=v_{\epsilon}$. One then finds

$$v_{s} = -\exp(v_{s} - \mu z), \qquad (8)$$

$$U(v_{o}, z) = \frac{1}{2}v_{o}^{2} - v_{o}, \tag{9}$$

$$\omega^2 = 1 - v_a. \tag{10}$$

Comparison of (6) with the expansion in Ref. 9(c) leading to Eqs. (79) and (80) shows that use can be made of the arguments employed there to derive (91) to (94), but with ρ , ρ_0 , and μ there replaced by v, v_0 , and 1 here. When the $\dot{\omega}$ term in (91) is neglected one obtains (93), which yields (11). For completeness, the derivation of (11) is also outlined in the Appendix of the present paper, and an $\dot{\omega}$ term is given by (A8)

b The numeral following "IV" indicates the line of data in Table IV of

¹⁴ Use of an anharmonic oscillator potential in (1) would offer no added calculational difficulty if the local harmonic expansion in Eq. (7) continued to be valid. Otherwise the treatment could be modified by adapting certain methods from nonlinear mechanics (for example, making the local oscillator approximately a harmonic one but with an amplitude-dependent frequency) or using the numerical method noted in Ref. 16(b).

 $^{^{15}\,\}mu^2$ equals the quotient $4/{\rm lim}(\Delta E_{cp}/E_0),$ whose denominator is discussed in Kelley and Wolfsberg.

there; $J(\tau) = J^{0} - 2(J^{0})^{1/2} \int_{-\infty}^{\tau} \dot{v}_{\bullet}(\omega_{\overline{n}})^{1/2}$ $\times \sin \left[\int_{\tau_{0}}^{\tau'} \omega(\tau'') d\tau'' + \delta \right] d\tau'$ $+ \left| \int_{-\infty}^{\tau} \dot{v}_{\bullet}(\omega_{\overline{n}})^{1/2} \exp \left[i \int_{\tau'}^{\tau} \omega(\tau'') d\tau'' \right] d\tau' \right|^{2}, \quad (11)$

where $J(\tau)$ is the vibrational action of the $(v-v_o)$ oscillator at reduced time τ , $(\tau=\omega_0 t)$, J^0 is its initial value, and δ is a vibrational phase at some specified time τ_0 before the interaction has occurred.

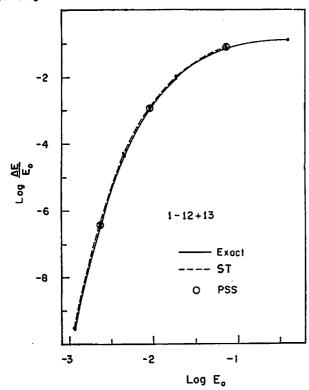


Fig. 1. Log $\Delta E/E_0$ vs log E_0 for a 1-12+13 collision. The exact results are taken from Ref. 7, apart from the log $E_0=-0.41$ point.¹⁶

The origin for τ can be chosen without loss of generality to be the time when z attains its minimum value. As τ tends to $\pm \infty$, ω tends to unity. Thus, the local vibrational energy, $J\omega/2\pi$, becomes $J^0/2\pi$ at $\tau=-\infty$ and $J^\infty/2\pi$ at $\tau=+\infty$. The vibrational-energy change in units of $m(\omega_0/b\lambda)^2$ is

$$\Delta E_{\rm vib} = (J^{\infty} - J^{0})/2\pi. \tag{12}$$

RESULTS

Comparison of values obtained for Eq. (12) is made with those from the exact numerical integration of Kelley and Wolfsberg⁷ and with those given by the classical (ST) expression of Parker, Takayanagi, and Rapp.^{5b} The results are given in Table I, which also gives the masses, the initial translational energy E_0 [in units of $m(\lambda w_0/b)^2$], the exact ΔE (same units), the ratio of ΔE_{PSS} to ΔE_{exact} , the ratio of ΔE_{ST} to ΔE_{exact} , and the case number of Kelley and Wolfsberg.⁷

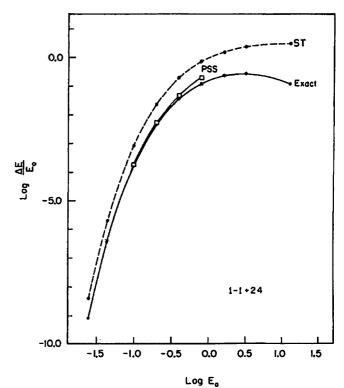


Fig. 2. Log $\Delta E/E_0$ vs log E_0 for a 1-1+24 collision. The exact results are taken from Ref. 7.

J⁰ is zero for the calculations presented in Table I. The results for several mass ratios are illustrated in Figs. 1-3. In Fig. 3, several exact KW points for the 12-1+13 case and many others of Secrest are compared with the ST and PSS results. 16

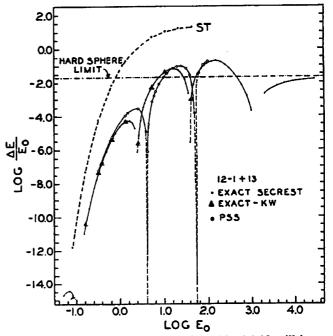


Fig. 3. Log $\Delta E/E_0$ vs log E_0 for a 12-1+13 collision.

^{16 (}a) Details of the evaluation of the integrals are given in M. Attermeyer, Ph.D. thesis, University of Illinois, 1969. (b) Although most of the reported ΔE^{PSS} 's were obtained by the method in Ref. 16(a), it has been replaced by a much more rapid computation involving numerical solution of corresponding differential equations. For consistency the ω term was omitted.

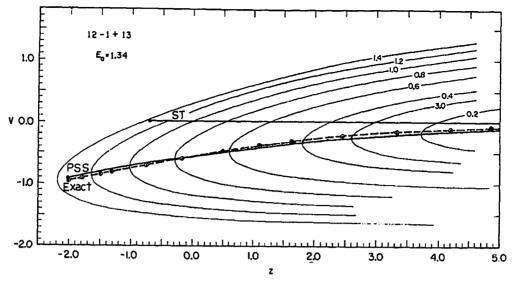


Fig. 4. Exact and approximate trajectories for a 12-1+13 collision at $E_0=1.34$. The v=0 and $v_*(z)$ zeroth-order lines are indicated by ST and PSS, respectively. Exact results are indicated for negative p_* by --- and for positive p_* by \odot . Potential-energy contours are sketched in the background.

If the diatomic molecules in Table I are regarded as CH, C_2 , and H_2 , with respective force constants of 4.5, 9.5, and 5.7 mdyn/Å, and if the usual value¹⁰ for 1/b of about 0.2 Å is used, the E_0 's of the first lines for each mass ratio in Table I are 1.1, 0.27, 1.1, 1.1, 0.34, and 0.27 eV, respectively. Thus, all of the E_0 's used in Ref. 7 are rather high. (Low values of E_0 frequently give rise to computational difficulties.) However, except for the 12-1+13 case the error ratios in Table I are relatively energy independent, at least in the range investigated. Nevertheless, exact results at lower E_0 's would be desirable for comparison with data on energy transfer at thermal energies.

DISCUSSION

At the lowest energy, where the near-adiabatic approximation should work best, the PSS results are very good indeed, being in error by $\approx 1\%$, 0%, 15%, 16%, 10%, and 9% at the successive mass ratios in Table I. The corresponding errors for the ST approximation are 1%, 7%, 12%, 134%, 426%, and 126 000%. The advantage of the PSS method begins to occur at a μ of 1.4 (12-12+24). When the ST approximation is comparable in accuracy (or, in the case of high energies for μ =3.6 and 1.4, is more accurate), it is preferable to the PSS one since its integral can be evaluated analytically.

In the 12-1+13 case, the $\log(\Delta E/E_0)$ vs $\log E_0$ plot of Fig. 3 shows the nonmonotonic behavior studied in detail by Secrest.¹¹ The PSS curve shows a similar behavior, somewhat shifted in phase, but the ST curve is monotonic.

Some insight into the above results is obtained from a consideration of the potential-energy surfaces, the

exact trajectories, and the time evolution of the vibrational action integral given by Eq. (11). In massweighted space [(v, z)] space the potential-energy surface has a well-defined curved ascending gulley when μ is small, e.g., as in the 12-1+13 case (Fig. 4) or in the 1-1+24 case (Fig. 5). The $v_{\delta}(z)$ path defined by Eq. (8) is the zeroth-order (elastic) approximation to the trajectory for the collision in the PSS approximation and is given in Figs. 4 and 5 together with the exact trajectory for a particular E_0 . The corresponding path in the zeroth-order (elastic) approximation for the ST case is the straight line v(z)=0. The reason for the considerable improvement of the PSS over the ST approximation for these mass ratios becomes clear.

For the 12-12+2 mass ratio the mass-weighted surface shows a very different behavior, i.e., relatively unchannelled, at small separation distances (Fig. 6).

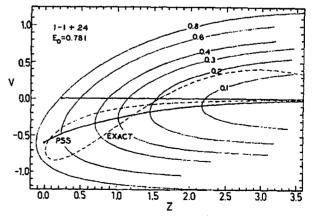


Fig. 5. Exact and approximate trajectories for a 1-1+24 collision at $E_0=0.781$.

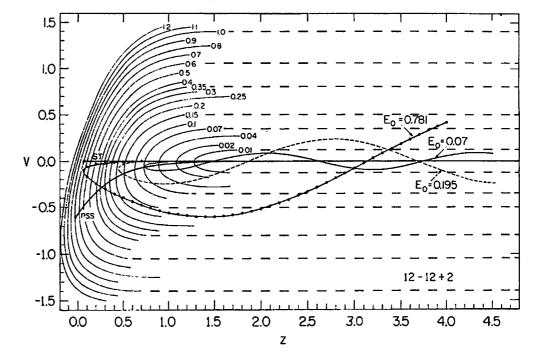


Fig. 6. Exact approximate trajectories for a 12-12+2 collision at $E_{\ell}=0.781$ (\bullet) 0.195 (---) and 0.07 (-). The v=0 and $v_{\ell}(z)$ zeroth-order curves are indicated by ST and PSS.

In their approaching portion the exact trajectories for various E_0 's are seen to agree better with the zeroth-order ST path (v=0) than with the zeroth-order PSS path $[v=v_c(z)]$. It is not surprising therefore that ST is better than PSS at high energies for this mass ratio.

The above behavior can also be understood from several other viewpoints. In the 1-1+24 and 12-1+13 collisions, if the initial relative kinetic energy is not too large, the central atom has time to adjust adia-

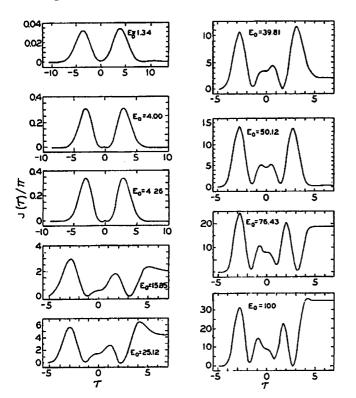


Fig. 7. Time evolution of $J(\tau)$ for various (increasing) E_0 , for a 1-12+13 collision.

batically to the incoming atom. In the 12-12+2 collision, it does not since the light 2 atom darts in and out, creating an impulsive force, thereby making ideal conditions for an ST approximation. In terms of the v, z coordinates, the exp $(-\mu z)$ term at large μ causes a much stronger impulsive force at small distances of separation, z, than it does (for the same z) when μ is small.

The nonmonotonic behavior in Fig. 3 may be understood in terms of the behavior of the vibrational action integral as follows: In Fig. 7 as E_0 increases, $J(\tau)$, given by Eq. (11), undergoes an increasing number of oscillations with the result that the final $J(\infty)$ is small for some E_0 and large for others, thereby yielding the nonmonotonic behavior in Fig. 3. An alternative explanation could be offered on the basis of a multiple-collision hypothesis¹¹: In the case of hard spheres for the μ of Fig. 3 Secrest¹¹ has shown that there are five (intermittent) instants of contact between the colliding species. At very low E_0 , to be sure, the hard-sphere analogy becomes less suitable since it is in error there by twelve orders of magnitude (Fig. 3), while the PSS method is very good.

In using Eq. (91) of Ref. 9(c) to obtain (11) rectangular (v, z) coordinates were used instead of the more general curvilinear ones and the $\dot{\omega}$ term was neglected. Further, terms higher than $(v-v_e)^2$ were omitted in (7). One or more of these approximations may account for the displacement in phase of the exact and PSS curves in Fig. 3.17 For example, the exact trajectory is seen in Fig. 8 to agree well with the curvilinear

¹⁷ Recent calculations^{16b} including the $\dot{\omega}$ term show that it alone does not account for the phase difference, but rather shifts the curve near log $E_0=0.6$ in Fig. 3 slightly to the right. The $\dot{\omega}$ term has a negligible effect at small E_0 , e.g., at log $E_0=-0.5$.

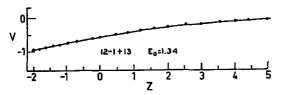


Fig. 8. Exact and curvilinear coordinates trajectories for a 12-1+13 collision at $E_0=1.34$. (Compare Fig. 4.)

reaction coordinate of Ref. 9(a). Comparison with the lesser agreement of this exact trajectory with the PSS path in Fig. 4 suggests that the curvilinear coordinate in Fig. 8 should be useful for a zeroth-order approximation in a near-adiabatic calculation 9b at this μ .

In the light of the results in Table I we now examine some recent quantum and semiclassical calculations. For the zeroth-order (elastic) collision the Jackson-Mott distorted-wave calculation assumes the potential energy for translational motion to be that in which the oscillator coordinate has its equilibrium value.18 Such an approximation is indeed an ST one. Mies⁶ removed it by computing the actual matrix elements V_{nn} , thus converting the Jackson-Mott treatment into a true first-order distorted wave calculation. According to the results in Table I, this correction to the Jackson-Mott expression should have little effect at large μ , but a large effect at small μ . Such is indeed the case in Roberts' recent comparison19 of exact results with those obtained from the approximate distorted wave calculated by Jackson and Mott and from (Mies') distorted wave calculations (μ ranged from 0.9 to 2.24). At sufficiently low μ the distortion may be too large for these first-order treatments, and a comparison with exact results at $\mu=0.4$ would be useful. (A first-order PSS treatment should be appropriate at low E_0 , according to Fig. 3.)

The first-order distorted wave calculations become inapplicable when jumps via virtual states become important during the collision. Existing semiclassical4 and distorted wave2b calculations which are infinite order with respect to the internal states allow for these virtual effects. Each of these infinite-order calculations is of the ST type, since each has (in the elastic collision) the ST type of potential energy described earlier, and so would be expected to be reasonable at large μ and poor at small μ . It is of interest in this connection to note that the infinite-order distorted wave approximation of Thiele and Weare was compared2b with the exact²⁰ results only at a large μ (3.6), and comparison at lower μ would be desirable.

D. Secrest and B. R. Johnson, J. Chem. Phys. 45, 4566 (1966). Our μ equals their $m^{-1/3}$.

ACKNOWLEDGMENT

The authors are deeply indebted to Professor Don Secrest of this department for many helpful discussions and for permitting us to use his exact results in advance of publication.

APPENDIX: DERIVATION OF EQ. (11)

The derivation of (11), given in Ref. 9(c), is outlined below.

The present Hamiltonian is given by (3), plus the approximation embodied in (6). If, at each z, the local vibrational v motion is treated as "adiabatic" the local vibrational energy

$$\lceil (p_v^2/2) + U(v, z) - U(v_s, z) \rceil$$

has its adiabatic value. The latter depends only on z and on the (initial) vibrational action J_0 , and is denoted by $E_{vib}(J_0, z)$. The z motion then satisfies the following equation, obtained from (3):

$$\frac{1}{2}\dot{z}^2 + U(v_e, z) = E - E_{\text{vib}}(J_0, z).$$
 (A1)

This equation is solved for z(t), after first determining $E_{vib}(J_0, z)$. The latter can be determined from the expression for J_0 .21

Because the zeroth-order approximation is an adiabatic one, the calculation of higher approximations, i.e., the calculation of nonadiabatic corrections, can be performed by transforming from (v, p_v) to local vibrational action-angle variables (J, w). This transformation can be introduced via a generating function22 $W^*(v, w, z)$ given later:

$$J = \partial W^*/\partial w, \qquad p_v = \partial W^*/\partial v.$$
 (A2)

The equations of motion then become

$$\dot{J} = -\partial \bar{H}/\partial w, \qquad \dot{w} = \partial \bar{H}/\partial J,$$
 (A3)

where

$$\bar{H}(J, w, t) = H(v, p_v) + \partial W^*(v, w, z)/\partial t.$$
 (A4)

In (A4) the dependence of z on t is given via (A1). The net change of J provides immediately, on integrating (A3), the net change of vibrational action and, thereby, of vibrational energy. (In the case of a locally harmonic oscillator the local vibrational energy is $J\omega/2\pi$.) W* for a locally harmonic oscillator is²²

$$W^*(v, w, z) = \frac{1}{2}\omega(v - v_s)^2 \cot 2\pi w,$$
 (A5)

where v_a is $v_a(z)$ and where z denotes z(t), obtained from solution of Eq. (A1) for the z motion. From

$$\int_{0}^{\infty} dv = \oint \{2(E_{vib} - [U(v, s) - U(v_{o}, s)])\}^{1/2} dv,$$

is employed. When (6) is introduced for U(v, s), integration yields $J_{\bullet} = E_{vib}/(\omega/2\pi)$.

²² H. C. Corben and P. Stehle, *Classical Mechanics* (John Wiley & Sons, Inc., New York, 1960), 2nd ed., pp. 190-191.

¹⁸ The exponential in (2) was expanded in powers of hy and powers higher than the first neglected. In the matrix elements Vnn of V over the nth oscillator wavefunction the mean of λy vanished, making all $V_{nn} = D \exp[-b(x-\lambda r_e)]$.

19 R. E. Roberts, J. Chem. Phys. 49, 2880 (1968); cf. D. Secrest ibid. 49, 2880 (1968).

280 Secreet and R. P. Johnson, J. Chem. Phys. 45, 4566.

²¹ The definition of Jo,

(A2)-(A5), one finds

$$\dot{J} = -2\dot{v}_{\bullet}(\omega\pi J)^{1/2}\sin 2\pi w - (J\dot{\omega}/\omega)\cos 4\omega w, \tag{A6}$$

 $\dot{w} = (\omega/2\pi) - \frac{1}{2}\dot{v}_{\bullet}(\omega/J\pi)^{1/2}\cos 2\pi w + (\dot{\omega}/4\pi\omega)\sin 4\pi w.$

(A7

The reasoning in Ref. 9(c) [used to obtain (93) from (86) and (87)] is next employed to integrate (A6) and

(A7) approximately, thus yielding (11), when the $\dot{\omega}$ terms are omitted. Inclusion of the $\dot{\omega}$ terms adds, in one approximation, as it did in Ref. 9(c), an additional term, Δ :

$$\Delta = -J^0 \int_{-\infty}^{t} \left(\frac{\dot{\omega}}{\omega}\right) \cos 2 \left(\int_{\tau_0}^{\tau'} \omega dt'' + \delta\right) d\tau' \quad (A8)$$

to Eq. (11).