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Vibrational-Translational Energy Transfer in the Near-Adiabatic Approximation*
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Vibrational-translational energy transfer is examined in the near-adiabatic (or perturbed stationary
states) approximation. The results are classical, and the method used is related to that of Marcus [J.
Chem. Phys. 49, 2617 (1968) . The results are compared with those of the more usual (*static”) approxima-
tion and with the exact results. The PSS results were good at low energies at all mass ratios studied, unlike
the static results. For certain mass ratios the static approximation fails badly, even at very low transition
probabilities. For other mass ratios, the results are of comparable accuracy except at high energies where
the static one is somewhat better. Reasons for the above behavior are discussed, and implications regarding
existing infinite-order distorted wave and semiclassical calculations are noted. The relation to a recent
correction of the Jackson-Mott calculation is described.

INTRODUCTION

For the most part the theoretical treatment of vibra-
tional-translational energy transfer'™ in a molecular
collision has been given in terms of a “static” (ST)
approximation. The ST treatment has been quantum,’
semiclassical 4 or classical.? A principal ST feature lies
in its zeroth-order approximation—an elastic collision
in which the vibrational motion is that of an isolated
molecule and in which the effective potential energy
of relative translational motion is uninfluenced by the
vibrational motion. A comparison’ of the exact classi-
cal numerical results with those of the classical ST
approximation shows that it is excellent for certain

* Acknowledgement is made to the National Science Founda-
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mass ratios but that it fails badly for others even when
a classical analog of the transition probability is ex-
tremely small.

An alternative zeroth-order approximation is that of
perturbed stationary states (PSS),® which can also be
described as the adiabatic approximation. According
to the PSS approximation the zeroth-order (elastic)
collision is one in which the vibrational motion is
allowed to be distorted during the encounter and in
which the relative motion is perturbed accordingly.?"?
The desirability of having such an approximation avail-
able is evident upon examination of a trajectory under
conditions where the ST approximation failed, e.g., in
Fig. 5 of Ref. 7 there is a large ransient distortion of
the oscillator coordinate during the collision.

Previous PSS calculations do not appear to have
been made for vibrational-translational energy trans-
fer. The classical PSS approximation is explored in the
present paper and compared with the exact results of
Kelley and Wolfsberg? and Secrest.!+** Because of cor-
respondence arguments®® it may be anticipated that
findings of the present study regarding the relative
merits of ST and PSS approximations will be applica-
ble to the quantum and semiclassical cases also, thereby
yielding various predictions for these cases as described
later.

A theoretical treatment analogous to that in Ref.
9(c) is used below. A corresponding quantum treat-
ment is given in Ref. 9(a).

THEORY

For a collinear collision between an atom A and a
harmonic oscillator BC, let x denote the coordinate of
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TasLe I. Comparison of exact and approximate vibrational energy transfers.

——

—— —_—

—

Kw
C—B+4 E, m AE AEPS/AE  AEST/AE Case no.
“1-12+41 0.00929 12.96 8.38X10°* 1.01 1.01 I-2
1-124-13 0.00232 4.899 8.62X 10 1.00 1.07 II-5b
0.00929 1.05X107® 1.01 1.07 I-5b
0.0739 0.00494 1.05 1.06 I-5d
12—124-2 0.195 3.606 0.0290 1.15 1.12 IV-24v
0.393 0.0781 1.29 1.13 I-7b
0,781 0.180 1.55 1.14 II-7d
3.12 0.800 2.76 1.15 1-7d
12—-12+24 0.195 1.414 0.00691 1.16 2.34 II-13¢
0.393 0.00570 1.28 2.33 I-13b
0.781 0.261 1.47 2.29 I1-13d
3.12 2,18 2.24 2.22 I-13d
1-14-24 0.0981 1.041 1.55X 10t 1.10 5.26 IV-10
0.195 8.00X10™ 1.19 5.38 Iv-27
0.393 0.0134 1.34 5.60 1-18b
0.781 0.0914 1.65 5.98 I-18¢c
12—1+13 0.334 0.4082 1.51X10°® 1.09» 1260 I1-26b
0.666 2.75X10 1.35 1670 Iv-39
1.34 6.11X10* 2.34 3810 I-26b
2.66 6.29X10°° 116 574,000 v-37

——

s AEPS8 computed by method of Ref. 16(b).
b The numera) following “IV* {ndicates the line of data in Table IV of

relative translational motion
[x=ra~ (mare+merc) / (mp+mc) ]

and y denote the oscillator displacement from its equi-
librium bond length r, (y=rp—rc—71,). The Hamilton-
ian H is

H=3[(p/ M)+ (p,*/m) +mu'y* ]+ V (x, 3),
where M and m are the reduced masses,

ma(mp+me) [ (ma+mp+me)

(1)

and
mpme/ (ma+mc),

wy/2r is the oscillator vibrational frequency, and
V(x, y) is the interaction potential"; p. and p, are
the momenta conjugate to x and y.

In the particular case that V has an exponential
dependence on the rsp distance, r4—7s,

V(x, y) =D exp(—bras) = D exp[—b(x—hy—Xr,)],
(2)

where A is m¢/(mp+me) and 5! is an effective range
parameter, dimensionless quantities v, 2, and & can be
introduced":

A=}(p24pi+o) +exp(v—ps),  (3)

M Use of an anharmonic oscillator potential in (1) would offer
no added calculational difficulty if the local harmonic expansion
in Eq, d(l? continued to be valid. Otherwise the treatment could
be modified by adapting certain methods from nonlinear me-
chanics (for example, making the local oscillator approximatel
a harmonic one but with an amplitude-dependent frequency
or using the numerical method noted in Ref. 16(b).

Ref, 7 to which this calculation refers,

where H is H{(b\/m"%ux)?, v is bAy, & is

b (x—Ars) — In(DEN/max?) I/ i, 4)
pv and p, are dv/d(w!) and dz/d(wet), and p is'®
u=[ms(matms+mc) [mamc]. (5)

When the rectilinear coordinates v and s are em-
ployed, the local adiabatic vibrational potential U is
obtained by expanding the last two terms of (3) in a
power series about the value of v, v, which minimizes
U (at each 2):

U(v, 2) =U (v, 2) +30*(v—05)%4 -, (6)
where v, satisfies (7):
[4v*+exp(v—us) J/9v=0  (atv=1,), (7)
and where «? is 92U/3+* at 9=1,. One then finds
v,= —exp(vs— u2), (8
U(1,, ) =4vi—1,, 9
w*=1—1, (10)

Comparison of (6) with the expansion in Ref. 9(c)
leading to Egs. (79) and (80) shows that use can be
made of the arguments employed there to derive (91)
to (94), but with p, po, and x there replaced by », v,
and 1 here. When the & term in (91) is neglected one
obtains (93), which yields (11). For completeness, the
derivation of (11) is also outlined in the Appendix of
the present paper, and an & term is given by (AS8)

15,2 equals the quotient 4/lim (AE,s,/Ee), whose denominator
is discussed in Kelley and Wolfsberg.?
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there;
Iey=10=200 [ o,(wr)n

X sin [ f (') d-r"+8] dr'

L0 ]
2

+|'/:;° 9o (wm) 2 exp [i/;w(r")df"] de'|, (11)

where J(r) is the vibrational action of the (v—v,)
oscillator at reduced time r, (r=wef), JO is its initial
value, and & is a vibrational phase at some specified
time 7o before the interaction has occurred.
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Fic. 1. Log AE/Eq vs log E, for a 1—12+13 collision. The
exact results are taken from Ref. 7, apart from the log Eo=—0.41
point.t®

The origin for 7 can be chosen without loss of gen-
erality to be the time when 2 attains its minimum value.
As 7 tends to =, w tends to unity. Thus, the local
vibrational energy, Jw/2w, becomes J°/2x at r=—o
and J®/2x at r=+ . The vibrational-energy change
in units of m{we/BN)? is

AE = (J==J° /2%.

RESULTS

Comparison of values obtained for Eq. (12) is made
with those from the exact numerical integration of
Kelley and Wolfsberg’ and with those given by the
classical (ST) expression of Parker, Takayanagi, and
Rapp.®® The results are given in Table I, which also
gives the masses, the initial translational energy Eo
[in units of m(Awy/b)?], the exact AE (same units),
the ratio of AEpss t0 AFese, the ratio of AEgr to
AEex s, and the case number of Kelley and Wolfsberg’

(12)
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F16. 2. Log AE/E, vs log Eq for a 1—1-+24 collision. The exact
results are taken from Ref. 7.

JO is zero for the calculations presented in Table I. The
results for several mass ratios are illustrated in Figs.
1-3. In Fig. 3, several exact KW points’ for the 12—1+
13 case and many others of Secrest!! are compared with
the ST and PSS results.
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¥16. 3. Log AE/E, vs log Es for a 12—1+13 collision.

18 (a) Details of the evaluation of the integrals are given in M.
Attermeyer, Ph.D. thesis, University of Illinois, 1969. (b) Al-
though most of the reported AEFS8s were obtained by the
method in Ref. 16(a), it has been replaced by a much more
rapid comfsumtion involving numerical solution of corresponding
differential equations. For consistency the & term was omitted.
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Fic. 4. Exact and approximate trajectories for a 12— 1413 collision at Eq=1.34. The =0 and 1, (2) zeroth-order lines are indicated
by ST and PSS, respectively. Exact results are indicated for negative p, by - - - and for positive 2. by O. Potential-energy contours

are sketched in the background.

If the diatomic molecules in Table I are regarded
as CH, C,, and H,, with respective force constants of
4.5, 9.5, and 5.7 mdyn/A, and if the usual value' for
1/b of about 0.2 & is used, the Ey’s of the first lines for
each mass ratio in Table I are 1.1, 0.27, 1.1, 1.1, 0.34,
and 0.27 eV, respectively. Thus, all of the Ey’s used
in Ref. 7 are rather high. (Low values of E, frequently
give rise to computational difficulties.) However, ex-
cept for the 12— 1-4-13 case the error ratios in Table I
are relatively energy independent, at least in the range
investigated. Nevertheless, exact results at lower Ey’s
would be desirable for comparison with data on energy
transfer at thermal energies.

DISCUSSION

At the lowest energy, where the near-adiabatic ap-
proximation should work best, the PSS results are
very good indeed, being in error by /19, 0%, 15%,
16%, 10%, and 99, at the successive mass ratios in
Table I. The corresponding errors for the ST approxi-
mation are 1%, 7%, 12%, 134%,, 426%, and 126 000%,.
The advantage of the PSS method begins to occur at
a u of 1.4 (12—12424). When the ST approximation
is comparable in accuracy (or, in the case of high
energies for u=3.6 and 1.4, is more accurate), it is
preferable to the PSS one since its integral can be
evaluated analytically.

In the 12—14-13 case, the log(AE/E,) vs logE, plot
of Fig. 3 shows the nonmonotonic behavior studied in
detail by Secrest.! The PSS curve shows a similar
behavior, somewhat shifted in phase, but the ST curve
is monotonic.

Some insight into the above results is obtained from
a consideration of the potential-energy surfaces, the

exact trajectories, and the time evolution of the vibra-
tional action integral given by Eq. (11). In mass-
weighted space [(v, z) space] the potential-energy sur-
face has a well-defined curved ascending gulley when
# is small, e.g., as in the 12—1+413 case (Fig. 4) or in
the 1—1+24 case (Fig. 5). The v(2) path defined by
Eq. (8) is the zeroth-order (elastic) approximation to
the trajectory for the collision in the PSS approxima-
tion and is given in Figs. 4 and S together with the
exact trajectory for a particular Ey. The corresponding
path in the zeroth-order (elastic) approximation for
the ST case is the straight line v(z) =0. The reason
for the considerable improvement of the PSS over the
ST approximation for these mass ratios becomes clear.

For the 12— 122 mass ratio the mass-weighted sur-
face shows a very different behavior, i.e., relatively
unchannelled, at small separation distances (Fig. 6).

F16. §. Exact and approximate trajectories for a 1—1+24
collision at E¢=0.781.
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In their approaching portion the exact trajectories for
various Ey’s are seen to agree better with the zeroth-
order ST path (»=0) than with the zeroth-order PSS
path [9=1,(2)]. It is not surprising therefore that ST
is better than PSS at high energies for this mass ratio.

The above behavior can also be understood from
several other viewpoints. In the 1—1+4-24 and 12—14
13 collisions, if the initial relative kinetic energy is not
too large, the central atom has time to adjust adia-

Q04c
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Jgn/m
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°SP*¥~ r B Ot s w4

B -5 0 3
T T

F1c. 7. Time evolution of J(r) for various (increasing) E,, for
a 1—12+413 collision.

1.5 20 25 30 35 40 45

batically to the incoming atom. In the 12—124-2 colli-
sion, it does not since the light 2 atom darts in and
out, creating an impulsive force, thereby making ideal
conditions for an ST approximation. In terms of the
v, 3 coordinates, the exp (—puz) term at large u causes
a much stronger impulsive force at small distances of
separation, 2, than it does (for the same 2z) when u is
small.

The nonmonotonic behavior in Fig. 3 may be under-
stood in terms of the behavior of the vibrational action
integral as follows: In Fig. 7 as E, increases, J(7),
given by Eq. (11), undergoes an increasing number of
oscillations with the result that the final J( ) is small
for some E; and large for others, thereby yielding the
nonmonotonic behavior in Fig. 3. An alternative ex-
planation could be offered on the basis of a multiple-
collision hypothesis'': In the case of hard spheres for
the u of Fig. 3 Secrest! has shown that there are five
(intermittent) instants of contact between the collid-
ing species. At very low Ey, to be sure, the hard-sphere
analogy becomes less suitable since it is in error there
by twelve orders of magnitude (Fig. 3), while the PSS
method is very good.

In using Eq. (91) of Ref. 9(c) to obtain (11) rec-
tangular (v, 2) coordinates were used instead of the
more general curvilinear ones and the & term was
neglected. Further, terms higher than (v—2,)? were
omitted in (7). One or more of these approximations
may account for the displacement in phase of the exact
and PSS curves in Fig. 3.7 For example, the exact tra-
jectory is seen in Fig. 8 to agree well with the curvilinear

17 Recent calculations' including the & term show that it alone
does not account for the phase difference, but rather shifts the
curve near log I£,=0.6 in Fig. 3 slightly to the right. The & term
has a negligible effect at small Ej, e.g., at log Eq=—0.5.
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Fic. 8. Exact and curvilinear coordinatest trajectories for a
12—1+13 collision at Eo=1.34. (Compare Fig. 4.)

reaction coordinate of Ref. 9(a). Comparison with the
lesser agreement of this exact trajectory with the PSS
path in Fig. 4 suggests that the curvilinear coordinate
in Fig. 8 should be useful for a zeroth-order approxima-
tion in a near-adiabatic calculation®™ at this g.

In the light of the results in Table I we now exam-
ine some recent quantum and semiclassical calculations.
For the zeroth-order (elastic) collision the Jackson-
Mott distorted-wave calculation assumes the potential
energy for translational motion to be that in which
the oscillator coordinate has its equilibrium value.’®
Such an approximation is indeed an ST onme. Mijes®
removed it by computing the actual matrix elements
Vs, thus converting the Jackson-Mott treatment into
a true first-order distorted wave calculation. According
to the results in Table I, this correction to the Jackson—
Mott expression should have little effect at large u,
but a large effect at small p. Such is indeed the case
in Roberts’ recent comparison® of exact results with
those obtained from the approximate distorted wave
calculated by Jackson and Mott and from (Mies’) dis-
torted wave calculations (u ranged from 0.9 to 2.24).
At sufficiently low p the distortion may be too large for
these first-order treatments, and a comparison with
exact results at p=0.4 would be useful. (A first-order
PSS treatment should be appropriate at low E,, ac-
cording to Fig. 3.)

The first-order distorted wave calculations become
inapplicable when jumps via virtual states become im-
portant during the collision. Existing semiclassical! and
distorted wave?® calculations which are infinite order
with respect to the internal states allow for these vir-
tual effects. Each of these infinite-order calculations is
of the ST type, since each has (in the elastic collision)
the ST type of potential energy described earlier, and
so would be expected to be reasonable at large x and
poor at small . It is of interest in this connection to
note that the infinite-order distorted wave approxima-
tion of Thiele and Weare was compared?”® with the
exact® results only at a large p (3.6), and comparison
at lower u would be desirable.

18 The exponential in (2) was expanded in powers of My and
powers higher than the first neglected. In the matrix clements Von
of V over the nth oscillator wavefunction the mean of Ay vanished,
making all Vaa=D exp[—b(x—2r.) ].

v R, E. Roberts, J. . Phys. 49, 2880 (1968); cf. D. Secrest
£bid. 49, 2880 (1968).

©D. Secrest and B. R. Johnson, J. Chem. Phys. 45, 4566
(1966). Our x equals their m™3,

\ APPENDIX: DERIVATION OF EQ. (11)

The derivation of (11), given in Ref. 9(c), is out-
lined below.

The present Hamiltonian is given by (3), plus the
approximation embodied in (6). If, at each g, the local
vibrational » motion is treated as “adiabatic” the local
vibrational energy

[(#Y/2)+U(v, 2)—U(2, 5)]

has its adiabatic value. The latter depends only on 3
and on the (initial) vibrational action Jo, and is de-
noted by E.u(Jo, 3). The 5 motion then satisfies the
following equation, obtained from (3):

3524 U(ve, 2) = E— Een(Jo, 5)- (A1)

This equation is solved for z(¢), after first determining
Een(Jo, 2). The latter can be determined from the
expression for Jo.*!

Because the zeroth-order approximation is an adi-
abatic one, the calculation of higher approximations,
i.e., the calculation of nonadiabatic corrections, can
be performed by transforming from (v, p.) to local
vibrational action-angle variables (J, w). This trans-
formation can be introduced via a generating function”
W*(v, w, 2) given later:

J=0W*/ow,  p,=dW*/dv. (A2)
The equations of motion then become
J=—0H/3w, w=0H/dJ, (A3)

where
BT, w, i) =H(v, po)+OW*(v, w, 2)/3t. (A4)

In (A4) the dependence of z on ¢ is given via (Al).
The net change of J provides immediately, on inte-
grating (A3), the net change of vibrational action
and, thereby, of vibrational energy. (In the case of
a locally harmonic oscillator the local vibrational en-
ergy is Jw/2x.) W* for a locally harmonic oscillator is®

W*(v, w, 3) =4w(v—1,)? cot2mw, (AS5)

where v, is 7,(2) and where z denotes 3(f), obtained
from solution of Eq. (A1) for the s motion. From

8t The definition of Jo,
Te= fp.dm f (2( Evin—LU (5, 5)— U (8 3) 1) }12ds,

is employed. When (6) is introduced for U(v, 5), integration
yields Jo= E,“,/(w/Zw).

H. C. Corben and P. Stehle, Classical Mechanics (John Wiley
& Sons, Inc., New York, 1960), 2nd ed., pp. 190-191.
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(A2)-(AS), one finds

J = —20,(wn) 2 sin2nw— (Jio/w) cosdwrw, (A6)

W= (w/2x) —30.(w/Tx) "2 cos2rw+ (@/4mrw) sindrw.
(A7)

The reasoning in Ref. 9(c) [used to obtain (93) from
(86) and (87)] is next employed to integrate (A6) and

(A7) approximately, thus yielding (11), when the &
terms are omitted. Inclusion of the & terms adds, in
one approximation, as it did in Ref. 9(c), an addi-
tional term, A:

=—J0 /_; (s) cos2 ( /: wdt"” +6) dr’ (A8)

to Eq. (11).



