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The classical-mechanical equations of motion describing collisional energy transfer are converted to a
form involving constants of the elastic collision, using a Hamilton-Jacobi formalism. These constants fre-
quently vary only slowly during an inelastic collision. An approximate version of the transformed.equaugn.s,
related to a variation of constants procedure, is next introduced. The collision of an atom with a rigid
linear diatomic molecule is considered in some detail. Several desirable features of the approximaﬁon_ are
that the change in rotational angular momentum is obtained directly, all initial orientations of particles
and angular momenta occur outside the integrals, an approximate error estimate can be made, results can be
caleulated relatively quickly, and further insight is obtained into the energy-transfer process. Because
of the close relationship of Hamilton-Jacobi and Schrédinger formalisms, a comparison of exact and ap-
proximate classical results is also expected to provide estimates of range of validity of some commonly used

approximations in the quantum case.

INTRODUCTION

Recently, classical-mechanical rotational energy
transfer has been used to develop several approximate
expressions for rotational relazation times and to
calculate cross sections related to spectral band con-
tours and relaxation times: The rotational relaxation
problem was treated in two dimensions using approxi-
mate!'? and exact (numerical)® integration of the
equations of motion. Further, classical cross sections in
three dimensions have been introduced into an ex-
tension* of an impact theory® for relaxation times for
microwave, infrared, Raman, and nuclear spin spectra.
They have also been introduced in autocorrelation
function expressions for fluorescence depolarization,
pressure, and frequency dependence of nonresonant
microwave absorption, and sound absorption.?

These relaxation times and cross sections for rota-
tional energy transfer are obtained by averaging
quantities such as the square of the change in rotational
energy’ or the transition probability4® over the appro-
priate phase space. Normally, the averaging process
necessitates either major approximations'?? or many
integrations of the exact, classical equations of
motion.**® Two very interesting approximations have
been proposed to reduce the number of coupled difieren-
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tial equations involved for a classical inelastic collision,®
and an approximate solution has been derived for large
impact parameters.’

The present paper makes use of techniques which
have been employed to advantage in celestial me-
chanics.”® In particular, we first solve" the Hamilton-
Jacobi equation for the elastic collision. The latter
yields a contact transformation which converts the
equations of motion for the perturbed problem (i.e.,
the inelastic problem) to a more convenient form. The
convenience arises because the constants of the motion
for an elastic collision become, frequently, only slowly
varying functions of time for an inelastic collision. As
in celestial mechanics the resulting equations can be
used for numerical or more approximate solution. A
Hamilton-Jacobi formalism has also been used by one
of us to treat reactive collisions.®

An approximate solution of the resulting exact
equations is next given. It has a number of desirable
features: (1) Aj, the change in rotational angular
momentum, is obtained directly, (2) all initial angular
orientations of the particles and their angular momenta
occur outside the integrals, (3) an approximate error
estimate can be made, (4) results can be calculated
relatively quickly, and (5) further insight is obtained
into the process of rotational energy transfer. This
approximate solution works best for collisions involving
closely spaced rotational energy levels!® and moderately
anisotropic potential-energy functions.

For ease of presentation, we first describe the applica-
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B Since systems with many closely spaced rotational energy
levelsare difficult to treat quantum mechanically or semiclassically,
it is fortunate that the approximate solution works best for these
systems.
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tion of the method to the rotational-translational
energy transfer problem in three dimensions for an atom
colliding with a rigid linear molecule and then indicate
the appropriate modifications for treating more com-
plex problems involving rotational-vibrational-trans-
lational energy transfers in polyatomic systems.
Because of the close relation of Hamilton-Jacobi and
Schrédinger formalisms, a comparison of approximate
with exact classical results is expected to provide some
estimate of the range of validity of some commonly
used approximations in the quantum case, a matter
considered further in a later paper.

COLLISION OF AN ATOM WITH A RIGID ROTOR

The Hamiltonian for the collision of an atom and a
rigid linear molecule is described by the familiar
Hamiltonian

1 2
A=+ ()]

1 125
+ 2—";-';(?9’-%- -SI—D,-G) +VRY). (1)

Here, R, O, and @ are the spherical polar coordinates of
the vector R from the center of mass of the atom to the
center of mass of the molecule. v is the angle describing
the orientation of the molecule relative to R. pz, po,
and ps are conjugate to R, O, &. r, 6, and ¢ are the
spherical polar coordinates of the axis of the rotor,
while p» and p4 are the momenta conjugateto 8 and ¢.
#im is the reduced mass of the linear molecule, and x is
the reduced mass for the atom—molecule collision.
The Hamiltonian (9) can be written as

H=Hyt+V,, (2)
where Hp is H with V(R, v) replaced by its spherically
averaged value Vo,

3 3)

and V, is the asymmetric contribution to V(R, v),
Vo(R,v)=V(R,v)—V«(R). (4)

The Hamilton-Jacobi equation for the elastic collision
is obtained by replacing each p; in Ho by oW («, ¢%) /3¢°,

Va(R)= 3 [ V(R,v) sinr,
0

Y In a collision 4+4-BC,

p=ma(ma+me)/(ma+mg+mc)
and

pn=mpme/ (mp+mc);
in a collision 4-+BCD,

p=maM/(ms+HM)

and
snr¥=[re*mp(M —mp)*t-rdmo(M ~mcy+rptmp(M —mp)*]/ M2,

where M =mg-+me-+mp and rs, r¢, rp are the distances of B, C,
D from the center of mass of the rotor.
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where W(ay;, ¢°) is the unknown generating function
and the a; are constants of the motion for an elastic
collision, and then setting Ho equal to E, the total
energy. Solution of this equation by separation of
variables introduces separation constants [, m;, 7, and
m; and yields'''¢ Eq. (5) for W

W(qi; o) =Wi(9, 3,0, #; mbjr m;)+Wha, (5)

where"?

Wy=md+md+ / (P—m; @) 120

+ [ (p-mi cscoyean (6)

and

_ p ]'2 ) 1/2
W= / [Zu(E— R V.,] dR. (7)

A second useful generating function is obtained by
replacing Wz by the one!® for an identity transformation,
yielding

W=Wr+prR, ®
where P is the new momentum conjugate to R.

In either case W is W(P;, ¢*), where the P; are the
new momenta. One has®?

pi=3W (P, ¢')/3¢* (9
Qf=aW (Ps, ¢*) /0P, (10)
where the Qf are the new coordinates conjugate to P;.
When the (g% #¢) in H are expressed in terms of the

(Q%, P;) using these equations, the new equations of
motion become®

P.=—3H(P,, Q) /3Q} (11)
Q'=3H(P:, Q) /0P:. (12)

From (9) one finds
po=(P—m? csc0)2,  po=my  (13a)
po=(F*—mP csc0)2,  py=m;.  (13b)

From (1) and (13), !, mi, j, m; are found to be the
orbital angular momentum, its z component, the

1 Minor notational changes from Ref. 11 include interchange
of R, ©, 3, ¥ and 1, 6, ¢, ¥ and change of all 8; to —8;. The present
Eq. &55 is the same es Eq. (A-7) of the thesis and the present
Eq. (29) is the same as that employed elsewhere in the thesis,
as use of (31) shows.

¥ Eg., asin (a) D. Ter Haar, Elemenis of Hamiltonian Me-
chanics (North-Holland Publ. Co., Amsterdam, 1961), ; . 127-
129; (b) p. 132 ff.; or (c) G. Birtwistle, The Quanium of
the Atom (Cambridge University Press, London, 1926), Chap. 19.

1 The square root can either be positive or negative, and the
customary procedure of letting it mean either is employed at this

int.

is E.é., H. Goldstein, Classical Mechanics (Addison-Wesley
Publ. Co., Inc., Reading, Mass., 1957), p. 244.

1 Reference 18, p. 241, ;Z’? (8-11). Our W does not depend
9

exglici:.lfy on time, so the 3 there vanishes,
Reference 18, p. 239, Eq. (8-5).

Downloaded 21 Aug 2007 to 131.215.21.81. Redistribution subject to AIP license or copyright, see http:/jcp.aip.org/jcp/copyright.jsp



CLASSICAL MECHANICS

rotational angular momentum of the molecule and its
s component, respectively.

The new momenta P; are }, m;, 7, m; and, when (8)
is used, pz. The coordinates Qf conjugate to the latter
are denoted below by ¥, Bum;, ¥, Bm;, and R, respectively.
From (9) and (10) one then finds

R=0W/3pz=R, (14)
¥=3W /al= —sin—*[csci; cos8], (15)
Buy= W /dm=¢—sin—"[coti; cot®],  (16)
¥=0W /5= —sin~"[cscs; cosf], 17
Bony = W /3m ;= &—sin—[ coti; cotd], (18)

where 4; is the angle between 1 and the 2 axis, and 4; is
the angle between j and the g axis

sini=[1— (m/0)*}#,  sinéj=[1— (m;/7)*]"* (19)

Henceforth, the bar is omitted from the fz and E. Apart
from a factor of 2w, the new variables 7, m;, I, m; are
actions, and the conjugate coordinates ¥, Bm,, ¥, 8x; are
angles.®> Similar remarks apply to 7, £, and m in (37)
and to P, in (39).

One finds from (15) that ¥ is the angular position
of R in the plane perpendicular to 1, measured from
the line of nodes (Fig. 1).%* Similarly, from (17),
 is the angular position of r, in the plane perpendicular
to j, measured from the line of nodes. One also finds
from (16) that 8,,-+x/2 is the azimuthal polar co-
ordinate of 1 (Fig. 1), and from (18) Bm,+w/2 is the
azimuthal polar coordinate of j.

In terms of the Qf and P;, H becomes

H=(p2/2u)+V (R, v)+ (F/2uR) + ( 7/ 24mr*),

where

(20)

€0sy= cosO cosf-}sin® sind cos(¢p— &) (21) ‘

and the angles 6, 6, ¥, and ¢ are expressed in terms of

]
| N
[}

Il

”, 1]
NS B> 0 '
1 - @\ s .
) \ ~

N
N,

Y

Fic. 1. The orientation of the instantaneous line-of-centers
vector R is given by (0, ). The orientation of the instantaneous
orbital angular momentum 1 is given by (d1, Bu; +=/2). The
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the Q¢ and P; using relations readily derived from
(15) to (19):

cos®= —[1— (m/1)*]*? sin¥,
sin® cosP= — (m:/l) sin¥ sinfm,+ cos¥ cosfim;,

sin® sin®= (m;/I) sin¥ cosBm,~+cos¥ sinfu,, (22)
cosf=[1— (m;/)*]\% siny,
sinf cosp= — (m;/j) siny sinfm;+cosy cosBm,
sind sing= (m;/7) sing cosBu,+cosy sinfm,. (23)

Equations (11) and (12) provide the new exact
equations of motion:

B= e
Pr= (P/uR®)—8V /3R
I=—9V,/0¥
1= — AV /By
By =3V ,/3m1
V= (I/uR?)+aV,/ol
dj/dt=—aV,/ay
1=~V /0B,
Bony =0V 5/ 3m;
¥=(j/par®) +V,/8j. (26)

These equations contain the variables R, pz, {, *+-,
P, ¥. For some purposes, error estimates for example,
it is more convenient for the new coordinates to contain
6, ®, R and the new momenta to contain j, m;, and
Bum;, oF for them to contain 6, ¢, R and }, m, B..,, respec-
tively. Such new sets of variables are immediately
introduced by replacing the canonical transformation
(8) by (27) or (28), respectively,

(24)

(25)

Wemgbt [ (7—mp csc6)Vido+Poo+Pod+PaR
(27

Wem+ [ (P—me csi0)nd0+P i+ Pt Pa(R).
(28)

The new variables and equations of motion are given in
the Appendix. The latter are (24), (26), and (Al) in
the first case and (24), (25), and (A2) in the second.
An approximate solution of the equations of motion
is obtained by replacing the Q and P; by their elastic
collision values 6[:, P; in the right-hand sides of these

equations. Thereby, for P;=!, my, j, m; and Q¢=Fu,

position of R in the plane perpendicular to | is given by ¥, an 2
e;? & v 5 and B., we have, regardless of whether W is chosen to

angle measyred from the line of nodes,
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be (8), (27), or (28),

APr.x.Q f " oV, (R, 7)/0Q¢

AQi= [ " OV.(R, 7)/0B . (29)
An estimate of the error in (29) is obtained by
expanding the partial derivatives in (29) in powers of

Q=@ and P;— P, and retaining the first power. Thus,
for emmple,

@V,

@P)amespet [~ 35 (2 -0
aPaQ' P’))
eImmto+ [ 5[0 (-0

()] oo

where the derivatives are evaluated at Q*=@*, Py=PF;.

When V,(R,v) is a sum of terms of the form
anVa(R) Pa(cosy), P, being a Legendre polynomial,
and then expressed in terms of the Qf and P: one
obtains sums of terms such as Vi.(R) (g sin¥ sing+4
g sin¥ cosf+g cos¥ sinf+g cos¥ cosf)m, where
m<n. Here, the g; are functions of the initial values of
the constants of the motion. Thus, from (29), Al, Amy,
ABmy, Aj, Amj, and AB,, are approximately equal to
integrals of the V,(r) times oscillating factors. The
initial orientations of the particles only appear outside
these integrals.

The properties of the elastic collision are needed for
use of (29) and (30). They are obtained from (24)
to (27) by setting V,=0 on the right-hand sides of
these equations. Integration then yields

[[(E- = Vo) dtt=in

T= fo Bt di—8s,
";= ""t—ﬂh (31)

where w denotes j/unr®; g, B1, and B; are phases de-
scribing the positions of r and R at =02 Equations
(24)—(27) also illustrate clearly that I, mi, Bm, 5, m;
and B, for an elastic collision are constants, and so
equal their initial values.

3 Another significance of ﬁg—t is that it is the coordinate con-
jugate to the “momentum” E, when tbe genera function
W—Et is used, where W is given by (5) (e.g., compare Ref. 11,
taking the present Ref. 15 into account).

A, O. COHEN AND R. A. MARCUS

The first integral in (31) can be expressed in terms
of elliptic integrals when Vo(R) is of a suitable form,
e.g., when it varies as r5, 4, etc.® Otherwise, the
integral is evaluated numerically.

In applications in Part II, we have found it con-
venient to obtain (29) from any of the three sets of
equations of motion mentioned eatlier but to obtain
the error estimates in (30) using (24), (26), (Al) or
(24), (25), (A2). Also, in Eq. (1) and all other equa-
tions but (21) the coordinate axes which define 6,
® (and 41, Bm,) need not have the same orientation as
those which define 6, ¢ (and ;, 8,) ; the kinetic-energy
contributions of u and u, in (1) are individually
rotationally invariant. In applications in Part II of
(24)-(26) or of any of the other equations it has been
convenient to choose two sets of axes simultaneously,
one in which the £ motion is simply described and the
other in which the T one is. Equation (21) for cosy is
replaced by the appropriate equation.

GENERAL COLLISIONS

The Hamilton—Jacobi formalism in the preceding
section is readily extended to rotational-vibrational-
translational energy transfer involving more complex
systems. The Hamiltonian H is

H=(2u)™Y{pa™t+ (1/R*)[po*+ (p6*/5in’0) ]}
+Hs+Hpt V(R’ iy 445y qB’) ’ (32)

where Hs and Hp denote the rotational-vibrational
Hamiltonian for the colliding particles A and B,
respectively; the ¥:’s are the angles describing the
relative orientation of 4 and B; the g4*’s and gs*’s are
the vibrational coordinates of 4 and B, respectively,
and the remaining symbols retain their previous
significance. H, is a function only of g4 and pi4, the
rotational-vibrational coordinates and conjugate
momenta of 4. Analogous remarks apply to Hp.
Solution of the Hamilton-Jacobi for the elastic
collision, in which V is replaced by a suitably averaged
value Vo(R), vields the generating function W (e, ¢¥)

Wi, ¢°)
= md+ [ (P—m? cs?0)12d0+Wa+Wa+Wa, (33)

where Wa and Wp are the generating functions arising
from H4 and Hp, respectively. W is the generalization
of (7)

Wa= [ (2u[E— (P/2uRE) ~Ea~—Ea—Vi]|aR,

(34)

where E4 and Ep are the rotational-vibrational ener-
gies of A and B, expressed in terms of action variables.

 Reference 18, pp. 73-76.
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For example, if 4 is an atom and B is a linear rigid
rotor, E4 and W are absent, Ep is the j2/2un® term in
(7), and W is the sum of the second and fourth terms
in (6).

A second useful generating function is the counter-
part of (8)

W=t f (P—m2 sc%0) 1230+ Wa+Wa+FaR.
(35)

In either case, Egs. (9) to (13a) again prevail. With
W given by (35), the other equations of the preceding
section which remain applicable are those involving
only R, 6, &, i.e., Eqs. (14)-(16) and (24)-(25). The
analog of (29) can also be written, with ¥ replaced by
%, 8% {5° and with the P denoting J, m;, and the action
variables appropriate to Hs and Hp. (In the preceding
section the latter were j and m;.)

For example, when B is a rigid symmetric-top
molecule we have?®

Hp=(1/21)[ ¢+ (ps— px cosh)? esc91+ (p*/2L.),
(36)

where 8, ¢, and x are the Euler angles describing the
orientation of B, and I.(=1I,) and I, are its principal
moments of inertia.

We then have

W5=M+h+ [ [ 2—k*— (m—Fk cos8)* csc] /%48,
(37

where the constants m, &, and ] arise during the separa-
tion of variables, From (9), (35), and (37) one finds

po= [ L=t (m—k cos)* csciTnan

pe=t. (38)
From (36) and (37) the separation constants 7, &, and
m are found to equal molecule B’s total rotational
angular momentum, j, the component of j along the
figure axis of B, and its component along the space-
fixed s axis. The integral in (37) can be expressed in
terms of a standard one on introducing a new variable
1u=mk—4* cosf. The variables conjugate to 7, &, and m
are found from (10) and (37); (11) and (12) yield the
new equations of motion.

ps=m,

b E.é., M., Born, The Mechanics of the Atom (Frederick Ungas
Publ. Co., New York, 1960), p. 27. We employ the Euler angle
defined in E, B. Wilson, Jr., lﬂ C. Decius, and P, C. Cross, Molec-
wdar Vibrations (McGraw-Hill Book Co., New York, 1955), p. 285,

4 E.g., compare A, G, Webster, Dynamics of Particles (g. Gr.
Teubner, Leipzig, 1904), p. 297 fi.
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When the assumption of a rigid molecule in the
preceding section is removed, the generating function
(6) contains an additional term, W,. For example,
when the vibrational motion of the diatomic molecule
is harmonic and when the new variables for the oscillator
Q° and P, are chosen to be angle-action variables, W,
is found from the solution of the Hamilton—~Jacobi
equation to be*

Wo(g°, ) = (Po/ 2x) (4-+1 sin2u), (39)

where
u=sin™ (uum/Ps) g, (40)

and where /2w is the vibrational frequency. The
vibrational energy equals P.w/2w, and the new equa-
tions are again given by (11) and (12). Similarly,
Wa and Wp in (35) contain a term (39) for each
normal mode in 4 and B.

Once again, in the case of general collisions, it is
sometimes convenient to replace (33) by the analog of
(27) or (28).

CONCLUDING REMARKS

The Hamilton-Jacobi formalism provides a gen-
erating function which can be used to transform the
equations of motion into a convenient form. An approxi-
mate version, given by (29), utilizes as the unper-
turbed problem the elastic collision and, hence, the
behavior of the internal motions at infinite separation.
A similar zeroth-order approximation is commonly
employed in quantum-mechanical treatments.?

Comparison of the approximate and exact classical
results is given in Part II for rotational-translational
energy transfer between an atom and a rigid linear
molecule. The comparison reveals that when the
“distortion” of the internal motion is small, in the
sense of a high enough ratio of rotational to orbital
moment of inertia or high enough rotational frequency,
the cited approximation is a reasonable one at least for
cases examined thus far. Small distortion as defined
above does not necessarily imply small fractional
change in rotational energy. Analogous remarks may be
expected to apply to quantum-mechanical treatments.

A similar situation exists for the vibrational-transla-
tional energy transfer between an atom 4 and a

% E.g., H. C. Corben and P. Stehle, Classical Mechanics (John
Wiley & Sons, Inc., 1960), p. 190. For some purposes, vibrational
variables related to, but di!?erent from, angle-action ones may be
still more convenient. [Comga.re discussion of an equation (90)
in R. A. Marcus, J. Chem. Phys. 49, 2610 (1968).]

3 The latter often contain additional approximations, such as
one which results in ressing the transition probability in
terms of an integral involving only initial and final unperturbed
wavefunctions rather than allowing for intermediate ones as well.
Contrast, for exar:;sie, Eq. (7.26), p. 48, or (1.17), p. 114, of G.
Ludwig, Die Grundlagen der Quanienmechanik (S£ringer—Verlag,
Berlin, 1954) [or the expression for Pms in E. Kerner, Can. J.
Phys. 36, 371 (1958), p. 373] with the more usual (first-order)
expressions for the forced linear-oscillator problem. Compare C. E.
Treanor, J. Chem. Phys, 43, 532 (1965).
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molecule BC on a line, when small “distortion” is
interpreted as a high enough mass-ratio involving m5.%

APPENDIX: VARIABLES AND EQUATIONS OF
MOTION ARISING FROM EQ. (27) OR (28)

The new momenta, in (27) are Pz, o, s, j, and m;.
Use of Eqs. (10) and (27) shows that the new co-
ordinates are R, O, ®, the ¢ given by (17) and the
By glven by (18) (We henceforth drop all bars over
R, 6, and &, therefore.) Equation (9) then yields
(13b), while (17) and (18) yield (23). Equations
(11), (12), and (28) yield (24), (26), and (Al) as

% This mass ratio is ma(m4+m3+mc) /m;mc introduced by

JCompa:D oA ek L N umis Ceeeetity 1(1113:66)
(] tterme ty o 018,
December 1968. w’ Y '
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new equations of motion
0= po/2uR?, d=ps/2uRsin’0. (A1)

The new momenta in (28) are Pg, Bs, D, }, and ms.
Use of (10) and (28) vields R, 8, ¢, the ¥ given by
(15), and the 8, given by (16) as the new coordinates.
(Thus, again all bars are omitted.) Equation (9) yields
(13a), while (15) and (16) yield (22). Equations
(11), (12), and (28) yield (24), (25), and (A2) as the
new equations of motion

Po=—0V,/30,
b= ?9/ 2pm??,

De= _aVP/a¢

b= po/2umt? sin¥d.  (A2)

15§ NOVEMBER 1968

"Measurement and Analysis of Mossbauer Data for Compounds Containing =Te

Mazx L. UNvanp
Ceniral Research Depariment, Monsanto Company, Si. Louis, Missouri
(Received 26 January 1968)

Maéasbauer isomer shifts and quadrupole splittings are reported for a number of tellurium compounds.
The isomer-shift data are analyzed by setting up localized orbitals and converting to their equivalent
delocalized orbitals in order to calculate the electron density at the 1%Te nucleus. Similarities between data
for tellurium and tin compounds are noted. The theoretical calculations confirm the expectation that hydro-
genic orbitals are more appropriate for calculations of electron density at a nucleus than the Slater-type
orbitals generally used in molecular-orbital calculations.

I. INTRODUCTION

Although some data'® have been reported for the
Maéssbauer effect using *¥Te as the nuclear probe,
more data needed to be obtained before the results
could be subjected to a theoretical analysis, This
paper reports data for isomer shifts and quadrupole
splittings on 12 previously unreported compounds,
and presents a theoretical treatment of the known
Mossbauer isomer shifts of tellurium. This treatment
is an extension of the quantum-mechanical approach
which was employed previously in our laboratory for

1P, Z, Hein, V. G. Shapiro, and V., S. §
sz 42, 703 (1962) Sovxet Phys.—JETP 1 1962)

* N. Shikazo; Takekoshi, and P. K Tseng, J.
Phys. Soc. ]apan 17 1208 (1962

R, B. Fr H Barrett, and D. A. Shirley, Bull. Am,
Pliys. Soc. 7, 600 (19

¢A. B. Buym and L Grodzins, Bull. Am. Phys. Soc. 8, 43

(1963),
S N. Shikazono, J. Phys. Soc. Jsi.{an 18, 925 (1963)
SE.P. Stepanov K. P Aleshin B, N, Samoilov,
bys. Letters 6, 153

V V Sklyarevsky, and V. G, Stankevu:l:
N. J. Stone, and D. A. Shirley,

gmHuntzmker, R. B. Frankel
Bu.ll
8 C, E. Violet and R Booth Phys. Rev. 144,7225 (1966).

inel, Zh Eks Teor.

Phys. Soc. 9, 741 (1964).

P NMR chemical shifts? which has recently been
extended and compared with molecular SCF calcula-
tions,® and which was used in an analysis of 1Sn
Maossbauer data.

II. EXPERIMENTAL DETAILS
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