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The natural collision coordinates of Part III are used to treat the analytical mechanics of chemical
reactions, AB+C—A+BC. Other than in Part II, the classical analytical mechanics of chemical reactions
on a smooth potential surface have not been explored previously in the literature. A HMamilton-Jacobi
formalism is used, apparently for the first time in calculating a reaction rate. The “vibrationally adiabatic”
reaction serves as the zeroth-order approximation and nonadiabatic corrections are obtained. Theoretical
expressions yield the rotational and vibrational energy distribution of reaction products, angular distribu-
tion, and reaction probability, as a function of impact parameter, initial translational velocity of relative
motion, and initial rotational-vibrational state of reactants. The results are not intended to apply to re-
actions which show very large excursions from vibrational adiabaticity. In the zeroth approximation
(vibrational adiabaticity), an adiabatic separation of variables is achieved. Here, the vibrational action
is constant; however, the rotational-orbital action changes by a known increment from one constant value to
another, on transition of that motion into a bending vibration, The resulting “adiabatic” correlation shows
several interesting features. For reactions in which there are no large mass ratios, the state of vibration of
AB, of rotation of AB, and of orbital motion of AB--C correlate with the state of vibration of BC, of rotation
of BC, and of orbital motion of A+BC, respectively. For reactions with unusual mass ratios, such' as
H+Cl,—HCI+4Cl, the correlation equations show instead the “adiabatic” transformation of Cls rotation
into HC14-Cl orbital motion, thereby reflecting the expected result of angular momentum conservation.
Had the rotational-orbital cross term in the kinetic energy been neglected, an incorrect correlation would
have resulted in the latter case. Extension of the present work to three dimensions involves an adqed ap-
proximation, to be given in a subsequent paper. The expressions and method also permit’ comparison ?f
one- and two-dimensional computer results on a more similar basis and, because of certain similarities in
computer results for energy distributions in two and three dimensions, perhaps comparison with experi-
mental results on energy distributions. In conjunction with the computer results information can be obtained
on various approximations, such as near adiabaticity. The present theory can also be used to analyze and
perhaps extend various statistical-type theories in the literature,

actions

Numerical integrations of the classical mechanical
equations of motion of atoms in a chemically reactive
collision have been performed with electronic com-
puters for a variety of dimensions: collisions on 2 line,
in a plane, and in three dimensions.!~* The internal
energy distribution of reaction products showed some
similarity in each case.’t _
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% A similarity in vibrational and rotational energy distributions
of products in two and three dimensions was noted in Refs. 2b and
39.. In Ref. 2b (Fig. 9). a difference occurred in the rotational
distribution for 2D and 3D systems in the region of small final §,
perbaps reflecting a phase space volume element effect which
makes small final 7's less important in the 3D case. This difference
did not ::gpea_r in Ref. 3a (compare Figs. 2 and 7), perhaps be-
cause of e different way of plotting the results, one which tends
to cancel this possible effect. In both cases, significant out-of-plane
scattering caused differences in angular distribution in 2D and 3D.
An indirect comparison of 1D with 2D casés in'Ref. 4a indicated a
lsllmu;r;gy in vibrational energy distribution of reaction product

ere also. :

In the present paper the analytical classical mechan-
ics are treated for reactions in a plane. The correspond-
ing quantum-mechanical treatment is given later.
Use is made of a novel coordinate system (natural
collision coordinates) introduced in Part I for reactions
on a line and later extended in Part III to reactions in
two or three dimensions.® _

Othér than in Part II, the classical analytical
mechaniés- of ‘chemical' reactions on a smooth potential
surface have not been explored previously in the
literature.- The Hamilton-Jacobi equation is utilized
in the present paper, apparently for the first time in
reaction dynamics, with “vibrational adiabaticity”
as the zeroth-order approximation for all quasiperiodic
motions; nonadiabatic corrections are also calculated.
Extension to three dimensions involves an added
approximation and is considered in a later paper.

Because of the. similarity noted® in the numerical
computations of vibrational-rotational energy distri-
butions of reaction products in two and three di-
mensions, the results- for these particular properties
obfained in the present paper may already be com-
pared with experimental results, except perhaps at low
4. Such a comparison would be most useful, however,
after extensive comparison of numerical 2D and 3D
computer results has been made. It should be empha-
sized that the present theory is designed for reactions

_—— Yo L :

¢ (a) R. A. Marcus, J. Chem. Phys, 45, 4493 (1966) (Part I);
(b) 45, 4500 (1966) (Part II); (c) 48, 2610 (1968) (Part III),
preceding article.
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which do not show large excursions from ‘“vibrational
adiabaticity.”

A second type of application of the present dynamical

results is to statistical-type theories, in particular to
obtain insight into their validity and to extend them.
Some discussion is given in one of the concluding
sections; a more detailed analysis will be given separ-
ately. .
The present paper is divided into several parts. The
first, containing Egs. (1)-(21), describes an adiabatic
separation of variables. The next, containing Egs.
(22)-(100), describes action-angle formalism for the
various degrees of freedom, both for the adiabatic
approximation and for nonadiabatic corrections thereto.
The remaining part of the paper outlines briefly ap-
plications to several topics.

GLOSSARY OF SYMBOLS

(Defined in Approximate Order of Appearance)

To, T Leading and correction term in kinetic
energy

B An effective mass,
mp+mc) ]
Mass-scaled coordinate axes in Fig. 1.
3= (2g—2r)c; Z=(zc—2aB)/¢; 2Zp=
(28c—2a)/cy, where z,=body-fixed z
coordinate of atom a; 2xp refers to center
of mass of AB;

= [mA‘mB (ma+mp+mc) ]’/ ‘
mc(ma+mp)? ’

¢p is ¢ with A and C interchanged
Instantaneous curvature of Curve C in
Fig. 1

Coordinates, defined in terms of Curve
C in the internal coordinate subspace
given by Fig. 1 (n is the x in Part I).
s Reaction coordinate, defined as the arc

length along Curve C

[mampmc/ (ma+

3,2,2Z,

ry Coordinates related to m, » n=
ro—7 cosy, m=r siny. On Curve C r=r,
and y=0. [Compare (10) in III]

p Vibrational coordinate, ro—r

Po Defined in (79)

F Defined in Ref. 8 and in remark pre-
ceding Eq. (9). F=F1 at s=Fw

R(s) = (I.2/u)'?, where I.. is one of the two
larger moments of inertia of the system,
as in Eq. (22) of IIL. (R is the distance
from 0 in Fig. 1 to any point in the
space.)

Ry(s) Value of R at p=v=0, i.e., on Curve C

¢ . Coordinate defining orientation of the
system
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After Eq. (9), n is 14 «p. Before (9) it is
as defined in (20) of Part III
Momentum conjugate to coordinate ¢°
Total energy, Hamiltonian, respectively
Hamilton’s characteristic function in (4)
or that in (31)

Various contributions to W [Egs. (6),
(8), (12)]

Potential energy

Value of V on Curve C, as a function of s
Increment in V on going from curve C
(for which y=p=0) to any other point
V2(0, 7, 5)

Quasiconstant of separation in Eqgs. (11)
and (14)

Rotational-orbital energy

A quasiconstant of separation in (14)
1— (Fro/Ro)?

Fré/R¢?

Defined by (19)

BTOA

Action variable for ith coordinate at
any s, i.e., the phase integral or integral
over a period of the ¢ motion, at any s
J, at rotational and librational side of a
rotational-librational boundary, respec-
tively

Hamiltonian describing adiabatic motion
at any s, defined by (30)

Hamiltonian containing adiabatic s(¢)
and related to 3¢ by (36)

Angle variable for the ¢* motion
Frequency of the ¢f motion, 83¢/dJ;, at
any s

A generating function defined by (37)
Phase, e.g., in (34) or (42)
Potential-energy barrier for the ¥ motion
at any s

Reduced +y barrier defined in (46)
Normal elliptic integrals of first and
second kind

Corresponding complete elliptic inte-
grals

Librational limit of v, defined by (S5)
1/k

K(k), D(ky); Dy= (Ky—E;) /ks?
sin~1(k;~? sinyo)

2w,K (k) in (68)

4w, F(3v0, &) in (74) and 4w,K (%) in
(75) '

Jacobian zeta function

IA

Eq. (78)

Eq. (80)

p vibrational energy [Eq. (81)]
Eq. (90)

Integrand in (97)



ANALYTICAL MECHANICS OF CHEMICAL REACTIONS. IV

NATURAL COLLISION COORDINATES
The natural collision coordinates. for a reaction
AB+C—A+BC (1)

defined earlier® pass smoothly from those suited to
reactants through those suited to the ABC system to
those suited to products. Three of them are Eulerian
angles defining the orientation of the molecular frame-
work and three of them are internal coordinates. The
three internal coordinates are briefly indicated in
Fig. 1, where the 20Z plane describes linear configura-
tions of the three-body system and m describes non-
linearity. It is convenient (as in III) to replace # and
m by polarlike coordinates p and v, defined in the
Glossary of Symbols at the front of the present paper.
The natural collision coordinates for reaction in a
plane are (s, p, 7, ¢), where ¢ describes the orientation
of the molecular framework and s is the reaction co-
ordinate (distance along Curve C in Fig. 1.)

The region s=—c corresponds to the chemical
configuration of reactants, AB+C; the region s=-+
corresponds to the products, A4-BC; the region of
small s corresponds to the region of strong interaction of
all three atoms. (With this coordinate system one can
define in a straightforward manner the s corresponding
to an activated complex if desired.) Except for a

"constant, s is the intermolecular separation distance of

the two species at large =s and describes the in-
stantaneous asymmetric stretching mode of the ABC
system at small s. p and v describe a vibrational and
rotational coordinate, respectively, of the diatomic
species at large s, and describe the symmetric
stretching vibration and the bending vibration, re-
spectively, of the instantaneous ABC at small s. ¢
describes the orientation of the line of centers of the
two species at large ==s and of the figure axis of the
ABC system at small s. The momentum conjugate to
&, ps, is the total angular momentum.

As in Part III the kinetic energy is divided into T,
the leading term, and 7). T} is small for reactions whose
most important ABC configurations at small s are
nearly linear.” T is neglected in the present paper.
(Canonical perturbation theory could be used to
estimate its magnitude and effect.) The momentum p;

Fic. 1. Internal coordinate sub-
space for Reaction (1). (Compare

lossary.) Curve C is the funda-
mental) curve for defining internal
coordinates n, m, s. The configura-
tion of three atoms is linear when
the system lies in the :0Z plane;
Z, lies in that plane. Reactants
are the configurations at s=—m,
around the 0Z axis, and products :
are those at s=+4 o, around the -
0Z, axis.

7 The treatment in Part III can be adapted, as noted there, to
any system for which most configurations at small 5 are near some
“standard configuration.” The configuration can vary with s and
can be nonlinear rather than linear. ‘ :
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conjugate to any coordinate ¢ is defined as 970/d¢*
in the present instance, therefore.
T, is given by Eq. (28) of Part IIL®

To=hulms+it4 iyt REH20PIS],  (2)

where F=—1 at large —s, F=20 at small 5, and F=+-1
at large +s. The various symbols are defined in the
present Glossary of Symbols. Introduction of the
conjugate momenta p yields

(pe=Fp:)
Ri—r2F? ) )

The last term in (3) can be shown to reduce to the
usual orbital centrifugal potential at large s and to
the usual centrifugal potential of the instantaneous
ABC system at small s The time-independent
Hamilton-Jacobi equation' arising from (3) is

o[58+ 5+ (%)

2 2
To= 20 (B 92 B4
n

w W\ |
+ (Rt—r2F?%)-1 (‘2— —F ———-) ]+ V=E, (4)
d¢ ay
where W is Hamilton’s characteristic function and
V="Vi(s)+Valp v, 5). (5

Since ¢ is an ignorable coordinate, py is constant and
we may set

I'V(d” Py 'Y; 5) = pyd+ W’(Pr £ 5). (6)

One then obtains

(20) [;1, (‘%)’ + (%)2 +(r %)’
+ (Rt (p,-F ‘3;5-')2]+ V=E. (7)

8 F denotes the f— Am cosy in Part III, where Aam(s, r) de-
pends mainly on s and is given by Eq. (21b) of Part IIL 4,
vanishes at large =5 and, if one wishes, can be made to vanish
at all s by suitable choice of body-fixed axes [e.g., Eq. (13), Part
III]. However, there is no need to impose this choice of axes at

‘this point, since with the aplgroximation introduced later regard-

ing the coefficients in (3), ¥ becomes its value at p=v=0, ic,
its value on Curve C in Fig. 1, f—Am(s). The latter approxima-
tion is comparatively minor in the present case: Am vanishes in
the region (large =£s) where cosy can differ appreciably from
unity, while at small s the most important configurations are
near linear.?

% At large ==s, F? is unity and so the last term in (3) is (ps—
Fp,)3/2u(R3—1%). In Appendix I p,—Fp, at large s is shown
to {)e the orbital angular momentum and R*—r* to be the square
of the separation distance of the two separated species. Thus, the
term is the usual orbital centrifugal potential. At small s, F is near
zero, and so the last term in (3) is p,3/2uR*. Since p, is the total
angular momentum and pR? is the moment of inertia of the near-
linear ABC system (Appendix I}, the cited term becomes the usual
rotational centrifugal potential of that system. The last term in
(3) is valid for arbitrary s, while these usual forms are valid only
at the cited limits.

9 H, C. Corben and P. Stehle, Classical Mechanics (John Wiley
& Sons, Inc., New York, 1960), 2und ed., Chap. 11. =
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ADIABATIC APPROXIMATION

An adiabatic approxxmatlon for the p and ¥ motions
is introduced by setting

WI(P) %, 3) = W1(5)+W2(p, Y5 S) (8)

and neglecting the derivatives of W, with respect to
s; W2 depends on p and vy but only weakly on s in an
adiabatic approximation.

As in the usual treatment of molecular structure
problems vibration-rotation interactions (p, ¢ and
p, v) are neglected initially. They can be included
later by a perturbation method if desired. To this end
the r, R, and F in the coefficients in T are replaced by
their values at y=p=0, i.e., by functions of s alone,
ro(s), Ro(s), and F(s), respectively; Vai(p, v, §) is
approximated by (10), a step which neglects the
(p, ) interaction potential energy, and 5 is replaced
by its value at y=0, denoted below by n:

n=14-«p. (9

Here, «(s) is the instantaneous curvature of Curve C
in Fig. 1, at-apy s. That is, for notational simplicity we
contmue to usé the symbols F and n, but with the
restricted definitions just cited. This # has the same
meaning as in Parts I and II,

Vg_(p,"{, S)gV2(0) T )+ VZ(P: 0, S).

(Alternative to the above zeroth-order approximations
would be one where the p motion is_ " adiabatic with
respect to both the  and s motions.)

After introduction of (8)-(10) into (7) the dW,/ds
term is placed on the right side of the equation, all
other terms are placed on the other side, and both sides
multiplied by 52, The right side is now independent of
v and p, and so both sides are set equal to an s-de-
pendent parameter, ax(s), for an adlaba.tlc separation
of variables."! The s equation is then

(10)

(26)~1(dW1/ds)*=ax(s). (11)
In the new p, ¥ equation one may now set A
Walp, v; 5)=Ws(p; $)+Wily; s), (12)

where W; and W, depend on p and «, respectively, and
more weakly on s. In this new p, ¥ equation all terms
dependent ony (and on s) are then placed on one side of
the equation and all terms dependent on p (and s) on
the other. Both sides may then be set equal to an s-de-
pendent parameter, e.,(s) , yielding

(2urd) (d Ve 2ur- (m—l“ s

+V2(O’ ‘Y: S) =51(5)’ (13)

n Thls ax is the same as the as— V) in Part II. The ay in Eq
(10) there correSponds to the present E—e¢y. o

R. A. MARCUS

and
(2u)"1(dWs/dp)*+V3(p, 0, 5)+[ar (s) /n*]=¢,(s), (14)
where ) and ¢, are defined by
A=1—(Fro/Ro)? (15)
and
E=Vi(s)+e(s)+e(s). (16)

The adiabatically separated equations are Egs. (11),
(13), and (14).
When Eq. (13) is rewritten as

(2I)-l[(dw4/d7) -'bﬁ¢:|’+ Vﬁ(os Y S) =E‘n (17)

where

I=ypre\, (18)
Ey=ey—ps*/2uRe, (19)
b=Fr/R¢, (20)

the quadratic equation (17) is immediately solved for
aW.,/dy,?

=dW,/dy=bps+ {2I[E,— V2(0, 7, 5) T} (21)

Integration of the second equality yields W,. Since ¢
is absent in the Hamiltonian, Ps is a constant.

. We note that ¢,(s) is the energy of the v, ¢ motion
[Eq. (13)], and ¢, (s)+Vi(s) is the energy of the
p, s motion [cf. Eq. (16)]. V3(0, v, 5) is a (bending)
vibrational potential energy function of y at small s
and vanishes at large =s. Using arguments in Ap-
pendix I, Eq. (13) can be shown to reduce at large
=5 to the sum of the rotational energy of the diatomic
and the orbital centrifugal potential of the separated
species,

Va(p, 0, s) is a p-vibrational potential energy function
of p at all s, Equation (14) describes the vibrational
motion of the p coordinate, which is the diatomic’s
vibration at large s and a symmetric stretching
vibration of ABC at small s, as noted earlier. The
effective potential for the p motion is Vi(p, 0, 5)+
ax/q%; n=1 at large =s. Since ag is p.2/2u [cf. Eq.
(11)], ax/n* is the kinetic energy of the s motion; it
creates an internal centrifugal effect on the p motion,
asin Part II.  °
" Equations (11), (14), and (16) are the same as
those in Part II, except, of course, for the presence of
the adiabatic v, ¢ energy e(s). Equation (13) is
first solved for e,(s), using. the conditions on the ¥
action variable J, described later. Equation (16) then
yields ¢,(s) which is introdyced into (14). Equation
(14) is then solved for ax(s), using the constancy of
the vibrational action J, (see later). In an approximate
solution of (14) for ax one might set =<1 as a zeroth
approximation and use perturbation theory to calculate
corrections to t,his ax.

12 The square root can he pomt ive or negative, and the customary
pracedure of letting it mean either is employed at this point.
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BOUNDARY CONDITION ON J, AT A
ROTATIONAL-LIBRATIONAL BOUNDARY -

The action variable J; for any coordinate ¢* is defined
as ¢ pidg’, where p; is the momentum conjugate to ¢°
and where the integral is over one cycle of motion for
¢*. For this definition to be meaningful, there must be
some zeroth-order exact or approximate separation of
variables, so that p; can be expressed as a function
of ¢. In our case, an adiabatic rather than exact
separation was made. It led to Eqgs. (13)-(21) and,
thus, to expressions for each p; as a function of its ¢*
and of s (¢°#s). One obtains, therefore, meaningful
expressions for J, and J,. J, is well defined even in an
exact treatment: p, is a constant of the motion and

Jo= § pudé=2np,. (22)

In (21) a rotational-librational boundary occurs at
an s where E,(s) equals the maximum of V;(0, v, s).
(The maximum is over values of ¢.) On one side of
this s we have E,(s)> V{0, v, s) for all v, and the
resulting ¥ motion is rotational, somewhat hindered.

On the other side of this s we have E,(s)<’

max, V(0, v, s), and the resulting motion is librational.

Since the adiabatic v, ¢ energy ¢, is given by (16)
and since Vy(s) and ¢,(s) are continuous functions of
s, ¢(s) is a continuous function of s, even at any
rotational-librational boundary. Thus, the E, defined
by (19) is also a continuous function of s at that
boundary, and, therefore, E,— V»(0, v, s) is also a
continuous function of s, a fact used in deriving (26)
below.

In any s interval which does not include a rotational-
librational boundary, J, is constant in the adiabatic
approximation.¥-# Although ¢,(s) is continuous, J,(s)
undergoes an abrupt transition at a rotational-libra-
tional boundary, as Eq. (26) derived below shows. At
the s which corresponds to a rotational-librational
boundary let the entrance to the reaction region lie in a
v interval (;1<y<a).

Integration of (21) over the interval (a,, a;) at any
s yields

/: " pudy=peb f "t /" "2A(E,~ V) Ty, (23)

where V5 denotes V,(0, v, s). On the librational side,
¥ p4dv, denoted below by J.4, is twice

[¢: , Py

B M. Born, The Mechanics og the Atom (Frederick Ungar Publ.
Co., New York, 1960), Chap. 2,

14 The proof of adiabatic invariance applies, as one may see from
the actual derivation in Ref. 13, only to a region which dces not
include a rotational-librational boundary. At such a boundary, we
show in (26), an abrupt jump occurs in J,, though not in J, or J,.
The character of only the ¥ motion changes at such a boundary,
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and is always positive. The first term on’ the right
side of (23) makes no net contribution to the over-all
cycle, Thus,
: ]
1i=2 [ [21(B~ V) ra. (24)
al
On the rotational side & p,dy, denoted below by
J,', involves integration over (0, 2x), the sign of the
square root sign in (25) depending on the sense of the
rotation.!? Thus,

2
Jyr=2mpebet f [20(E,~ V) Jrdy.  (25)
0
When the entrance channel opening (ay, a2) is (0, 27),
i.e., when there is only one reaction path, comparison
of (24) and (25) and use of (22) and of continuity
of E,—V shows that

Ti=2|J7—Jeb|. (26)

A phenomenon analogous to (26) occurred in the
quantum-mechanical pendulum problem (in which
Js is zero).”® The case of two paths is considered in
Appendix II. '

NONADIABATIC CORRECTIONS

As in a previous section and for simplicity in the
present paper, T is neglected and V; is approximated
by (10) ; n[given by (9)], ro, and R, are used to replace
1, 7, and R in the coefficients in (3). Using the Hamil-
tonian, H=To+V, Hamilton’s equations (p;=
—0H/d¢', §*=0H/dp;) then yield the following results
for the p, v and ¢ motions: .

po=—(8/3p)[V2(p, 0, )+ p.2/2un"]),

p=po/bs (27)
By=—0V2(0, ¥, 5) /07,

V= (py—Peb) /ure’, (28)
Ps=0,

¢=(ps—Fpy)/uR. (29)

After introducing as an approximation the adiabatic
value for s(¢) and $,(¢) on the right side of each of these
pairs of equations, each pair can be integrated, thus
yielding an approximate nonadiabatic solution to the
specified problem.

More instructive physically is the approximate
integration (or reduction to quadratures) of Egs.
(27)-(29) by analytical methods. A Hamilton-

B In this pendulum problem [E. U. Condon, Phys. Rev. 31,
891°(1928) ] the principal quantum number increases by a factor
of about two in an adiabatic correlation in which the rotational
motion becomes librational; e.g., cosine rotational wavefunctions
forj=0, +1, 2. - - correlate with even vibrational wavefunctions
(»=0, 2, 4-++) and sine rotational wavefunctions for j=0, =1,
2=2-+- correlate with odd vibrational wavefunctions (v=1, 3,
5, «++). At high enough quantum numbers one obtains y=2 l il
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Jacobi® treatment is used below to integrate these
equations using the adiabatic value for s(f). The
advantage of using angle-action variables is that the
action variables J; are adiabatic invariants.!*:4

Equations (27)-(29) are also Hamilton’s equations,
pi=—a3C/d¢*, ¢*=03C/dp:, in which the Hamiltonian
3c, given by (30), contains s as a time-dependent
parameter. This s is the adiabatic s(#) and the g* are
v, ¢ and p; p; is conjugate to ¢*,

Pvz (Pé"‘ FP1)2

30(‘1‘, 2 5= 2ure 2uREN +V2(0,7,s)
2
+ 22 1v206,0, )+ =) (30
m n

The Hamilton-Jacobi equation at each s, obtained
from (30) by replacing p; by W /ag", is

3¢(g%, oW /g, s) = E—Vi(s), (31)

Comparison with (12)-(14) and (16) shows that (31)
is satisfied by the adiabatic solution for the v, ¢, and »
motions and that this W, which is the one used in the
remainder of this paper, is the same as Wyt ped. [It
differs from the W in (6).] W can be regarded as a
function of (¢*, J;, s), where J; denotes & p;dg* at that s.
If w; is the angle variable canonically conjugate to J;,
the transformation from (¢°, p:) to (Js, w;) is given by

pi=0W/d¢', wi=0W/oJ: (¢'=v,9,0). (32)

When 3¢ is expressed in terms of the w; and J; they
satisfy Hamilton’s equations,

Ji=—0830/0wi=0, w=083¢/dJ; (fixeds). (33)
Integration of the last result at any s yields
wy=vpid4d;at any s (fixed ), (34)

where v;(s) is the local frequency® of the ¢* motion and
8: is constant,
Vi (3) =65C/3J¢. (35)

After solving (31) for J; and w; at each s, the non-
adiabatic correction can be obtained by replacing s in
3¢ by its adiabatic value s(f). (The nonadiabatic

correction for J, is zero.’®) The canonical transforma-

tion from (g%, p:) to (ws J:), when s is replaced by
s(1), transforms 3C to JC, given by (36). The variables
J: and w; satisfy (38) and (39),3

HLws, Jiy s() J=3CLq", piy s(1) JH+0W*/81, (36)

where

W (g, w, ) =W— 2 Jawi, (37)
J = — 3¢/ dwi, (38)
y=083C/8J . (39)

1 That is, the subsequent apEroximations do not upset angular
momentum conservation: e.g., Eqs. (66) and (73) for 9W*/dt do
not depend on w,.
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In (36) 3¢(q*, pi, s) is first expressed in terms of
(J:, ws, s). This 3¢ is independent of ;. One then
finds®?

Ji=—(3/3w;) (aW*/a1), (40)
;= (93¢/0J ;) + (8/9J ;) (dW*/81). (41)

In these equations W* is first expressed in terms of all
g’s, w’s, and { and the ¢’s and w’s are held constant in
computing dW*/at. 3W*/at is then expressed in terms
of all J’s, w's, and ¢, and in the final differentiations in
(40) and (41) all variables but w; and J;, respectively,
are held constant.’®

These equations provide the nonadiabatic correction
toJ; (and to ;). Use of the leading term on the right
side of (41), when permissible, followed by integration
yields

¢
W= ll.-(s) di+6;,

to

(42)

where §; is the phase of w; at some time f and where the
adiabatic solution s(¢) is introduced for the argument s.

Js is, of course, a constant of the motion. In the
adiabatic case J, is constant, except for a jump at each
librational-rotational boundary described earlier, and
J, is a constant for all s.

A SPECIFIC EXAMPLE

A specific example of the above treatment is con-
sidered in this section. V3(0, v, s) is periodic in v, with
period 2, or in some cases 2x/n. It can be expanded
in a Fourier series, the first two terms of which are given
by (43) when the v barrier has a minimum at y=0.
The case of n=2 is given in Appendix II,

V2(0, v, s) =3(1—cosy) A (s), (43)

where the v barrier 4(s) vanishes at large 5. More
complicated Fourier expansions than the above can
also be treated. Using the first half of (32), W is

W=put [ pirt [ v, (44)

Equations (21), (22), and (44) yield

2IA )1/2

, J :
W, Ji )= 52 (e+bm)+ ('kT

x [ (1= sinsgyyav+ [ oo, (45)

where the last term [denoted in (12) by W] is ex-
pressed in terms of (p, J,, s) later; k? is a reduced
v barrier,

k=A/E,. (46)

k is determined as a function of J, and J, in the follow-
ing sections.
The expression (30) for 3C can be written as follows,
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upon using (13), (14), (19), and (46):
3= (A/B)+ (J5*/8x%uRe*) +ep

where ¢, is expressed in terms of J,.

There are different intervals of s to be considered:
(i) intervals of s in which the ¥ motion is rotational
(i.e., k<1), and (ii) an interval of s in which the ¥
motion is librational (4#>1). The condition on J, at a
boundary of these two intervals is given by (26).

(47)

A. Adiabatic Treatment

Case (i) : s Inlerval for which Motion is Rolational (k<1)

Since J, equals £p,dv, it equals the change in W
during one cycle of the periodic ¥ motion. For a ro-
tational motion, it therefore equals twice the change
of W during the first half cycle. During the latter ¥
varies from 0 to #. Equation (45) therefore yields”

1/2 pr
Jy=2 (yé) / (1— k2 sin®}y) 2dy+Jsb. (48)
2 0

There are two cases to consider: The square root sign,
and therefore J,—J4b, can be positive or negative.
We consider the positive sign first and then give the
changes to be made when the sign is negative.
At any given s and J4, J, depends only on k. Since

wy is (0W/dJ,) . it equals

(AW /0k) 4.0

(07/0k) y.a

and is found to be

Wy = / (1—2 sin?3v)dy / 2

X /: (1— 2 sin?hy)~"edy,  (49)

Using the usual notation of elliptic integrals,’®® the
latter equations become

J,—Jb=4(214/k) 2 E(k), (50)
w,=F(}v, k) /2K (k), (51)

where F(3v, &) and E(}vy, %) are normal elliptic inte-
grals of the first and second kind, and where K (k) and
E(k) are the corresponding complete integrals
[=F(3m, k), E(3, k), respectively]. In (51) the right
side increases by unity when ¥ changes by 2.

17 The sign of the variables J; and w; throughout are chosen in

accordance with the remarks in Ref. 13, p. 45, Thereby, J,— J b
in (48) can be positive or negative,* but J, in (56) is positive.

The variable w, in each case is to be defined in a way that it in-.

creases monotonically with time, namely increases by +1 during
one period of the motion. .

18P, F. Byrd and M. D, Friedman, Handbook of Elliptic Inte-
grals for Engineers and Physicisis (Springer-Verlag, Berlin, 1954).

¥ According to (49) w, is an odd function of v (e.g., as seen by
changing to —v, etc., or’by expanding in a power series in %* and
integrating termwise). Thus, w,=0 at y=0, a result used in re-
writing (49) as (51). The same remarks apply to (57).
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Equation (51) only describes the relation between
w, and v. At any fixed s the dependence of w, on time
¢ is (34), where the frequency of the ¥ motion is found
from 83¢/38J, to be

vy= (Jy—J+b) /16KEL (52)

The last three expressions reduce to the standard
ones for a rotator® when 4 (the v barrier) and b are
set equal to zero.

When J,—J:b is negative the right hand sides of
(50)~(52) should by multiplied by —1.” We note that
J,—Jsb does not change sign during motion in the
given s interval, since Egs. (46) and (S0) show that
J,—Jsb#0. [They do not have a solution for & in the
interval (0<k<1) when J,—J,6=0.]

1w, is obtained from (32) and (45). In differentiating
the second term in the right hand side of (45) we note
that 8/9J is

o/0k
aT,/ok
One finds
we=[(¢-+bv)/2r]—[bF (3, k) /2K (k)].  (S53)
Equations (51) and (53) yield
we="[(¢-+bv)/2n]—buw,. (54)

At large s, k is negligible. Then, the last term in
(53) reduces to by/2r and w, becomes ¢/27.

Case (i) : s Interval for which Motion is
librational (k> 1)

J, again equals the increase in W during one cycle of
the periodic motion. For a librational motion the
Jsby/2x term in (45) is seen, therefore, to make no
contribution to J,, while the contribution of the next
term is four times its contribution during the first
quarter-cycle. At any s let the maximum value of
| 7] be vo(s). Then

1— k2 sin2jyg=0. (55)
We have
2 A )m

=4 (5

8 {
- f"u—k2 sin?dy)dy.  (56)

As before, at any given s, J, depends only on k.
Instead of (49) one now obtains

wy= [ (1= sivthy)-idy / 4
Yo
X f (1— B2 sintyy)-2dy. (57)
0

0 J, = (83 £,V (more familiar as E,=J,3/8x%), w,=v/2x
v,=J:/4m"I. (Cz\mpare Ref. 13, p. 63). ' "
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In terms of elliptic integrals we have”
J,=8(2IA/k) 2 E (3o, k), (58)
wy=F(}v, k) /4F (3vo, k). (59)

As before, w, depends on time according to (34), but
now?

_ (4/2n
T F G k)

Now 2> 1, and it is customary to express the elliptic
integrals and functions in terms of a modulus (k= 1/k)

which is less than unity. Introduction of the usual
transformations® yields

(60)

Ty =8(214)Vek2(Ky— Dy), (61)

w,=F (B, k1) /4K1, (62)
(4/20) ,

iy (63)

where 8 is defined by sinS==Fksindye. Ki denotes
K (%), and D; denotes [ K (k1) — E(k1) )/ k2.

The last three equations reduce to the standard one
for a vibrator when the barrier is made high, i.e., when
ky is made small.®

The expression obtained for ws is obtained in a way
analogous to that in the previous section, but now %
does not depend on Jy. Thereby,

we=(¢+bv) /2. (64)

At small s, where F=20, w, is seen to equal ¢/2=.
Equation (64) is continuous with (53) at k=1, since
K(l)=w. ' '

B. Nonadiabatic Correction

(2) s Intervals where k<1

The nonadiabatic correction is obtained by first
computing W* We first consider the case where
J,—Jeb is positive in the cited s interval. Equations
(37), (45), (50), and (54) yield

2B\!/?
W*(q, w,l)= ('k—z)

X ( j (- sin%'y)""d'y—4E(k)w1)+W;*, (65)

2 Derivatives of the elliptic integrals and functions are given in
Ref. 18, p. 282ff.

22 Reference 18, pp. 38 and 39.

% That is, they reduce to .

Jy=Ey/vy,
2rwy =sin"I (4r2lv, /2T ,) V0],
vy=(A/21)"3/2n;

A/2 is the force constant when E,/A is small. At small &,
F(B, k1) 228 and the limiting values of the other elliptic functions
and integrals are given in Ref, 18, p. 11, Derivation of the usual

ha:'lr%%nic oscillator expressions may be found in Ref. 13, pp. 51
and 52,
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where % is to be expressed in terms of w, and ¥ using
(51) and W3*(p, w,, ¢) is Ws~J w,. Hence,

£
%. = (28 oB)—uzB

*
x ( f (1= 12 sin%hy) u?dy-w(k)w.,) 4

o (69

where
B=AI (67)

and where the dot denotes d/dt; dW;*/d! depends only
onJ, and w,. We return to it in a later section. Use was
made of the fact, evident from (51), that & is constant
when both v and w, are constant.

Equation (40) and introduction of the Jacobian
zeta function Z(u),” which can be approximated by
trigonometric functions if desired, now yields

Jo=—[16EK/ (J,—Job) ¥1[BIZ(u)/du], (68)

where « is 2Kw,. The right side of (68) never becomes
singular since, as noted earlier, J,—J,b7#0 when
(0Lk<]).

Equation (68) can be regarded as a first-order non-
linear equation with J, and { as variables, and can be
integrated numerically.%% [%? depends on (J,—J4b)?
and s, as in (50) ; w, depends on { as in (42), in the first
approximation.] A more approximate procedure, one
which is quite logical in view of the choice of the
adiabatic solution as the zeroth-order one, is the
following,.

The right side of (68) is periodic in w,. When B
varies slowly enough the integral of the right side
vanishes and one obtains adiabatic invariance of
J,.7 In the first approximation, therefore, J, may be
replaced by its value at the time (%) at the start of this
s interval, J,0. With this substitution % still varies with
s, according to (50), because of its dependence on &
and on 74 (i.e.,, on B). Each s on the right side of
(68) is replaced by the adiabatic s(f). Integration
yields

¢ dZ
Jy_J-,o: - 16 EK B

OThREC W

# Reference 18, pp. 33, 34, and 300.

% It should be noted that at £=1, w, is not a suitable variable,
since »,=0 there. The relation between 4 and ¢ is unaffected,
however, since the offending K (%) cancels when (34), (51), and
(52) are combined before letting 2—1. [K (1) = .] [However, if
the immediate neighborhcod of 2=1 makes only a minor contribu-
tion to the integration of (68) and (75), w, need not be transformed
to v in this neighborhood.] An alternative which we hope to ex-
plore is the transformation of (J,, w,) into other variables,
particularly near 2=1, just as it is convenient later for certain
purposes to transform (J,, w,) into (a, a*) via (90).

 In the first apg)roximation the w, present in % in (68), % in
(74), and u, in (75) obeys Eq. (42). In the next apg:;oximation
the influence on w, of the W */ai term in (41) must be included.
51:;’ ’Ig‘llxi proof would be analogous to that employed in Ref. 13,

(]
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The region near the top of the barrier (E,=4,
i.e., k=21) is more complicated dynamically than the
region where E, is appreciably larger than 4 (i.e., %
small), and we obtain an approximate, simple formula
for the latter region as follows.

In a Fourier expansion® of (K/k*)(dZ/du) the
coefficients depend on %% Only the leading term
(=/4) cos2zw, need be considered when k is small,
and one obtains

H

EB
o UR=Tb) cos2mw.dl.

Because of the relatively low frequency of the
rotational motion one may expect an appreciable
rotational nonadiabaticity.

Regardless of whether or not % is small the v, ¢
energy ¢,(s) is obtained from (19), (26), (46) and
(50),

&=L (J,—bJ,)/32E ]+ [J/8r'uR].  (71)

When J,—J,b is negative the right hand sides of
(65) and (66) are to be multiplied by —1. Z(x) de-
pends on %? and is an even function of ». Equation
(50) shows that %2 is an even function of J,—Jsb.
Thus, (EK/¥)dZ/du is unaffected when (50) and
(51) are muitiplied by —1. Examination of the details
of the derivation leading to (68) or, more simply, use
of physical symmetry, shows that Eq. (68) applies
when J,—J4b is negative also.

(#1) s Inlervals where k> 1
W*, obtained from (37), (45), (58), and (64), is

2B\
w= (%)

X ( f (1— B sinhy) 2dy—8E (3vo, k)w.,)+W3"‘ (12)

and oW*/at is, therefore,

OW*
paddl = (232 B)-112
( m )q‘m (2k B)-2 B
*
X(f(l—k’ sin®}y)2dy—8E(}vo, Ie)w.,)-}-m:;:3 .
(73)

(As before, £ and thereby v, are constant when both v
and w, are constant.) 2 is constant at constant J,
and B, as one sees from (55) and (58). Equation (40)
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now yields
J,=8(1/2B)"2(B/k)[E (40, k) — F (370, k) dnuc),
(74)

where %=4w,F (3vo, k). As before, elliptic functions
and integrals are next expressed in terms of those with a
modulus £;(=1/k) which is less than unity. After the
introduction of the Jacobian zeta function one finds

J,=—8(1/2B)"*(BK\)[dZ(m)/dw],  (75)

where #%; is 4w,K; and the modulus in Z(w%) is k.
Equation (75) can be regarded as a first-order non-
linear equation in J, and ¢ and integrated numerically.
However, when the zeroth-order (adiabatic) ap-
proximation is introduced for J, on the right hand side,
(76) given below is obtained as follows.

We note that the right side of (75) is a periodic
function of w, and vanishes on integration when B
varies slowly enough.? If the value of J, at the start
of the interval (¢=¢,) is J,°, J,° is introduced for J,
in each %, (and in each function of &) in (75). Integra-
tion yields

dZ ()
du;

Jy=J = — ‘8(2B)-"3(BK1) dt. (76)

The region near the bottom of the barrier (i.e.,
E, &4, or ki&K1) is simpler dynamically than near the
top of the barrier. When (Ki/k?)dZ(w)/du is ex-
panded in a Fourier series, only the leading term need
be considered at low %; and one obtains

¢
Ty J, o= Dkt [ (2B)~1" B cosdmo,dt.  (77)

The tendency for J, to change is seen to depend on the
change of barrier during the bending vibrational
period.

The total change in J,, from its initial value at s= — e
to any other s, i.e., to any stage of the reaction, is ob-
tained by adding the contributions of the distinct
s intervals, after applying the condition (26) at the
boundary of two intervals.

THE VIBRATIONAL p-MOTION

In the previous section the v, ¢ motions were con-
sidered, together with the effect of the s motion on
them. We turn now to the behavior of the p coordinate.
For a specific example we expand the effective potential
energy function for the p motion quadratically, after
defining U, po, and an effective frequency w,

U(P’ S) = V2(P) 0, S) +QK(5)/"72t (78)
aU (po, 5)/3p0=0, (79)
w?=8U (po, 5) /905" (80)
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The adiabatic Eq. (14) now reads

(20) 7 (dWs/dp)*+hue?(0—po)*=e(s),  (81).

where
(82)

According to (78) U(po, s) is the sum of the extra
barrier, Va(po, 0, s), and of the s kinetic energy at
P=po. :

Integration of (81) yields the well-kriown value of the
generating function W;, from which one can then
compute Ws*, the contribution of Ws—J,uw, to W¥*,
This W3* is found to be*

e=¢,—U(p, 5).

We*(p, ,, 5) = huo(p—po)? cot2mw,. . (83)
p— po is found to be® '
p—po= (Jo/uwor)'? sin2rw,, - (84)
and 8W;*/3t, obtained from (83), is
(OW3*/34) p.10,= 1 (p— po) [} (o= po) —wpo]] cot 2w
(85)

When aW3*/at is expressed in terms of J, and w,
using (84), Egs. (40) and (41) yield

J o= — 2po (e ,) V2 sin2mw,— (J o/w) cosdmw,, (86)

W= (w/2r) — 4 popew/J yw) Y2 cos2me,

+(@/47w) sindmw,. (87)

When the initial action J,° is not too small, the
second of these equations does not become singular
(see later). After setting J, equal to J,° in the right
hand side of first equation, because of the near-adiabatic
condition, integration yields

.
J=2T 0~ (2J,0)1" / polpwm) 2 sin2aw,dl’

¢ ’
—Jp / 2 costru,dr, (88)

where, when only the first term in (87) need be con-
sidered, ‘
2rw,= (89)

o
/ wdl'’+-35,.

o

5, is the value of the phase 2mw, at any time /.
However, a transformation must be introduced to

integrate (86) and (87) if J,0 is too small, since the

coefficient of g in (87) is singular at J,=0. We define

# Reference 10, pp. 190 and 191

R: A, MARCUS

a variable a and its complex conjugate a*, ,
=T exp(—2niw,). (90)

In terms of a ahd a"‘,-'Eqs. (86) and (87) become
d= —iwa-+ipo(uor) 2— (0a*/ 2w) %1)

and d¢* is given by the complex conjugate of this
equation. The first term on the right hand side of (91)
is the adiabatic term, and the po term reflects the non-
adiabatic effect due to the curvature of Curve C.
When the last term is temporarily omitted, integration
of (91) yields® : ‘

. . 13
aéaaexp(—i/ wdt).
o

i f‘:[po'(}m)"fexp(i. f‘ "wéz' )]dt, (92)

where g, is the value of a at time 4. When £, is chosen to
occur at large negative s, the % in the integral involving
po can be replaced by — . The action J, is seen from
(90) to equal aa*. Thereby,

Jo=J 0= (2T o)1 f‘ [ﬁo(ﬁ“""’) e

XSi;l ( j; : w(ll"-l-t'ig)]dt"f' 1 /_; [ﬁo(m)uz
2

¢
Xexp (i f wdt")]dt’ .
o

Equation (93) is of course more general than (88),
apart from the & term. The first two terms on the right
hand side of both equations are the same. The last term
in (93) is independent of J,? and of §,. Comparison®®
with the various expressions of Part II shows them to
be the same (except for the omitted & terms).

When the adiabatic term for a*,

¢
‘a0* exp (z[ wdt),
to

is introduced into (91), the leading additional contri-
bution to the right side of (93) is A.

(93)

t t
A=—Jp [ ‘i’cosz( / wdt”-}—&,,)rlt', (94)

w t

which is the same as the last term in (88).

# The largest contribution to AJ, is usually expected to arise
from the curvature of Curve C rather than from w, the variation
in effective frequency. When the reverse is true, a different
approximation scheme can be formulated.

% The comparison is most easily made by comparing the present
Eqs. (84) and (93) with Eq. (29) of Part IT and integrating the
latter oncé lc?r'pa'rts. One first obtains p—po= (6*—a)/2i(uwr)¥?
from (84 and (90) then introduces (92).
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At any s the p vibrational energy e is related to
J, by® :

e=J0/2x. (95)

ANGULAR DISTRIBUTION

The angular distribution is obtained from the be-
havior of the angle variable w,, which obeys (53) and
(64) for k<1 and k>1, respectively. The boundary
condition on wy at the rotational-librational boundary
(i.e., at k=1) is seen from (53) and (64) that ws be
continuous, since the last term in (53) vanishes,
except at y==x7. [K(1) =« ].

According to (41), (47), (66), and (73) t, is given by

(k<1) we= (Jo/4x?uRe?) — v, b+,
(k>1) Wy = (Jo/Im’uRe?),

where v, is given by (52) and where ' is the contri-
bution from d[6W*/3!]/8Js. In deriving (96) we used
(50) to show that (3k/9Js)=—bok/dJ, when k<1.

At large =5, ¢ becomes constant. If ¢° and ¢*
denote the initial and final values of ¢ and if w,’ is
neglected one finds from the above results

(96)

¢=—¢= [ sa (97)
where the integrand 4 is
g=Jo/2mpRe (>1),
9= (Js/2xuRe®) — 2whv, (k<1). (98)

Since »,=0 at k=1, d is a continuous function of s.
The intergrand has its expected value at small and

large *s: At small s and, hence, in the region 2>1

the total angular momentum determines changes in
&, via pR$= ps=Js/2m; uRs? is the relevant moment
of inertia (Appendix I). At large =ts, and hence, in the
region of k<1, 4 in (98) can be shown to reduce to
(Js—FJ.) [ 2zu(R2—rg?). Since (J4—FJ,)/2r and
u(Re*—rs?) equal the orbital angular momentum and
orbital moment of inertia at large -£s (Appendix I),
we have u(Ro?—re?)d=(Js—FJ,)/2x in that region,
and so the integrand there is the expected one.

It is noted that 4 provides a smooth interpolation
between these expected values.

PROBABILITY OF REACTION

We consider the adiabatic system first. For any given
set of initial J;’s reaction occurs when the solution of
(11)-(16) yields an ax(s) which is positive at all s,
i.e.,, a p, which is nowhere imaginary. (In the adiabatic
case this solution is independent of the §:’s.) Thus,
reaction occurs when, for all s,

EZ V](S) +5y(5)+5(3)+V2(PO; 0) S), (99)

2627

as can be seen from (16), (78), and (82). In order of
appearance, these terms represent the natural barrier
on Curve C, the v, ¢ energy, the p energy, and the
potential energy increment from Curve C (p=0) to
p=py, i.e., to the point where the p potential is a
minimum. The centrifugal effects are included in e,, of
course. E equals ax®+¢,"+¢, where the s denote
initial values. ax® is the initial energy of relative
translational motion of the reactants. The effective
barrier is the smallest ag® for which (99) is fulfilled,
It depends on all J,%'s, since ¢,(s) depends on J; and
J,0 and ¢(s) depends on J,2. For example, a large impact
parameter leads to a large J, (unless cancelled by a
large J,%) and thereby leads both to a large centrifugal
potential and, also, to a large J, in the small s region
because of (26). In contrast, a large J,? usually lowers
the effective barrier; w at small s is usually less than that
at s=— o and so, according to (95), e(s)-€"(s) is
usually negative when J,(s) is roughly constant.

In the nonadiabatic case ¢, at small s is obtained from
J, and J, at that s using (71); e is obtained from J,
using (95). These J/’s are found by integration of
(68), (75), and (93). Thus, once again, the right side
of (99) can be calculated for any E and §.’s to see when
reaction occurs. The difference of both sides of (99) is
the value of ax/q? at p=py, according to (16), (78),
and (82). An iterative scheme can be set up to calculate
this quantity and so improve on the adiabatic result for
it. When a system has an ax/n* which is everywhere
positive even if the adiabatic ax/#* is not, the system
can be said to undergo a nonadiabatic leak.®

For any given initial J;’s and initial p,2/2p the re-
action probability can now be computed from the
above results, using a uniform distribution in the
initial §.’s.

ADIABATIC CORRELATION

We consider here the adiabatic correlation for the
¢, p, and v motions. The simplest adiabatic correlation
involves Js. J4 is a constant because the total angular
momentum ps(=J4/27) is a constant of the motion.

The following pattern for adiabatic correlation
occurs for the p motion. When the initial s energy is
adequate a reactive collision occurs. A diatomic
reactant in state » (value of the vibrational action
£ p.dp) yields an ABC system whose local symmetric
stretching vibration at small s is in state v, and then
yields a diatomic product in state v. When the initial
s energy is not adequate, the reflection occurs and the
diatomic reactant is reformed in state v. ABC systems
at the top of the barrier for the s motion, i.e., at the
maximum of the right side of (99), are the “activated
complexes.”’3 _

In considering the adiabatic correlation for the

3 Compare R. A. Marcus, J. Chem. Phys. 45, 2138 (1966); 43
1508 (19&)' s » ( ) 43,
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Fic. 2. Pictorial diagram
for boundary condition
(26). Collision (a) is a
harder collision (leads to a
more  highly  excited
A<+ +B+++C bending vibra-
o tion) than collision (b).%2

r'y

v motion, we first note that the angular momentum of
the diatomic reactant (product) at large ==s equals
FJ,/2x (Appendix I). When the initial s energy is
adequate the 4 differential equation reveals that a
diatomic reactant initially having a rotational angular
momentum 7 forms an ABC system whose local bending
vibration is in a state given by the boundary condition
(26), where J,"/2r is —j [using (A3) and F=—1 at
s=-—w ], and then forms a diatomic product with an
angular momentum given by the boundary condition
at the other librational-rotational boundary. When
the initial s energy is not adequate, reflection occurs
and the diatomic reactant is reformed in state j.

Adiabatic invariance in each interval, plus the
rotational-librational boundary conditions, has two
other implications:

(1) The v-vibrational action J,* is larger, and hence
the bending vibration is more excited, when J, and J,
have opposite sign rather than the same sign. This
result is in agreement with physical expectations, de-
picted in Fig, 2.

(2) From the boundary condition (26) imposed at
the initial (i) and final (f) boundaries, and using
J,/2n=Fj[Eq. (A3)] and F=F1 at s=F, one
finds

—jikj'= (b1, (100)
where —j% and j! denote the initial and final values of
J,/2x in this adiabatic case. (7! and j' are the rota-
tional angular momenta of diatomic reactant and
diatomic product, respectively.) J is the total angular
momentum,

Therefore, adiabatic correlation does not necessarily
imply | |=]4'|. In a reaction which is fairly sym-

3 The model used in FiEI.HZ, purely for pictorial simplicity, has
(1) no interaction until a finite intermolecular distance is attained
and (2) a rotational-librational boundary which is reached as
soon as the molecule enters the wedge. For this model, therefore,
Jyris —2xj. J4 is 2x(§-+1), where ] is the orbital angular momen-
tum. Thus, for it, (26) can be rewritten as

4 |(140)j+0 |= T,

where b is negative (F=—1 initially) and | 5|<1. One sees that
Jtis larger when ! and ; have opposite signs than when they have
the':géne sign; the resulting bending vibration is then more highly
excited.
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metrical in terms of mass-scaled geometry, b'=—b'
and the two adiabatic correlations in (100) become
di4ji2—2b'7 and (if J is not too large) j'=4". In a
reaction, such as H+Cly—HCI+Cl, the final mass-
scaled o is small, and so 5<3!, In this case, the situ-
ation resembles that in Fig. 3. Now, bi~—1, b'~0.
When j! in (100) is written as J—/, one finds the two
correlations to be l=2ji and 3(j'4+I)=¢J. When
7i=27, both correlations yield I=j'. That is, the final
orbital and initial rotational angular momenta can be
of the same order of magnitude.

NONADIABATICITY AND STATISTICAL
ADIABATICITY

Changes of vibrational action J, occur when the
system strikes the curved portion of Curve C with high
velocity. Two terms in [(93)+ (94)] for the change in
J, are dependent on the initial vibration phase §, and
one is not. For any initial J, the initial distribution in
8, is uniform in the interval (0, 2r). If averaged over
the initial phase &, the phase-dependent terms for
(J,—J®) vanish. Thus, J, averaged over phase §,
equals its adiabatic value, when the last term in (93)
can be neglected.

The rotational-librational action J, changes when
there is a rapidly changing torque in the rotational
region, reflected in B in Eq. (69), or when there is a
rapidly changing bending force constant in the libra-
tional region, reflected in B in Eq. (77). As noted
earlier, when the system is near adiabatic, J, in the
right side of (68) and (75) can be replaced by its initial
value at the start of each interval. Phase averaging
then makes the right hand side vanish. Thus, when it is
appropriate to phase average (see below) J, retains its
adiabatic value in each of the rotational and librational
intervals.

Thereby, any initial state of the reactants yields
states in the activated complex region which, when the
former are phase averaged, have the same energy
as the adiabatically determined states.®® This condition

2 ZP
£
. 10 F16. 3. Curve C in the mass-
a-a scaled £0Z subspace for H+
( Cly—»HCI+CL Only the angle,
$ 1¢*, 7o/ (initial and final ry’s)
d C are drawn to scale, Rotational-

librational boundaries s and
s/ vary with actual potential-
energy surface and with energy
E,. 0z is racicn

~_,--E)='- o

N

R

# While only one J, state is formed in the adiabatic approxi-
mation, two J,! states are formed, due to the nonadiabaticity at
the rotational-librational boundary and described by (26). Thus,
what we have called, for brevity, adiabatic could also be called
“quasi-adiabatic,” as far as the ¥ motion is concerned.

h<l,
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corresponds to the ‘“‘statistical adiabaticity” mentioned
in Ref. 34. A distribution of states results from the
initial randomness in phase, i.e., in §, and 3,.

Although the initial distribution in &, and &, is a
uniform one experimentally, there may be a one-sided
cutoff in the final distribution of J, and or J,, or in
their distribution in the activated complex region,
because of the restriction of finite energy.

As noted elsewhere® statistical adiabaticity has
interesting implications for activated complex theory,
and we shall explore this aspect elsewhere.

STATISTICAL-DYNAMICAL THEORY OF
REACTION CROSS SECTIONS

A simple approximate statistical-dynamical ex-
pression has been derived for total reaction cross sec-
tions of nearly vibrationally adiabatic reactions.®
The basic concepts used in that theory receive support
from an analysis of the results in the present paper, for
the approximations cited. For example, the effective
barrier for the s motion at the “activated complex”
(s=s%) was assumed to consist of the natural barrier,
the usual centrifugal potential p,2/2uR? there, the
change in adiabatic stretching vibrational energy, and,
in effect (see below), a “statistical adiabatic” change
of rotational to bending vibrational energy. These
ideas receive support from the discussion surrounding
Eq. (99). The first term is V,1(s) at the barrier max-
imum [plus V2(po, 5)7, the second is a contributor to
¢, the third is ¢, and the fourth is the other contribu-
tion to a phase-averaged e,.

Other things. being equal (and sometimes they are
not, for kinematical reasons), the p vibrational motion
will be more adiabatic than the y motion if the s
kinetic energy is not too large in the regions of strong
physical interaction. This result is borne out by the
analysis of the previous equations: rotational or bending
frequencies are lower than p vibrational ones, typically,
and (other things being-equal) have less tendency to be
nonadiabatic. The above statistical-dynamical cross-
section theory assumes this p vibrational motion to be
adiabatic. The approximation would break down when
the s kinetic energy is high in the region where Curve C
is highly curved, as noted previously.$

In the cross-section theory, the 4 motion was not
actually assumed to be adiabatic but rather to fulfill
a.“‘quasiequilibrium” condition which is closely related
to the statistical adiabaticity of the ¥ motion con-
sidered in the previous section.

The present solutions indicate how, with extension to
three dimensions, the cited theory for total reaction
cross sections could be extended to one for differential
cross sections, but this extension is deferred umtil a
later publication.

# R. A. Marcus, Discussions Faraday Soc. 44, 7 (1967).
(1361;5 A. Marcus, J. Chem. Phys. 45, 2630 (1966); 46, 959
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RELATED APPLICATIONS

A ‘“vibrationally adiabatic” reactive collision is a
chemical analog of the elastic collision in physical
scattering.* In both physical and reactive scattering,
however, when too extensive an excitation or de-
excitation of the internal degrees of freedom occurs the
cited approximation may cease to be a useful starting
point in a successive approximation scheme.

With this preamble several applications may be
noted. Some provide insight into assumptions made in
various statistical models such as the activated com-
plex theory of rate constants, the statistical-dynamical
theory of reaction cross sections mentioned in the
previous section, and a phase space theory of reactions®
(conditions of validity and limitations of which we hope
to discuss in a later paper).

Again, the comparison of the exact computer results
with the equations derived earlier is of interest in that
it provides some idea of the range of applicability of the
assumptions: near adiabaticity, zeroth-order neglect
of v, p interactions. (Some idea of this range is also
obtained by perturbation theory.) In turn, within this
range these theoretical expressions help provide insight
into the various computer results and permit a pre-
diction of how various changes in the potential energy
surface should effect the computer results.

We note that a distribution in final J’s occurs as a
result of the random distribution in initial phases, for
any given initial values of these action variables and of
the initial kinetic energy ué?/2 of relative translational
motion. For comparison with the present theory it
would be useful to present the exact computer results in
a way which permits a comparison of these final J;
distributions, at fixed initial J;’s and u$?/2, and which
permits a comparison with results which have been
averaged over initial orbital angular momentum in the
usual kinetic manner. The comparison may be made
for those potential energy surfaces for which the
principal configurations of the ABC system at small s
are near linear. When they are nonlinear, it was noted
in Part III that the treatment given there, and hence
here also, is modified.

The present expressions suggest how to compare the
computer results for one and two dimensions. The
latter contains an adiabatic energy e, (s) of the v, ¢
motions, which .adds to the effective potential for the
s motion. In the comparison, some allowance. for this
difference can be made. . :

APPENDIX I. MOMENTS OF INERTIA, ORIENTA-
TIONS, AND ANGULAR MOMENTA IN NATURAL
COLLISION COORDINATES

All distances are mass scaled, as in Glossary.

# J. C. Keck, J. Chem. Phys. 29, 410 (1958) ; P. Pechukas and
J. C. Light, ibid. 42, 3281 (1965).
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Distances, Orientations, and Moments of Inertia

In Appendix I of Part III it was shown that at large
=s the internuclear distance of the diatomic species
is r, and in the case of reaction in a spaced-fixed
( x40°y.) plane the angle between the °, axis and the
axis of the diatomic species is ¢+fv, where f=—1 at
large —s and +1 at large +s. The internuclear axis is
drawn from A to B (large —s) or B to C (large +s5)
in Reaction (1). (See Part III, Appendix II.) At large
|'s | incidentally, f=F, so the above angle can be
written as ¢+ Fy.

Similarly, it was shown that the line of centers of the
two species made an angle ¢ with the %, axis at large
=s and had a length Z (large —s) or Z, (large +s5).
One finds from the definition of R in Part IIT and
Eqgs. (A1) and (A2) of Appendix I there that the
separation distance of the two species at large =5 is
(R2—r?)¥2, [This line of centers is drawn from AB to C
(large —s) or A to BC(large +s).]

Thus, at large s the moment of inertia of the
diatomic species and the “orbital” moment of inertia
of the two reactants (large —s) or products (large +s)
are pr® and u(R?—7?), respectively. When the diatomic
species at large ==s has its equilibrium bond length, one
finds in Part III that =7, and R= R, so that the two
moments are ure? and u(Re—ro?) then.

At small s, one finds from Part III, the moment of
inertia of the near-linear ABC system is uR? and the
internuclear axis makes an angle of ¢ with the (space-
fixed) %, axis for reaction in a place. When this ABC
is in its most stable configuration (stable with respect to
bending and symmetic stretching only) pR? becomes

uRe.

Angular Momenta

Since F?=1 at large =s the last terms in (2) can be
written as a sum of squares

3urt(¢+Fy )2+ 3u (R —1*) 4.

These two terms constitute the rotational energy of
the diatomic species and the orbital kinetic energy of
the two reactants (or products), respectively, since
¢+Fy and ¢ are the respective coordinates and ur?
.and u(R®—+%) are the respective moments of inertia.
Thus, the rotational and orbital angular momenta, §
and /, respectively, are 87/d(¢+ Fv) at constant ¢ and
.aT/aqS at constant ¢+ Fy. Thereby,

Jj=ur(¢+Fv),
I=p(R*—1)¢.

(A1)
(A2)

The total angular momentum J is j+1.

‘R:"A. MARCUS - "~

At large =5, Egs. (2), (A1), and (A2) also show thg.t
ps=uRi$p+pr'Fy=1J,

py=ur*y+pr*Fé=jF. (A3)

Thus, we have

I=J_j= P¢_F/’7= (J¢_FJ1)/21" (A4)

since J4=2xps and J,=2xp, at largé |s

APPENDIX II. MODIFICATIONS FOR A
TWO-REACTION PATH SYSTEM

In some reactions both BC and AB may form.
Then, in addition to Curve C there is a second curve
to be considered, leading to a product AC instead of
BC. This curve, denoted by G in Part III, is obtained
from C by reﬂectlon about the 0Z axis in the 20Z
plane in Fig. 1.

Since the natural collision coordmates n and s are
defined with respect to Curve C, corresponding co-
ordinates should be defined with respect to Curve G,
as noted in III. Any point can be defined with respect
to one coordinate set or the other, but in the curved
reglon of Curve C it is useful to define by #, s only the
position of those points close to C. Similar remarks
apply to G.

Thus, when a system in the curved region can easily
move from the C neighborhood to the G one (i.e., if
there is a small v barrier at that s) it is better to re-
place the coordinates defined with respect to C and
those defined with respect to G by another set which
treats C and G symmetrically. This definition is not
attempted in the present paper. Instead, we confine our
attention to systems in which the y barrier becomes
high (i.e., #>1) before Curve C becomes appreciably
curved. Since the coordinates r and v are actually
defined symmetrically with respect to Curves C and G
where C is not curved (they are cylindrical coordinates
in this region, the 0Z axis being the axis of the cylinder,
r the distance from 0Z and ¥ the angle about 0Z), the
coordinates satisfy the desired symmetry condition.
After the system enters the (£>1) region and the
Curve C (and G) becomes curved, only the coordinates
defined with respect to C need be used in considering
the formation of products A and BC and the lack of
symmetry of coordinates in that region is irrelevant.
Similar remarks apply to Curve G and to the formation
of products AC and B.

Instead of (43) the v potential function for the
present case, with coordinates defined with respect to
Curve C, say, is

V3(0, v, s) =3 (1—cos2y) A(s). (AS)
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The resulting modifications are as follows:

(1) In Eq. (45) /2 is replaced by .

(2) Case (ai). Equations (50) and (52) are un-
changed. The right side of (51) becomes F (v, k) /4K (k)
and a similar change occurs in (53).

(3) Case (aii). In Eq. (55) v0/2 is replaced by vo.
The right sides of (61) and (63) are multiplied by }
and 2, respectively. Equation (62) is unchanged but
now sing is % siny instead of 2 siniy. Equation (64) is
unchanged. (The corrections to the other equations are
evident from these corrections.)

(4) Case (b%). In (65) and (66) the sin*y/2 is
replaced by sin*y. Equations (68) and (69) are un-
changed but % is now 4Kw,. In Eq. (70) cos2mw, is
replaced by cos4rw,.

(5) Case (biz). The right sides of (74)-(77) should
be multiplied by a factor of 4. In (74) vo is replaced by
vo/2, and u is 4w,F(vo, k). In (75) 1 is dw,K,, as
before.

The two-reaction path system has a rotational-
librational boundary condition which differs somewhat
from (26). The integral & p,dy on the rotational side
of the boundary is again given by (25). On the libra-
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tional side, the contribution of the first term on the
right side of (23) again vanishes over the librational
cycle, and the limits in (24) are &=0, ¢;=m, for the
given reaction path. We thus have

=2 [ KB~V Iy, (89)
0

2%
Jyr=bJpe f [21(E,— V<) Jdy
0

=bJ, 42 f 2B~V hdy.  (AT)
1]

Elimination of the integral yields

=T, —bJ, | (A8)
instead of (26).

Similarly, if the system ends up on the other reaction
path the latter obeys a boundary condition given by
(A8).



