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The coordinates of earlier papers of this series are extended from linear collisions to reactions in three 
dimensions. Termed "natural collision coordinates," they have a unique property of passing smoothly 
from those suited to reactants to those suited to products. Potential applications to bimolecular reactions 
are described. 

The analytical mechanics (quantum and classical) 
of chemically reactive linear collisions were treated in 
earlier papers of this series.I •2 The main features of the 
treatment were (1) a set of coordinates which passed 
smoothly from those suited to reactants, through those 
suited to "activated complexes," to those suited to 
products, (2) a zeroth-order solution which was "vi-
brationally adiabatic,"3 and (3) a calculation of non-
adiabatic corrections. 

In the present paper this coordinate system is ex-
tended to reactions in three dimensions. These coordi-
nates are closely related to the actual vibrations, the 
free and hindered rotations, and the translations of 
the system at each stage of the reaction. As Parts I 
and II illustrate, the corresponding equations of motion 
are more amenable to approximate analytical solution 
than are those expressed in conventional coordinates. 

The collision-theory literature contains many approx-
imate procedures and it is best to separate them from 
the actual elaborate definition of the new coordinates. 
Approximate solutions are given in subsequent papers 
of this series. Several intuitive applications were given 
elsewhere.4 

COORDINATES 

In the case of bimolecular reactions, we consider first 
the case of a single reaction path, 

(1) 
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1 R. A. Marcus, J. Chern. Phys.45, 4493 (1966), Part I. 
2 R. A. Marcus, J. Chern. Phys. 45, 4500 (1966), Part II. 

Typographical corrections are (a) in Eq. (17) and preceding 
sentence replace (1+KXo) by (1+KXo) 2, (b) after JL(I+ Kxo)2 in 
that sentence add "on Curve C", and (c) replace w2 by JLW2 in 
sentence after Eq. (21). 

3 This term is used here to describe reactions which are adiabatic 
with respect to all vibrational-rotational motions, i.e., to all 
motions but the one along the reaction coordinate s. A relevance of 
adiabaticity of internal motions to activated complex theory has 
been discussed by J. O. Hirschfelder and E. Wigner, J. Chern. 
Phys. 7, 616 (1939); M. A. Eliason and J. O. Hirschfelder, ibid. 30, 
1426 (1959); L. Hofacker, Z. Naturforsch. 18a, 607 (1963); R. A. 
Marcus, J. Chern. Phys. 43, 1598 (1965). 

4 R. A. Marcus, Discussions Faraday Soc. 44, 7 (1967), and 
discussion remarks. 

and later include a second path, 

(2) 

The coordinates of the ath atom in the center-of-mass 
system are denoted by ox"" 0y"" °z",. Six scaled relative 
coordinates in the center of mass are defined via (3),6,6 

°X= (OXn-OXA)C, 

oX = IOxc - [(mAOXA +mBOXn) / (mA +mn) Jl c-r, 
(3a) 

(3b) 

where c is [mAmB(mA+mB+mc)/mc(mA+mB)2]I/4 and 
where the other components (Oy, etc.) are obtained by 
replacing ox", by 0y"" etc. The kinetic energy in the 
center-of-mass system is T, 

T = t.u (OJ;2+o1?+oi2+oX2+oY2+o Z2) , 

where.u is [mAmBmc/(mA+mB+mc)]I/2. 

(4) 

The above six space-fixed coordinates are transformed 
into body-fixed coordinates via Eulerian angles (8, cP, x) 
in a standard way,7 as in Fig. 1 

(5) 

with oX, °Y, oz being related to X, Y, Z by the same 
equation and Sx8q, T being the rotation matrix7; the ele-
ments of S are direction cosines. 

The body-fixed plane x",=O is chosen as the instan-
taneous plane of the three atoms. Thus, 

X=X=O. (6) 
5 Compare S. Glasstone, K. J. Laidler, and H. Eyring, The 

Theory of Rate Processes (McGraw-Hill Book Co., New York, 
1941), Chap. 3; F. T. Smith, J. Chern. Phys. 31,1352 (1959); 
Phys. Rev. 120, 1058 (1960). 

• These coordinates are related to six others for the products, 
0Xp= - (OXC-OXB)Cp, oXp 

= ![(mBoxB+mcOxC)/(mA+mB) ]-OXAjcp-l, 

by a simple rotation in Fig. 3 through the angle roo. Here, Cp equals 
[mBmC (mA +mB+mcl /mA (mB+mc) 2]11<. 

7 E.g., E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular 
Vibrations (McGraw-Hill Book Co., New York, 1955), p. 286; 
e.g., 

°X=X(cosO cos</> cosx-sinq., sinx) 

+y( -cosO cosq., sinx-sinq., cosx) +z sine cosq." 
or see Eq. (A6) of this paper. 
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FIG. 1. Space-fixed axes (DxaDYaDza) and body-fixed axes (xaYaZa) ; 
oriented at Euler angles (0, <p, x). Points (0, y, z) and (0, Y, Z) 
represent the positions of reduced masses J.lAB and J.lAB.C in mass-
weighted space. They lie on the body-fixed yaOZa plane, which is 
indicated in the diagram and which corresponds to the instan-
taneous plane of motion of the three atoms. 

A set of coordinates suited to a rearrangement colli-
sion, such as a chemical reaction, "natural collision 
coordinates," is next introduced. For simplicity, con-
sider reactions for which the least unstable activated 
complex configuration is linear. The results can be 
adapted to other reactions by replacing Fig. 2 by a 
plot for specified nonlinear configurations and making 
other appropriate changes. 

As in Parts I and II coordinates nand s are intro-
duced to replace Z and Z, using Curve C in Fig. 2. 
The curve is defined in terms of the potential-energy 
surface, Fig. 3, as discussed previously.l.s For any point 
P in the (z, Z) subspace n is the distance from P to 
the nearest point Q on Curve C, and s is the distance 
from an arbitrary point on C to Q. s proves to be the 
"reaction coordinate." The transformation (z, Z) to 
(n, s) in Fig. 2 is 

(7) 
where (zQ, ZQ) are the coordinates of Q on Curve C. 

FIG. 2. Definition of orthogonal 
curvilinear coordinates nand s of any 
point P. 

z 

8 E.g., C can be the curve of least steep ascent from the react-
ants' valley to the potential-energy saddle point, if any, and sub-
sequently of least steep descent to the products' valley.' In each 
valley it proceeds along the bottom. An alternative choicel for C, 
as an adiabatically-vibrationally averaged path, is now somewhat 
more complicated because of energy loss to or gain from all the 
other degrees of freedom. However, a compromise choice for C can 
be used when desired. 

17 

FIG. 3. Potential-energy 
contours for Reaction (1). 
Dashed line is one possible 
choice for Curve C in Fig. 2. t 

z 

The angle t' co in Fig. 2 is calculated from6 tan2t' co = 
mB (mA +mB+mc) /mA1nc. The half-plane of negative 
Z is omitted in Fig. 2 to avoid double counting of 
configurations. 

The coordinates are now 8, cjJ, x, n, s and a sixth to 
be drawn from the (y, Y) pair. The method for making 
this choice amounts to one for defining the orientation 
of the body-fixed axes in the YaZa plane. We do so in a 
way which makes the Za axis the line of centers of 
reactants when s'" - 00, the line of centers of the 
products when s"'+ 00, and the axis of the activated 
complex when s is in that neighborhood (s = st). (The 
method used has several other useful properties.9a) For 
this purpose we introduce a local Cartesian condition 
at each s, 

Y sint'+ Y cost' = 0, (8) 

and later specify the s-dependent parameter t'(s) by 
condition (12). The axes' orientation in the YaZa plane 
is the one fulfilling (7) and (8) simultaneously. 

The sixth coordinate m is chosen to have a magni-
tude (f+ Y2) 1/2 and a sign defined through 

y=-mcost', Y=m sint'. (9) 

To avoid double counting of configurations, the domain 
of m or X is appropriately restricted.9b The typical shape 

"t 
I,ll II,IY ][ 

FIG. 4. Potential-energy profiles in (m, n) subspace 
for several values of s in Fig. 3. 

9 (a) It gives a locally Cartesian internal coordinate space at 
each s, can be made to make the vibrational angular momentum 
small near st, and makes the only nonzero product of inertia 

at each s vanish on the average. [As an alternative, one 
might have chosen the axes' orientation by making the instan-
taneous products of inertia vanish exactly. For resulting equations 
based on the customary coordinates see H. Diehl, S. Fliigge, A. 
Volkel, and A. Weiguny, Z. Physik 162, 1 (1961) and K. F. 
Freed and J. R. Lombardi, J. Chern. Phys. 45, 591 (1966).J (b) 
Reflection in the xaOza plane in Fig. 1 yields the same configura-
tion as increase of x by 1r. Double counting is avoided by setting 
either m:;;.O or O<x<1r. In the case the'Y defined in (10) is re-
stricted to (0, 1r), and then only the upper half plane in Figs. 4 
and 5 is used. 
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FIG. 5. The profiles in Fig. 4 
are the shaded regions in this 
(m, n, s) subspace. 

of the potential-energy profiles in the (m, n) subspace is 
given in Fig. 4 and in the (m, n, s) subspace given in 
Fig. 5. The profiles reflect the free rotation of the 
diatomic molecule at large I s I and the increasingly 
hindered rotation as the syetem moves to values of s 
and st. In the latter neighborhood, the rotation becomes 
a bending vibration. The relation between the physical 
motions at large I s I and the coordinates in Fig. 5 is 
described later. 

Because of the shape of the profiles we transform 
(n, m) into (r, ')'), 

n=ro-r cos,)" m=r sin,)" (10) 

where ro (s) is determined from the shape of the profiles 
in Fig. 3. It is a function of s and is shown in Appendix I 
to be the pertinent diatomic bond length when s= + 00 

and - 00. (For symmetrical reactions ro may be 
constant.) 

A vibrational coordinate p is introduced via 

p=ro-r. (11) 

It remains to define r(s). One suitable choice makes 

r= 7r-if; (at large -s), 
(at s=sl), 

(at large +s), (12) 

where is the polar angle of Q in Fig. 2, and sl is some 
preselected s, for example, the s at or near the potential-
energy maximum along Curve C, if any. The first and 
third conditions make the Za axis the line of centers 
of reactants at large -s and of products at large +s, 
respectively. The second condition makes the vibra-
tional angular momentum vanish for the most stable 
configuration at s=st. Each of these results is estab-
lished in Appendix I. 

Imposition of (13) fulfills the first and third condi-
tions in (12). It also fulfills the second condition when 
st occurs at the point on Curve C in Fig. 2 closest to 
the origin, 

ro cos (r-if;) -Ro =0, (13) 

where Ro and are the polar coordinates of point Q in 
Fig. 2, 

ZQ=Ro (14) 

A typical plot of if;(s) , Hs) and res) is given in Fig. 6. 
One set of natural collision coordinates is (s, p, e, cp, 

X, ')'). A set (s, p, e, cp, e, <1» which avoids kinetic-
energy cross termslO at large ± s between external and 
internal coordinates and is used later for boundary 
conditions is given in Appendix II. 

KINETIC ENERGY 

If (w", Wy , wz ) denote the components of the angular 
momentum about the body-fixed axes and I"", Ixy, etc., 
denote the moments and products of inertia, the kinetic 
energy isH 

T= !,u(Z?+ Y2+i2+ Z2) +!(Ix"w,,2+ Iyywi+ Iz.wl) 

- Iyzwywz+Q"w", (15) 

where cognizance of (6) was taken, so that I xz, I xy , X, 
X, Qy, and Qz all vanish, Qx being the sole nonvanishing 
component of the vibrational angular momentum, 

(16) 

radians 

Je5l 

"(5) 

-0.8 -0.4 0.8 
s. reaction coordinate (a.uJ 

FIG. 6. Plot of >/;(s) , Hs), and \(s), where s is the distance along 
Curve C of Figs. 2 and 3 for reaction H + Hz-> Hz + H. Asymptotic 
values are Cn', 0, 0) at s= - 00 and (i1l", 111", In-) at s=+oo, and 
intercept at s=O is (111",111",111"), respectively. Calculations utilize 
potential-energy surface of M. Karplus, R. N. Porter, and R. D. 
Sharma, J. Chern. Phys. 43, 3259 (1963). 

10 These cross terms reflect the fact that the free rotation at 
large ± s does not obey a simple equation when expressed in 
coordinates relative to moving body-fixed axes but does so when 
its coordinates are relative to space-fixed ones. The transformation 
(AS) is one from ('1, x) to the space-fixed coordinates (El, <1». 

11 The calculations parallel those in Chap. 11 of Ref. 7, noting 
that Eq. 6 of Sec. 11-1 there is not used; e.g., if the column vectors 
in (5) are denoted by Or and r, and the corresponding ones in-
volving ox etc., by OR and R, then 
T= !/L(OiTOr+oRTOR) = iJLiTt + !/L (rTSSTr+RTSSTR) 

+/L(rTSSTt+RTSs1'J.i), 
where rT is the transpose of r. The first, second, and third terms 
are T vib , Trot, and Teor; SST is a 3X3 matrix whose first, second, 
and third rows are found to be (0, w., -Wy), (-w., 0, wx ) and 
(w., -w., 0). The SST term equals SST (SST) and so is also 
readily expressed in terms of these w's. The cited relation between 
SST and the w's can be derived as in H. C. Corben and P. Stehle, 
Classical Mechanics (John Wiley & Sons, New York, 1960), 2nd 
ed., Chap. 9, with obvious major changes in notation (e.g., w., x, 
and Ox instead of ow., ox, and x) and in definition of Eulerian angles. 
Ours are those of Ref. 7. 
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The values of (w", Wy , wz) are known12 in terms of 0, 4>, 
and X. I yz is given in Ref. 13. In Appendix I Qx [and, 
hence, the coefficient of -ywx in (18) ] is shown to vanish 
at st. 

In terms of the coordinates (p, s, 8, </J, x, "I) one finds 

T=To+T1, (17) 
where 

TO=!JL('l/2S2+p2) +!JLr2( -Y2+W .z sin2"1) 

+!Ixx(w.?+wl?) -Wywxr2(j-Am COs"l) , (18) 

TI = 2JLffo sin2h+JLr sin"l[ro-y- !wy2r sin"l 

-r(f COS"I-Am)wywz+ (A.s+Amf)wx], (19) 

where TI contains terms which are smaUI4 both at large 
± s and for the stablest configurations at s = st; fo is 
(dro/ds)s, K in (20) is the curvature of Curve C at 
any s, and 

K= -dif;/ds, 

'1/2= (1+Kn)2+ (Kim) 2, 

KI=-dr/ds, (20a) 

(20b) 

A.=RoKI - (1+ Kn+ Kin) sin(if;-r) 

- (dro/ds)j, 

Am= [ro cos (r-if;) -Ro ]/r, 

(21a) 

(21b) 

= JL[Ro2- ro2+r2+2n{Ro +rol]' (22) 

[R is defined as (Ixx/JL)1/2 and equals the distance of 
any point in Fig. 5 to the origin.] 

Using the valuel2 for w one finds 

To= !JL('l/2S2+p2) +HJLr2) [12+ (cosOlj>+x) 2 sin2"1] 
+HJLR2) 

-JL1(sinxO-sin8 cosxlj»r2(j-A m COs"l); (23) 
'1/2 and R2 in (20) and (22) can be simplified.ls 

In (20) j vanishes for the point on Curve C closest 
to the origin in Fig. 2. At large -s and at large +s, 
j is -1 and + 1, respectively. Because of the presence 
of this j term, the component of the angular momentum 

12 Reference 7, p. 282. 
13 1 •• is jJ. (yz+YZ). Use of (7), (9), and (14) yields lu.= 

jJ.m[Ro -n cos (f-r)], which becomes jJ.r2(j cos-y-
Am) sin-y on using (10) and (21b). 

14 At large ± s in Eq. (19), ro=O,jcos-y vanishes in the mean, 
A. and Am vanish, and w.2r2 sin2-y is dominated by the l .. wl in 
(18). At the most stable configuration for s=st all terms in Tl 
vanish since sin-y does. However, neglect of (w.w. sin-y) is justified 
not simply because sin-y=O. [The (w. sin-y) 2 in To has a similar 
factor and must be retained to avoid loss of x.] Rather, the 
WyW. sin-y can be neglected at st when (12) is imposed, because the 
coefficient (j cos-y - Am) = j - j = 0 for the most stable configura-
tion at st. 

15 E.g., (/(lm)2=0 both at large ± s (since /(1 =0 there) and for 
the most stable configurations near s=st (since m=O there). 
Since n=ro-r for the most stable configurations at st (-y=0), 
while Kn vanishes at large ± s, it follows that At 
small s, so At large I s I, =-ro. Since 

its equilibrium value at large I s I, one finds there. 
Therefore, at all s, one might take 

along the body-fixed Za axis, Px, is not a constant of 
the motion, even when the Hamiltonian is To+ V. 

The momenta conjugate to the above velocities are 
defined in the usual manner: Pi=iJT/iJqi for the present 
conservative system. 

POTENTIAL-ENERGY FUNCTION 

Potential-energy plots were given in Figs. 3-5. In 
terms of (m, Z, z) or, what is the same space, (m, n, s) 
the motion of the system can be represented as one 
largely confined to the shaded region in Fig. 5.16 That 
region is annular in some places and "semiannular" in 
others. The potential-energy function has the form 

(24) 

where V1(s) is the value on Curve C and V2 is the 
increment to go to any other point at the same s. 
V2 varies mainly with p and "I, and slowly with s. At 
large ± s it is independent of "I. 

When the potential-energy coupling between the p 
and "I motions can be ignored, V2 can be written as 

V2(p, "I, s):::V2(0, "I, s) + V2(p, 0, s). (25) 

Since V2 is zero on Curve C and since P="I=O on 
that curve, V2(0, 0, s) is zero. 

EQUATIONS OF MOTION AND BOUNDARY 
CONDITIONS 

The method in Ref. 12 of conversion from T to H 
for Cartesian internal coordinates is extended to curvi-
linear ones in Appendix III. The Hamilton-Jacobi and 
Schrodinger equations are obtained in the standard 
way,t7.18 the former by setting Pi=iJW /iJq;, where 
W is Hamilton's characteristic function. 

With the usual boundary conditions19 in collision 
problems, the wavefunction at large separation dis-
tances of the reactants is the sum of a plane wave 
(having reactants in their initial state) and outgoing 
(scattered waves) in all internal states; at large sepa-
ration distances of products the wavefunction consists 
of outgoing (scattered) waves. The total in-going flux 
equals the total out-going one in the stationary-state 
description. These boundary conditions, expressed in 
terms of the usual coordinates, are readily rephrased 
in terms of the natural collision coordinates: 

Instead of describing reactants with a different label 

16 In Fig. 6 it is appropriate to draw the m axis as rectilinear, 
since the (m, Z, z) subspace is almost Euclidean: The square of 
the distance between adjacent points is dz2+dZ2+dm2+ (Klm)2ds2, 
i.e., [(1+Kn)2+(Klm)2]ds2+dn2+dm2• The space would be 
exactly Euclidean if the (Klm)2ds2 term were absent. Fortunately, 
it is small since KI=O when ± s is large, and m=O at the most 
stable configurations near s=st. The (m, n) subspace in Fig. 4 is 
exactly Euclidean. 

17 H. Goldstein, Classical Mechanics (Addison-Wesley Pub!. 
Co., Inc., Reading, Mass., 1950), pp. 280ff. 

18 E.g., W. Pauli, Jr., in Handbuch deT Physik, S. Fliigge, Ed. 
(Springer-Verlag, Berlin, 1958), Vo!. 5, p. 39. 

19 E.g., A. Messiah, Quantum Mechanics (John Wiley & Sons, 
Inc., New York, 1963), Vol. 2, p. 835. 
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from that for products, it suffices to note that now the 
former corresponds to s---+- 00 and the latter to ---++ 00 • 

At large separation distances of reactants that distance 
equals Zc, c being the scaling factor in (3) and Z 
equalling - (s+so), where So is a known constant.20 At 
large separation distance of products that distance is 
Zpcp, Cp being the scaling factor in Ref. 6 and Zp equal-
ling s+soP, where SoP is a known constant.20 

The internal states at large I s I are described in tW1lS 
of coordinates (r, 8, <1», where 8 and <I> are defined by 
Eq. (A4) of Appendix II. 8 and <I> describe the orienta-
tion of the diatomic species with respect to the space-
fixed axis; r is the scaled interatomic distance in the 
diatomic species. In Appendix II it is shown that at 
large ± s, fy and x+t7r describe the orientation of the 
diatomic species with respect to axes (x'y'z') obtained 
from the space-fixed ones by a rotation 80(1).21 At large I s I 
(J and cp describe the orientation of the two species (Ap-
pendix II). Each rotational wavefunction, Y;rotim;( 8, <1» 
in the boundary condition at large I s I is written in 
terms of functions of 'Y and X using22 

i 
Y;rotim;(8, <1» = L Y;roti0(f'Y, x+h) Dm;oi*(cp, (J, 0), 

(26) 

where n is the component of j along the z' axis, i.e., 
along the line of centers of the two species, and Dm;oi* 
is a matrix element of a rotation operator IJ+-. 

The classical mechanical problem is an initial value 
one, and the usual boundary conditions can also be 
written in terms of the present coordinates by express-
ing the separation distance in terms of s as above. 
Further, when the space-fixed axes are chosen so that 
the °Za axis is along the initial relative velocity vector 
and so that the initial orbital angular momentum lies 
along the °Ya axis the initial values of (J and cp are zero. 
Inspection of (A4) then shows that the initial values 
of fy and x+h equal those of 8 and <1>, respectively. 

PHYSICAL MOTIONS AT LARGE I s I AND FIG. 5 

The coordinates in Fig. 5 are related to y, Y, z, Z. 
(The first two yield m.) Thus, this figure describes 
motion in the instantaneous plane formed by the three 
atoms, the yaOza plane in Fig. 1. Large I s I means large 
separations of the reactants or products. 

At large I s I, it is shown in Appendices I and II, r is 
the mass-scaled instantaneous bond length of the di-
atomic species present (reactant at large -s and prod-

20 For example, let s=O correspond to the point on curve C 
nearest the origin in Fig. 2. The distance -s to any point on Cat 
large negative s can be compared with the corresponoing value of 
Z for that point and So determined thereby. Similar remarks apply 
to 50P , but with Z replaced by 6 Zp and with the distance measured 
to some point on C at very positive s. 

21 When in (A4) is written as and (A6) is used for 
S. the right side of (A4) becomes operating on a vector where 
components are [SiD1' cos (x+!".), COS1' sin (x+V), COS1']. 

22 D. M. Brink and G. R. Satchler, Angular Momentum, 
(Clarendon Press, Oxford, England, 1962), pp. 21 and 26. 

uct at large +s). For any given r and at large I s I, the 
representative point in Fig. 5 lies on a cylinder of axis 
OZ and radius r (at large - s) or of axis OZp and radius 
r (at large +s). At large I s I, rotation of the diatomic 
species with respect to the body-fixed axes corresponds 
to the rotation of the representative point about the 
relevant cylinder axis, OZ or OZp, at fixed r. Vibration 
of the diatomic species at large I s I corresponds to 
motion of the representative point normal to the sur-
face of the relevant cylinder. Radial translational mo-
tion of the two species (reactants at large -s, products 
at large +s) corresponds to motion of the representa-
tive point parallel to the relevant cylinder axis (OZ at 
large -s, OZp at large +s). 

When the diatomic species at large I s I has its equi-
librium bond length, i.e., when r= '0, the cited cylinder 
includes the relevant linear portion of curve C on its 
surface. 

REACTION PATH MULTIPLICITY 

When both Reactions (1) and (2) occur, Fig. 2 is 
replaced by Fig. 7, with the half-plane of negative Z 
again omitted to avoid double counting of configura-
tions. The cross-sectional potential-energy profile for 
region I is unaltered, but the profile near the entrance 
of II has two separated semiannular regions, one con-
taining Curve C and the other containing Curve G. 
The former leads to Reaction (1) and the latter to 
Reaction (2). From this point on, each of these two 
reaction paths is described in terms of its own set of 
natural collision coordinates, and in solving the Schro-
dinger equation account should be taken of this "bi-
furcation" of the wavefunction. 

REACTION IN A PLANE 

The simplest system which provides information on 
the vibrational-translational changes during a reactive 
collision is reaction in a line. The simplest system pro-
viding information on the conversion of rotation into 
bending vibrations and then into product rotations, 
with orbital and translational coupling included, is reac-
tion in a plane. The motion occurs in the °XaoYa plane 
when one sets (J=7r/2, and x=O, for then °Za=-xa=O 
according to (5) and (6). We now have, wy=w.=O, 

z 

c 
FlO. 7. Counterpart of Fig. 2 for 

Reactions (1) plus (2). 
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and wx =-ci>.23 Thus, (18) and (19) become24 

To= 712S2+P2) j- A", cos'Y) , 

(27) 

Tl = sin'Y[i'o"Y-ci> (A.s+Amr)]. (28) 

Now, cJ>=IjJ+h and 8=0. 

DISCUSSION ON BIMOLECULAR REACTIONS 

The physical nature of the various coordinates at 
s= ± 00 was considered in a previous section. In the 
activated complex region (s=st) p and s describe the 
symmetric stretching vibration and the asymmetric 
(imaginary frequency) one, respectively; when (12) 
is imposed, () and IjJ describe the orientation of the 
activated complex and I' and X describe its doubly 
degenerate bending vibration. In intermediate regions 
of s, the latter coordinates describe a hindered rotation 
coupled rather than a free rotation or a bending vibra-
tion. 

One approximate solution, the nearly vibration ally 
adiabatic one, was discussed briefly in a previous paper,4 
together with some implications for activated complex 
theory and related topics. A vibrationally adiabatic 
reactive collision can be regarded as the chemical 
analog of the elastic collision in physical scattering, and 
both can serve as a basis for more detailed calculations. 
The present coordinates provide a vehicle for treating 
this vibrationally adiabatic chemical reaction. The 
latter will be given in a later paper, together with a 
calculation of non adiabatic corrections. 
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APPENDIX I. CONSEQUENCES OF EQ. (12) 

We first show that at large -s Eq. (12) yields 
X = Y = 0, so that the line of centers of reactants is 
along the Za axis, and that at large +s Eq. (12) yields 
X p = Y p = 0, so that the line of centers of the products 
is along the Za axis. These results are embodied in the 
second half of (Al) and (A2). The first half of (Al) 
and (A2) is derived for use in Appendix II. 

At large -s, use of Eqs. (6), (9), (10), (12), (14) 
and of the fact that Ro and t now equal ro and 0 

23 Compare the equations in Ref. 11 when 8=tn- and x=O. 2. From (28) and (29) the kinetic energy in Part J for collision 
on a line can be readily obtained, using the fact that on a line, 
4>=,,),=0, so n=p. 

show that 

( :)=(-r:in'Y); 
Z r cos'Y 

(D (D -'i· (At) 

Thus, Z is now the mass-scaled distance between the 
mass centers of the two reactants, since the other two 
components of that radius vector vanish. 

At large +s use of similar equations and of the fact 
that Ro and t now equal ro and too show that 

Thus, Zp is now seen to equal the mass-scaled distance 
between the mass centers of the two products. 

The vibrational-angular-momentum component Qx 
defined by (16) is found to equal 

sin'Ys+Amm-rh)r. (A3) 

The most stable configuration at s=st occurs at 
1'=0, r=ro, and so one finds A. sin'Y=O at this point. 
Also at this point, if (12) is imposed, the last two 
terms in (A3) cancel each other. Thus, the choice t= 
in (12) causes Qx to vanish for this stablest configura-
tion at st and is equivalent to employing an Eckart 
condition25 at s= st, a condition hitherto employed only 
for stable molecules. 

APPENDIX II. RELATION OF 8, cJ> TO 'Y, X AND 
PROPERTIES 

The body-fixed coordinates of the diatomic reactant 
AB are (x, y, z). Thus, (Al) shows that at large -s 
the mass-scaled radius vector joining A to B has a 
length r and makes an angle -I' with the (body-fixed) 
Za axis. The body-fixed coordinates of the diatomic 
product BC are (xp, YP' zp). Hence, (A2) reveals that 
at large +s the mass-scaled radius vector joining B to 
C has a length r and makes an angle +1' with the 
Za axis. Since j, which equals cos(t-if;), equals -1 at 

25 C. E. Eckart, Phys. Rev. 47, 552 (1935). 
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large -s and + 1 at large +s, the above angle could 
be written in each case asfy. 

It is useful to define a set of coordinates 8, <I>, via 
(A4) , 

(
:::: = SXO</>T( ';:11)' 

cos8 

(A4) 

Comparison of (5), (A1), and (A4) shows that at 
large -s the spaced-fixed coordinates of the line join-
ing A to B and those of the line joining the mass center 
of AB to atom C, namely (Ox, 0y, 0z) and (OX, 0Y, 0Z), 
respectively, can be written in terms of polar coordi-
nates (r, 8, <I» and (Z, 0, cp), respectively, in the stand-
ard way (e.g., °x=r cos8 sin<I>, "', °Z=Z cosO). Use 
of this result and Eq. (4) shows that there are no cross 
terms in the kinetic energy, when the latter is expressed 
in terms of (r, Z, 8, <I>, 0, cp) [i.e., of (s, p, 8, <I>, 0, cp) 
since, at large -s, r is a function of p only and Z is a 
function of s only]. 

Similarly, at large +s, a comparison of (5), (A2), 
and (A4) shows that the space-fixed coordinates of 
the line joining B to C and those of the line joining A 
to the mass center of BC, namely (_Oxp, _GyP, _Ozp) 
and (OXp, GYp, °Zp) , respectively, can be written in terms 
of polar coordinates (r, 8, <I» and (Zp, 0, cp), respec-
tively (e.g., -oxp=r cos8 sin<I>, "', °Zp=Zp cosO). 
Since the kinetic energy (4) can be expressed as the sum 
of squares of °xp, "', ° Zp by a rotation through an angle r co in each subspace (Ox, OX), (Oy, 0Y), (Oz, °Z), and 
since one can now introduce the polar coordinates just 
cited, there are no cross terms at large I s I in a kinetic 
energy expressed in terms of (r, Zp, 8, <I>, 0, cp), i.e., of 
(s, p, 8, <I>, 0, cp). 

The coordinates X and can be expressed in terms 
of 8, <I>, by application of the rotational matrix So</> to 
both sides of (A4) , 

( 

- sinx 
cosx smfy 

cosfy 

(

COsO sin8 cos ( <I>- cp) - sinO COS8) 

= sin8sin(<I>-cp) , 

sinO sin8 cos( <I>-q,) + cosO cos8 

(AS) 

where we note that So</> is SoS</>, Sxo</> is SxSoS</>, T de-
notes transpose, and 

(

CosO 

So= 0 

sinO 

( sinq, ;} S</>= -:ncp coscp 

0 

( rosx 
smx :} Sx= -:nx cosx (A6) 

0 

APPENDIX III. KINETIC ENERGY IN TERMS OF 
VARIOUS MOMENTA 

The method used with Cartesian internal coordinates 
for transforming T(qi, (l, wa) into T(q', pi, Ma- fla) 
in Ref. 12 can be extended to curvilinear ones as fol-
lows. We do not impose any restriction that the internal 
coordinate space be Euclidean. We employ in (A7)-
(A13) the Einstein summation convention (summation 
of repeated indices). Let 

T= !gii<jiqi+!9'aBWaWll+eaiWa(j' (A7) 

where a is x, y, z and where 9'all equals laa when a={3 
and equals - I all when a;;t.{3. 

aT/awa is denoted by Ma, and a symbol fla is de-
fined: 

(A8) 

where gii is conjugate to gii (gikgki= gikgki= Oii)' Manip-
ulation shows that 

where 
(A9) 

(AlO) 

Let p,atl be conjugate to 9'a/. Inversion of (A9) thus 
yields 

(All) 

If Ll is the 3X3 determinant of the 9'a/'S, p,atl equals 
the cofactor of 9'a/ in Ll, divided by Ll. 

Since T is a homogeneous, quadratic function of the 
<ii's and Wa'S, and since Ma and Pi are aT jawa and 
aT /a<ii, Euler's theorem yields 

(A12) 

Subsequent manipulation, based on the expressions 
for Pi and M a , yields 

T=! LgiiPiPi+! Lp,atl(Ma-fla)(MIl-flll)' (A13) '.f a.1l 

The relation between the M a'S and momenta conjugate 
to the Eulerian angles is the same as in Ref. 12. Again, 
the significance of flo is similar to that in Ref. 12, where 
it is denoted by ma: it is the ath component of the 
"vibrational" angular momentum, for Ma is the 
ath component of the total angular momentum and 
Eq. (A9) shows that M a - fla is associated only with 
the rotation of the axes. 
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