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The coordinates of earlier papers of this series are extended from linear collisions to reactions in three
dimensions. Termed “natural collision coordinates,” they have a unique property of passing smoothly
from those suited to reactants to those suited to products. Potential applications to bimolecular reactions

are described.

The analytical mechanics (quantum and classical)
of chemically reactive linear collisions were treated in
earlier papers of this series.!"? The main features of the
treatment were (1) a set of coordinates which passed
smoothly from those suited to reactants, through those
suited to “activated complexes,” to those suited to
products, (2) a zeroth-order solution which was “vi-
brationally adiabatic,”® and (3) a calculation of non-
adiabatic corrections.

In the present paper this coordinate system is ex-
tended to reactions in three dimensions. These coordi-
nates are closely related to the actual vibrations, the
free and hindered rotations, and the translations of
the system at each stage of the reaction. As Parts I
and II illustrate, the corresponding equations of motion
are more amenable to approximate analytical solution
than are those expressed in conventional coordinates.

The collision-theory literature contains many approx-
imate procedures and it is best to separate them from
the actual elaborate definition of the new coordinates.
Approximate solutions are given in subsequent papers
of this series. Several intuitive applications were given
elsewhere.

COORDINATES

In the case of bimolecular reactions, we consider first
the case of a single reaction path,

AB+C—A+BC, (1)
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Phys. 7, 616 (1939); M. A. Eliasonand J. O. Hirschfelder, ¢bid. 30,
1426 (1959) ; L. Hofacker, Z. Naturforsch. 18a, 607 (1963) ; R. A.
Marcus, J. Chem. Phys. 43, 1598 (1965).

4R. A. Marcus, Discussions Faraday Soc. 44, 7 (1967), and
discussion remarks.

and later include a second path,
AB+C—AC+B. (2)

The coordinates of the ath atom in the center-of-mass
system are denoted by x,, %y, %,.. Six scaled relative
coordinates in the center of mass are defined via (3),5¢

Sp=("xp—"xa)c, (3a)
0X = {%,— [ (ma’xa+mp’xg) / (ma+ms) ]}, (3b)

where ¢ is [mamp (ma~+mp—+mc) /mc(ma+mp)? M4 and
where the other components (%, etc.) are obtained by
replacing ®x, by %, etc. The kinetic energy in the
center-of-mass system is 7,

T=4u(C@ o+ X002, (4)

where p is [mampmc/ (ma+mp+mg) JV2.

The above six space-fixed coordinates are transformed
into body-fixed coordinates via Eulerian angles (8, ¢, x)
in a standard way,” as in Fig. 1

Oy x
Oy = Sx0¢T Yy ( S )
0y z

with 02X, °V, %7 being related to X, ¥, Z by the same
equation and S,4,7 being the rotation matrix’; the ele-
ments of S are direction cosines.

The body-fixed plane x,=0 is chosen as the instan-
taneous plane of the three atoms. Thus,

B x=X=0. | (6)

% Compare S. Glasstone, K. J. Laidler, and H. Eyring, The
Theory of Rate Processes (McGraw-Hill Book Co., New York,
1941), Chap. 3; F. T. Smith, J. Chem. Phys. 31, 1352 (1959);
Phys. Rev. 120, 1058 (1960).

@ These coordinates are related to six others for the products,

Oxp=— (Qxc—%g)c,, °X,
= {[ (malxp+mcxc) / (ma—+mp) 1—"%a} e 72,

by a simple rotation in Fig. 3 through the angle { ... Here, ¢, equals
[mamc (ma+ms+mc) /ma (mp+me)*JV4.

7 E.g., E. B, Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular
Vibrations (McGraw-Hill Book Co., New York, 1955), p. 286;
e.g.,

0% = x(cos# cosg cosx —sing siny)
+v(—cosf cos¢ siny —sing cosx) -+z sind cose,
or see Eq. (A6) of this paper.
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Fic. 1. Space-fixed axes (*%.0y.%,) and body-fixed axes (Xs¥aza) ;
oriented at Euler angles (4, ¢, x). Points (0, ¥, 2) and (0, ¥, Z)
represent the positions of reduced masses pap and pap,c in mass-
weighted space. They lie on the body-fixed v,OZ, plane, which is
indicated in the diagram and which corresponds to the instan-
taneous plane of motion of the three atoms.

A set of coordinates suited to a rearrangement colli-
sion, such as a chemical reaction, “natural collision
coordinates,” is next introduced. For simplicity, con-
sider reactions for which the least unstable activated
complex configuration is linear. The results can be
adapted to other reactions by replacing Fig. 2 by a
plot for specified nonlinear configurations and making
other appropriate changes.

As in Parts T and IT coordinates # and s are intro-
duced to replace z and Z, using Curve C in Fig. 2.
The curve is defined in terms of the potential-energy
surface, Fig. 3, as discussed previously.** For any point
P in the (2, Z) subspace # is the distance from P to
the nearest point Q on Curve C, and s is the distance
from an arbitrary point on C to Q. s proves to be the
“reaction coordinate.” The transformation (z, Z) to
(n, s) in Fig. 2 is

z=2g+n cosy, Z=2Zy—nsiny, (7

where (zg, Zg) are the coordinates of Q on Curve C.

4
1
F1c. 2. Definition of orthogonal P Q
curvilinear coordinates # and s of any R
point P. /. Ry
ok ;\ AP Z

8 E.g., C can be the curve of least steep ascent from the react-
ants’ valley to the potential-energy saddle point, if any, and sub-
sequently of least steep descent to the products’ valley.! In each
valley it proceeds along the bottom. An alternative choice? for C,
as an adiabatically—vibrationally averaged path, is now somewhat
more complicated because of energy loss to or gain from all the
other degrees of freedom. However, a compromise choice for C can
be used when desired.
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Fic. 3. Potential-energy
contours for Reaction (1).
Dashed line is one possible
choice for Curve C in Fig. 2. Zp

The angle ¢, in Fig. 2 is calculated from’ tan% =
mzg (ma+mp+mc) /mamc. The half-plane of negative
Z is omitted in Fig. 2 to avoid double counting of
configurations.

The coordinates are now 8, ¢, x, #, s and a sixth to
be drawn from the (y, ¥) pair. The method for making
this choice amounts to one for defining the orientation
of the body-fixed axes in the y,z, plane. We do so in a
way which makes the z, axis the line of centers of
reactants when s=— o, the line of centers of the
products when s==4-o, and the axis of the activated
complex when s is in that neighborhood (s=s*). (The
method used has several other useful properties.®*) For
this purpose we introduce a local Cartesian condition
at each s,

ysing+ ¥ cos{ =0, (8)

and later specify the s-dependent parameter {(s) by
condition (12). The axes’ orientation in the y,z, plane
is the one fulfilling (7) and (8) simultaneously.

The sixth coordinate m is chosen to have a magni-
tude (y*+¥?)Y2 and a sign defined through

y= —m COs{, Y=msin{.

(9)
To avoid double counting of configurations, the domain
of m or x is appropriately restricted.®* The typical shape

1Y I¥ I

F16. 4. Potential-energy profiles in (m, #) subspace
for several values of s in Fig. 3.

® (a) It gives a locally Cartesian internal coordinate space at
each s, can be made to make the vibrational angular momentum
small near s*, and makes the only nonzero product of inertia
BamaYaga at each s vanish on the average. [As an alternative, one
might have chosen the axes’ orientation by making the instan-
taneous products of inertia vanish exactly. For resulting equations
based on the customary coordinates see H. Diehl, S. Fliigge, A.
Volkel, and A. Weiguny, Z. Physik 162, 1 (1961) and K. F.
Freed and J. R. Lombardi, J. Chem. Phys. 45, 591 (1966).] (b)
Reflection in the x,0z, plane in Fig. 1 yields the same configura-
tion as increase of x by =. Double counting is avoided by setting
either m>0 or 0<x <. In the case the v defined in (10) is re-

stricted to (0, x), and then only the upper half plane in Figs. 4
and 5 is used.
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Fic. 5. The profiles in Fig. 4
are the shaded regions in this
(m, n, s) subspace.

of the potential-energy profiles in the (m, 1) subspace is
given in Fig. 4 and in the (m, n, s) subspace given in
Fig. 5. The profiles reflect the free rotation of the
diatomic molecule at large | s| and the increasingly
hindered rotation as the syetem moves to values of s
and s*. In the latter neighborhood, the rotation becomes
a bending vibration. The relation between the physical
motions at large | s | and the coordinates in Fig. 5 is
described later.

Because of the shape of the profiles we transform
(n, m) into (7, v),

(10)

where 7¢(s) is determined from the shape of the profiles
in Fig. 3. It is a function of s and is shown in Appendix I
to be the pertinent diatomic bond length when s=+ o
and — o, (For symmetrical reactions 7 may be
constant.)

A vibrational coordinate p is introduced via

N="1ry—1 COSY, m=r siny,

p=r—r. (11)
It remains to define {(s). One suitable choice makes
t=r—y (at large —s),
=¢ (at s=s%),
$=y (at large +5), (12)

where £ is the polar angle of Q in Fig. 2, and s* is some
preselected s, for example, the s at or near the potential-
energy maximum along Curve C, if any. The first and
third conditions make the z, axis the line of centers
of reactants at large —s and of products at large +s,
respectively. The second condition makes the vibra-
tional angular momentum vanish for the most stable
configuration at s=s% Each of these results is estab-
lished in Appendix I.

Imposition of (13) fulfills the first and third condi-
tions in (12). It also fulfills the second condition when
s* occurs at the point on Curve C in Fig. 2 closest to
the origin,

7o cos(§—y) — Rosin(§—£) =0, (13)
where Ry and £ are the polar coordinates of point Q in

Fig. 2,
2g= Ry sing, Zg= Ry cost. (14)

A typical plot of ¥(s), £(s) and {(s) is given in Fig. 6.
One set of natural collision coordinates is (s, p, 6, ¢,
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X 7). A set (s, p, 8, ¢, ©, ®) which avoids kinetic-
energy cross terms' at large &5 between external and
internal coordinates and is used later for boundary
conditions is given in Appendix II.

KINETIC ENERGY

If (ws, wy, @) denote the components of the angular
momentum about the body-fixed axes and I, I, etc.,
denote the moments and products of inertia, the kinetic
energy is
T=3u(P+ Y484 22) +3 (L4 Ly + o)

— I, w0, 4+ Qg (15)

where cognizance of (6) was taken, so that I,., I,,, &,
X, @, and @, all vanish, £, being the sole nonvanishing
component of the vibrational angular momentum,

Q=u(yi—zy+YZ—-2Y). (16)

‘}radians

-

¥>

lﬁ’———j
1 =S [ i

-0.8 -04 o] 0.4 08
s, reaction coordinate (a.u)

F16.6. Plot of ¢ (s), £(s), and { (s), where s is the distance along
Curve C of Figs. 2 and 3 for reaction H+H,—H,+H. Asymptotic
values are (7, 0, 0) at s=— o and (3r, i, 47) at s=+ o, and
intercept at s=01is (§m, 4, {x), respectively. Calculations utilize
potential-energy surface of M. Karplus, R. N. Porter, and R. D.
Sharma, J. Chem. Phys. 43, 3259 (1963).

10 These cross terms reflect the fact that the free rotation at
large +s does not obey a simple equation when expressed in
coordinates relative to moving body-fixed axes but does so when
its coordinates are relative to space-fixed ones. The transformation
(A5) is one from (v, x) to the space-fixed coordinates (O, &).

1 The calculations paralle]l those in Chap. 11 of Ref. 7, noting
that Eq. 6 of Sec. 11-1 there is not used; e.g., if the column vectors
in (5) are denoted by °r and r, and the corresponding ones in-
volving X etc., by °R and R, then

T =4 (%6700 +-ORTOR) = 34 Ti + L (17SSTr+ RTSSTR)
+u(rTSSTi + RTSSTR),

where 17 is the transpose of r. The first, second, and third terms
are Tyip, Teot, and Teor; SST is a 3X3 matrix whose first, second,
and third rows are fppnd to be (0, w;, —wy), (—~wz 0, ;) and
(wy, —wz, 0). The SST term equals SST(SST) and so is also
readily expressed in terms of these w’s. The cited relation between
SS7 and the «’s can be derived as in H. C. Corben and P. Stehle,
Classical Mechanics (John Wiley & Sons, New York, 1960), 2nd
ed., Chap. 9, with obvious major changes in notation (e.g., w,, #,
and x instead of %, °x, and x) and in definition of Eulerian angles.
Ours are those of Ref. 7.
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The values of (w,, w,, ) are known®? in terms of 6, ¢,
and x. I, is given in Ref. 13. In Appendix I @, [and,
hence, the coefficient of yw, in (18) ] is shown to vanish
at s,

In terms of the coordinates (p, s, 8, ¢, X, v) one finds

T=To+T, (17)
where
To=3u(n*8+6%) +4ur* (7t sin®y)
+ 3o (w04 w,?) —pywst?( f— Am cosy), (18)
Ty = 2uify sin?iy+pr siny[Foy — 2,27 siny
—r( f cosy— Am) ww+ (Ab+Anf) 0], (19)

where T contains terms which are smali* both at large
=5 and for the stablest configurations at s=s*; 7y is
(dro/ds)s, x in (20) is the curvature of Curve C at
any s, and

f=cos({—9y), k=—dy/ds, 0=—d{/ds, (20a)
= (14 kn)2+ (xim)?2, (20p)
As= Ry cos(§—£) — (1+kn+xn) sin(¥y—¥)
— (dro/ds)f, (21a)
Am=[r0cos({—¥) —Rosin(§—§) I/, (21b)
L.=uR?
=u[Ré—rd+7+2n{Rysin(¢—¢) +r} ] (22)

[R is defined as (I../x)Y? and equals the distance of
any point in Fig. 5 to the origin. ]
Using the value? for o one finds

To=3u(n?s*+p*) +5 (ur*) [v*+ (cosbp+x)? siny]
5 (uR) (6-+sin'0g)
— wy (sinxf—siné cosx@) 2( f— Am cosy) ;
72 and R? in (20) and (22) can be simplified.’s
In (20) f vanishes for the point on Curve C closest
to the origin in Fig. 2. At large —s and at large s,

fis —1 and +1, respectively. Because of the presence
of this f term, the component of the angular momentum

(23)

12 Reference 7, p. 282.

BJ,.is p (y2+YZ). Use of (7), (9), and (14) yields I,.=
pm[Rosin(¢—§) —mncos(y—¢)], which becomes ur2(fcosy—
A4.) siny on using (10) and (21b).

U At Jarge +s in Eq. (19), £o=0, f cosy vanishes in the mean,
A4, and A, vanish, and w,*?sin?y is dominated by the /,.w? in
(18). At the most stable configuration for s=s? all terms in 7
vanish since siny does. However, neglect of (wyw, siny) is justified
not simply because siny=0. [The (w.siny)? in Ty has a similar
factor and must be retained to avoid loss of x.] Rather, the
wyw, siny can be neglected at s* when (12) is imposed, because the
coefficient ( f cosy—A,) =f—f=0 for the most stable configura-
tion at s*,

B E.g., (kim)?=0 both at large s (since x;=0 there) and for
the most stable configurations near s=s* (since m=0 there).
Since n=ry—r for the most stable configurations at s* (y=0),
while k# vanishes at large ks, it follows that n22~(1+4xp)2. At
small s, n2~0, so R22R,. At large | s|, Rosin(¢—y¢) = —r,. Since
r=ry its equilibrium value at large | s |, one finds R22R, there.
Therefore, at all s, one might take R~ R,.

ITIX 2613
along the body-fixed 2, axis, py, is not a constant of
the motion, even when the Hamiltonian is 7o+ V.

The momenta conjugate to the above velocities are
defined in the usual manner: p;=97/dg; for the present
conservative system.

POTENTIAL-ENERGY FUNCTION

Potential-energy plots were given in Figs. 3-5. In
terms of (m, Z, z) or, what is the same space, (m, #, 5)
the motion of the system can be represented as one
largely confined to the shaded region in Fig. 5. That
region is annular in some places and “semiannular” in
others. The potential-energy function has the form

V= Vl(s) +V2(Py Y, S),

where V;(s) is the value on Curve C and V, is the
increment to go to any other point at the same s.
Vs varies mainly with p and v, and slowly with s. At
large &5 it is independent of ¥.

When the potential-energy coupling between the p
and v motions can be ignored, ¥, can be written as

V2(P; v, S)EV2(O, s S)+V2(p, 0, S). (25)

Since V, is zero on Curve C and since p=v=0 on
that curve, V»(0, 0, s) is zero.

(24)

EQUATIONS OF MOTION AND BOUNDARY
CONDITIONS

The method in Ref. 12 of conversion from T" to H
for Cartesian internal coordinates is extended to curvi-
linear ones in Appendix III. The Hamilton-Jacobi and
Schrédinger equations are obtained in the standard
way,”18 the former by setting p,=0W/d¢;, where
W is Hamilton’s characteristic function.

With the usual boundary conditions'® in collision
problems, the wavefunction at large separation dis-
tances of the reactants is the sum of a plane wave
(having reactants in their initial state) and outgoing
(scattered waves) in all internal states; at large sepa-
ration distances of products the wavefunction consists
of outgoing (scattered) waves. The total in-going flux
equals the total out-going one in the stationary-state
description. These boundary conditions, expressed in
terms of the usual coordinates, are readily rephrased
in terms of the natural collision coordinates:

Instead of describing reactants with a different label

8 In Fig. 6 it is appropriate to draw the m axis as rectilinear,
since the (m, Z, z) subspace is almost Euclidean: The square of
the distance between adjacent points is dz2+-dZ2+-dm2-- (kym) %ds?,
ie, [(A4xn)24(m)t]ds®+dn?+dm?. The space would be
exactly Euclidean if the (xm)%ds? term were absent. Fortunately,
it is small since x;=0 when =5 is large, and m=0 at the most
stable configurations near s=st. The (m, n) subspace in Fig. 4 is
exactly Euclidean.

17 H. Goldstein, Classical Mechanics (Addison-Wesley Publ.
Co., Inc., Reading, Mass., 1950), pp. 280f.

® E.g., W. Pauli, Jr., in Handbuch der Physik, S. Fliigge, Ed.
(Springer-Verlag, Berlin, 1958), Vol. 5, p. 39.

9 E.g., A. Messiah, Quantum Mechanics (John Wiley & Sons,
Inc., New York, 1963), Vol. 2, p. 835.
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from that for products, it suffices to note that now the
former corresponds to s—— e and the latter to —»4 .
At large separation distances of reactants that distance
equals Zc, ¢ being the scaling factor in (3) and Z
equalling — (s+s0), where s, is a known constant.2® At
large separation distance of products that distance is
Zyp, €p being the scaling factor in Ref. 6 and Z, equal-
ling s+ 547, where s¢? is a known constant.?

The internal states at large | s | are described in terms
of coordinates (7, 6, ®), where © and ® are defined by
Eq. (A4) of Appendix II. © and & describe the orienta-
tion of the diatomic species with respect to the space-
fixed axis; r is the scaled interatomic distance in the
diatomic species. In Appendix II it is shown that at
large s, fy and x+37 describe the orientation of the
diatomic species with respect to axes (x'yz’) obtained
from the space-fixed ones by a rotation Sg,.2t At large | 5 |
6 and ¢ describe the orientation of the two species (Ap-
pendix IT). Each rotational wavefunction, ¥, (6, ®)
in the boundary condition at large |s| is written in
terms of functions of 4 and x using®

7
'l’wtjmj(e) q)) = QZ: ‘l’mtjﬂ(f'y’ X+%7r) Dmiﬂj*(‘P7 6, 0):

(26)

where § is the component of j along the 2’ axis, ie.,
along the line of centers of the two species, and D,,;q7*
is a matrix element of a rotation operator D+.

The classical mechanical problem is an initial value
one, and the usual boundary conditions can also be
written in terms of the present coordinates by express-
ing the separation distance in terms of s as above.
Further, when the space-fixed axes are chosen so that
the %, axis is along the initial relative velocity vector
and so that the initial orbital angular momentum lies
along the %, axis the initial values of § and ¢ are zero.
Inspection of (A4) then shows that the initial values
of fy and x4 37 equal those of © and ®, respectively.

PHYSICAL MOTIONS AT LARGE |s| AND FIG. 5

The coordinates in Fig. 5 are related to v, ¥, 2, Z.
(The first two yield m.) Thus, this figure describes
motion in the instantaneous plane formed by the three
atoms, the v,0z, plane in Fig. 1. Large | s | means large
separations of the reactants or products.

At large | s |, it is shown in Appendices I and 11, r is
the mass-scaled instantaneous bond length of the di-
atomic species present (reactant at large —s and prod-

» For example, let s=0 correspond to the point on curve C
nearest the origin in Fig. 2. The distance —s to any point on C at
large negative s can be compared with the corresponaing value of
Z for that point and s, determined thereby. Similar remarks apply
to s, but with Z replaced by ¢ Z, and with the distance measured
to some point on C at very positive s.

2 When Sy4,7 in (A4) is written as SpyTS,T and (A6) is used for
S, the right side of (A4) becomes Sp,T operating on a vector where
components are [siny cos(x-+3r), cosy sin(x—+4r), cosy].

2D, M. Brink and G. R. Satchler, Angular Momentum
(Clarendon Press, Oxford, England, 1962), pp. 21 and 26.
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uct at large +s). For any given r and at large | s |, the
representative point in Fig. 5 lies on a cylinder of axis
0Z and radius r (at large —s) or of axis 0Z, and radius
7 (at large +s). At large | s |, rotation of the diatomic
species with respect to the body-fixed axes corresponds
to the rotation of the representative point about the
relevant cylinder axis, 0Z or 0Z,, at fixed 7. Vibration
of the diatomic species at large |s| corresponds to
motion of the representative point normal to the sur-
face of the relevant cylinder. Radial translational mo-
tion of the two species (reactants at large —s, products
at large +s5) corresponds to motion of the representa-
tive point parallel to the relevant cylinder axis (0Z at
large —s, 0Z, at large +5).

When the diatomic species at large | s | has its equi-
librium bond length, i.e., when =7, the cited cylinder
includes the relevant linear portion of curve C on its
surface.

REACTION PATH MULTIPLICITY

When both Reactions (1) and (2) occur, Fig. 2 is
replaced by Fig. 7, with the half-plane of negative Z
again omitted to avoid double counting of configura-
tions. The cross-sectional potential-energy profile for
region I is unaltered, but the profile near the entrance
of IT has two separated semiannular regions, one con-
taining Curve C and the other containing Curve G.
The former leads to Reaction (1) and the latter to
Reaction (2). From this point on, each of these two
reaction paths is described in terms of its own set of
natural collision coordinates, and in solving the Schro-
dinger equation account should be taken of this “bi-
furcation” of the wavefunction.

REACTION IN A PLANE

The simplest system which provides information on
the vibrational-translational changes during a reactive
collision is reaction in a line. The simplest system pro-
viding information on the conversion of rotation into
bending vibrations and then into product rotations,
with orbital and translational coupling included, is reac-
tion in a plane. The motion occurs in the %%y, plane
when one sets §=x/2, and x=0, for then %,=—x.=0
according to (5) and (6). We now have, w,=w,=0,

Zz
A+BC
Cc
I I AB+C Fic. 7. Counterpart of Fig. 2 for
0 Z Reactions (1) plus (2).
G
B+AC
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and w,= —¢.2 Thus, (18) and (19) become?

To=3u(n?8*+p%) + sur'y*+ 5uRoG*+-puvér* ( f— Am cosy),
(27)

Ty =2utor sin®gy+ur siny[Foy — (A 5+ Ant) ]. (28)

Now, #=¢+fy and 6=0.
DISCUSSION ON BIMOLECULAR REACTIONS

The physical nature of the various coordinates at
s=z was considered in a previous section. In the
activated complex region (s=s%) p and s describe the
symmetric stretching vibration and the asymmetric
(imaginary frequency) one, respectively; when (12)
is imposed, 6 and ¢ describe the orientation of the
activated complex and vy and x describe its doubly
degenerate bending vibration. In intermediate regions
of s, the latter coordinates describe a hindered rotation
coupled rather than a free rotation or a bending vibra-
tion.

One approximate solution, the nearly vibrationally
adiabatic one, was discussed briefly in a previous paper,*
together with some implications for activated complex
theory and related topics. A vibrationally adiabatic
reactive collision can be regarded as the chemical
analog of the elastic collision in physical scattering, and
both can serve as a basis for more detailed calculations.
The present coordinates provide a vehicle for treating
this vibrationally adiabatic chemical reaction. The
latter will be given in a later paper, together with a
calculation of nonadiabatic corrections.
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APPENDIX I. CONSEQUENCES OF EQ. (12)

We first show that at large —s Eq. (12) yields
X=7Y=0, so that the line of centers of reactants is
along the z, axis, and that at large +s Eq. (12) yields
X,=7Y,=0, so that the line of centers of the products
is along the z, axis. These results are embodied in the
second half of (A1) and (A2). The first half of (A1)
and (A2) is derived for use in Appendix II.

At large —s, use of Egs. (6), (9), (10), (12), (14)
and of the fact that R, sin¢ and { now equal 7, and 0

2 Compare the equations in Ref. 11 when §=1x and x=0.

% From (28) and (29) the kinetic energy in Part T for collision
on a line can be readily obtained, using the fact that on a linz,
¢=v=0, so n=p.
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show that

x 0

y =] —rsiny |;

3 r cosy
X 0
y ]=] 0 (large —s). (A1)
Z Z

Thus, Z is now the mass-scaled distance between the
mass centers of the two reactants, since the other two
components of that radius vector vanish.

At large +s use of similar equations and of the fact
that Ry sin({,—£) and { now equal 7, and ¢, show that

Xp 0

¥p }=—1 rsiny |;

Zp 7 cosy
X, 0
Y, 1=1 0 (large +s5). (A2)
Zy Zy

Thus, Z, is now seen to equal the mass-scaled distance
between the mass centers of the two products.

The vibrational-angular-momentum component Q,
defined by (16) is found to equal

Qo=pu (A4, siny§+ A mm—rfy)r. (A3)

The most stable configuration at s=s* occurs at
v=0, r=r,, and so one finds 4, siny=0 at this point.
Also at this point, if (12) is imposed, the last two
terms in (A3) cancel each other. Thus, the choice {=¢
in (12) causes Q. to vanish for this stablest configura-
tion at s* and is equivalent to employing an Eckart
condition® at s= s, a condition hitherto employed only
for stable molecules.

APPENDIX II. RELATION OF 6, & TO v, x AND
PROPERTIES

The body-fixed coordinates of the diatomic reactant
AB are (%, v, 2). Thus, (A1) shows that at large —s
the mass-scaled radius vector joining A to B has a
length 7 and makes an angle —«y with the (body-fixed)
Z, axis. The body-fixed coordinates of the diatomic
product BC are (ay, yp, 2»). Hence, (A2) reveals that
at large +s the mass-scaled radius vector joining B to
C has a length  and makes an angle ++v with the
%. axis. Since f, which equals cos(¢—y), equals —1 at

% C. E. Eckart, Phys, Rev, 47, 552 (1935).
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large —s and 41 at large -}, the above angle could
be written in each case as fy.

It is useful to define a set of coordinates O, ®, via
(A4),

sin® cos® 0
sin® sin® |=S,07| sinfy (A4)
cosO cosfy

Comparison of (5), (Al), and (A4) shows that at
large —s the spaced-fixed coordinates of the line join-
ing A to B and those of the line joining the mass center
of AB to atom C, namely (%, %, %) and (°X, Y, °Z),
respectively, can be written in terms of polar coordi-
nates (r, ©, ®) and (Z, 6, ¢), respectively, in the stand-
ard way (e.g., %x=7 cosO sin®, »--, 9Z=2Z cosh). Use
of this result and Eq. (4) shows that there are no cross
terms in the kinetic energy, when the latter is expressed
in terms of (r, Z, O, &, 6, ¢) [i.e., of (5, p, 6, &, 8, ¢)
since, at large —s, r is a function of p only and Z is a
function of s only].

Similarly, at large +s5, a comparison of (5), (A2),
and (A4) shows that the space-fixed coordinates of
the line joining B to C and those of the line joining A
to the mass center of BC, namely (—%,, —%,, —,)
and (°X,,°Y,,%Z,), respectively, can be written in terms
of polar coordinates (r, ©, ®) and (Z,, 6, ¢), respec-
tively (e.g., —%,=7 cosOsind, -+, °Z,=Z, cosh).
Since the kinetic energy (4) can be expressed as the sum
of squares of %,, - -+,%Z, by a rotation through an angle
{» in each subspace (%, °X), (%, °V), (%, °Z), and
since one can now introduce the polar coordinates just
cited, there are no cross terms at large | s | in a kinetic
energy expressed in terms of (7, Z,, 6, ®, 6, ¢), i.e., of
(S, P, e) q’) 0: ¢) .

The coordinates x and v can be expressed in terms
of ©, ®, by application of the rotational matrix Sg to
both sides of (A4),

—siny sinfy
cosy sinfy

cosfy
cosf sin® cos(d—¢) —sind cosO

= sin® sin(®—¢) , (AS)

sinf sin® cos(®—¢) -+ cosf cosO

where we note that Sgy is S4Ss, Syee is S,86S4, T de-
notes transpose, and

cosf O —sinf
So= 0 1 0 4

sinf O cosf
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cos¢p sing O
Sg=| —sing cos¢p O |,
0 0 1
cosxy siny O
Sy=| —sinx cosx O (A6)
0 0 1

APPENDIX III. KINETIC ENERGY IN TERMS OF
VARIOUS MOMENTA

The method used with Cartesian internal coordinates
for transforming T'(¢%, ¢*, wa) into T(¢%, piy Ma—Qa)
in Ref. 12 can be extended to curvilinear ones as fol-
lows. We do not impose any restriction that the internal
coordinate space be Euclidean. We employ in (A7)-
(A13) the Einstein summation convention (summation
of repeated indices). Let

(A7)

where « is %, y, 2 and where 9,5 equals I, when a=3
and equals — 7,3 when a38.

3T /0w, 1s denoted by M,, and a symbol Q, is de-
fined:

T'=38i4"G+ 39 apwatp Caiwal®

Qo= Coig'p;, (A8)

where g/ is conjugate to g; (g%g;= gug®’=95:;). Manip-
ulation shows that

M o—Qu=9 o5 ws, (A9)

where
(A10)

Let u*® be conjugate to 9.4". Inversion of (A9) thus
yields

gaﬂ’ =das— eaigij@pj.

wa=p?(Ms—Qp). (Al1)

If A is the 3X3 determinant of the d.4"s, u*® equals
the cofactor of 9.4’ in A, divided by A.

Since T is a homogeneous, quadratic function of the
¢”s and w.’s, and since M, and p; are 8T /9w, and
8T /3¢, Euler’s theorem yields

T=1pui+3 M ae. (A12)

Subsequent manipulation, based on the expressions
for p; and M., yields

T=%2 gt} Z; 1 (Ma— Qo) (Mp—Qp).
1,3 )

(A13)

The relation between the M,’s and momenta conjugate
to the Eulerian angles is the same as in Ref. 12. Again,
the significance of @, is similar to that in Ref. 12, where
it is denoted by m,: it is the ath component of the
“vibrational” angular momentum, for M, is the
ath component of the total angular momentum and
Eq. (A9) shows that M,—Q, is associated only with
the rotation of the axes.



