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1. Introduction

This contribution summarizes the unimolecular reaction rate theory
as developed by Rice, RAMSPERGER, KasseL and MaRrcus (RRKM-theory)
and especially reviews the treatment givenin three earlicr publications {7—3].

'The RRK-theory of the 1920°s was based on the hypothesis of Linpe-
MANN, that in unimolecular reactions there is a time lag for every active
molecule. It was postulated that active melecules (i.e. molecules that have
a critical amount of energy or more in certain internal degrees of freedorm)
cither decompose or isomerize after a definite time (time lag) unless they
ate deactivated by a molecular collision. The existence of a time lag was
explained by the assumption that the eneigy contained in the iaternal
degtees of freedom — or some patt of this cnergy — had to accumulate
into one certain degree of freedom (critical oscillator concept). The time
lag also was considered to be a function of the amount of encrgy surpassing
the critical energy. A discussion of the RRK-theories is given in the book
of BrnsoN [4]. An excellent summary of the RRI, Stater and RRKM-
theorics, as well as of related topics, has been given by Rice [5]. Relevant
experimental data are described in a number of articles [2, 6, 7], each of
which contains many references to the literature, Of particular note also
is a recent book by BuNkER [§]. ' .

2. The Specific Rate Constant

‘The RRKM-theory gives a better description than the earlier theories of
the quasi-unimolecular rate constant £yg = —~ [A)-d [A]] i as a function
of pressure without using an adjustable parameter. The theory is based
on a reaction sequence

A+Me=—= A%+ M (1)
ax KEL, g @

A+ —— products (€))
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where Af is any third body cnpable of deactivating an activated molecule,
A*. (A list of notations is given in the appendix.)

‘The activated complex, A%, is treatcd like a molecular spec1es. It
possesses 3n—4 rotational and vibrational degrees of freedom (for a non-
linear polyatomic activated complex with # atoms) and one internal
translation. Reactions in which bonds are formed as well as broken are
usually expected to involve rigid activated complexes (e.g. the isométization
of cyclopropane to give propenc). Reactions involving only a dissociation
for which the reverse reaction of recombination requires no activation
encrgy are expected to involve loose activated complexes (e.g. the disso-
ciation of ethane into methyl radicals). In such a loose activated complex
the separating particles are assumed to rotate relatively freely, being held
only by loose bonds. By contrast, a rigid complex normally has no new
internal rotations, and indeed has about the same extension in space as the
reactant in its vibrational and rotational ground state.

In the RRK-theory the number of internal degrees of freedom effective
in transferring cnergy to the “critical oscillator” was an adjustable para-
metcr. This numbet was found by fitting the calculated curves log&yy
versus logp to the experimental curves. In the RRKM-theory we distin-
guish from the outset “adiabatic” and “active” degrees of freedom. Only
the active degrees of freedom are active in intramolecular energy transfer.
All vibrations are assumed to be active, since anharmonicity effects are
important and no severe restrictions should be imposed by momentum‘
conservation laws.

Because of the increased separation distance the centrifugal potential
facilitates reaction — especially for reactions with loose activated com-
plexes — in any given rotational state of the molecule. We ignore Coriolis
effects aud denote by [/ the totality of quantum numbers that are approxi-
matcly conserved on forming A* from A*. Thus / is the quantum number
of the adiabatic degrees of freedom which, in applications, have usually
becn taken to be the external rotations of the molecule. The energy for
these degrees of freedom changes from E; to Ef. When J refers only to
rotations, the difference Ejy— Ef represents the change in centrifugal
potential and we have the following energy balance (compare fig. 1):

E,+E+*+Ef=E+E; C)]

Et=Ef+Eg ®)

kg1 the specific rate constant for a dissociation (isomerization) by a
patticular reaction path, can be derived in the following manner: consider
an energetic molecule A* whose energy of the active modcs is inaninterval
(E, L + dE) and whose adiabatic modes ate in a state /. The statistical
equilibrium probability of finding such a molecule as an activated complex
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Fig. 1. Energy diagram for an unimolecular process

At baving an internal translational momentum in the range (p, p + dp),
being in a state # of the active degrees of freedom and in an interval A
¢+ dg) and formed by a given path, is given by the ratio of the quantum
states of this A4* and of 4* namely by

dg-dp Q+(ED

b  Q*(B)dE’ ©

since dg-dp|h is the number of internal translational quantuin states in
dqdp. The corresponding probability per unit interval along ¢is obtained by
dividing by d4. The contribution of these states of .4* to the specific.
unimolecular reaction-rate constant, £ 7g+-is obtained by multiplying the
resulting ratios by the velocity 4. The coordinate g is taken to be Cartesizn,
so that § equals p/ = where  is an effective mass. Since (2%/2 m) cquals 45,
and since £z, equals the above rate expression summed over all accessible

#f, we obtain :
kere= 3 Q(ED[(4Q*(E)}. @

B <E

A concept of equilibrium for reactants with activated complexes maving in
the forward direction along the reaction coordinate is embodied in equations
(2), (6) and (7). It is discussed for a quite different case — bimolecular rcac-
tions — in the “Remarks on Generalization of Activated Complex Theory”
(R. A. Marcus, this book).
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Equation (7) is the contribution for a given reaction path. There may be
one or more reaction paths which are “geometric isomers™ of each other.
For cach such path there may be a further degeneracy: a path may have an
optical isomer [9]. Optically isomeric reaction paths can be detected by
drawing a picture of the chemical migration of the atoms and seeing if the
resulting figure has an optical isomer. Paths which are geometrically isomeric
usually have different A*’s and may lead to different products; so we have to
sum over rather than to multiply by the number of such paths and obtain

ker=Jag S QF(EDIh2* (B, ®

-4 E;<E+

where «, and 2% depend on g.

Because of symmetry restrictions some rotational states may be absent
in A*, ot in A* or in both. On making the usual approximation employed
in a classical description of rotational partition functions the absence of
certain rotational states in A4* or A* is accounted for by introducing symme-
try numbers: 2+ = W*[ot; Q% = W*[o*, »

3, The First Ordet Rate Expression

The cquilibrium probability of finding an A* with an energy of the
active modes in the range (E, E + dE) and with adiabatic modes in the
state [ is P, dE where

PY, = P1Q*(E)exp [~ (E + E)IAT). ©)

Q*(E)counts all states per unit of energyand therefore includes the degen-
eracy factor. We denote by o the specific collisional deactivation probability
assuming a strong collision mechanism for deactivation (a single collision
removes enough energy to deactivate every A4*). Considering very high
pressures, where w > &g, the rate of activation can be calculated. Using
the equilibrium expression for A4 and A* this rate equals the rate of collisio-
nal deactivation w P%,;dE[A]. Since the rate of formation of A* thus
calculated will be assumed to hold also for lower pressures, it is implicitly
taken for granted that equilibrium conditions are preserved for all molecules
with energies smaller than E, in their active modes. By using steady state
arguments for A* under conditions where w > &gy no longer is true one
can show that the concentration of each A* is a fraction w/(w + £gs) of the
equilibrium concentration. Thus the unimolecular reaction rate constant is
obtained by summing kg; PE;dE w/(w + £gy) over all E and J:

Runt = £Jzok51 P, dE (1 + kgs|w) . (10)
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By substituting (8) and (9) and using (4) onc obtains

(£ + E}
© X "o\ —E kT R . —
b AT g(?ﬁ) ‘ E;ZE* WHEDe kT e
uni = 75 A (14 kgs/w) kT

(11)

The £,,; for formation of a particular product by a particular path g is

obtained from (11) by deleting the z in (11) but not in (8). In the case of an
4 ,

isomerization to form B from A, B* may reform A* before being deacti-
vated. A correction can be easily introduced to correct for such situa-
tions [3].

4. The Density of Energy States

For numerical calculations the evaluation of the numbers of states per
unit energy becomes important. In most cases an exact calculation is only
necessary for the activated complex. As for this complex internal energies
are small in systems with thermal activation, quantum restrictions can not
be neglected; with growing internal energies the contributions to the
integral in (11) quickly become negligible. For the evaluation of W* (E),
which appears in £g; and therefore also in Ay, useful epproximations
have been found [70]. Thesciniclassical expression for the case that only
vibrations are taken to be active is given by [77]:

W (E) = [+ B~ T OT G (12)

The s normal vibrations have frequencies »*. A better approximation is
attained by _ s -
W*(E)=[E+aE)~!] {I’(.f) H (b}, (13)

where 2 is a quantity smaller than unity dependmo weakly on the encrgy
' E and approaching unity for large energies.

. If there.are # active rotdtions in A the energy £ is distributed betwecn
these and the active vibrations:

W* (E) = j WE(E — %) W*(x)dx . (14)

x=0

This leads to an expression corresponding to equation (13)'
¢
W*(E) = Pr(E + aEy)+!2~! [(RT)ZT (.r + ; ) I (lw}")} (15)

Sxmﬂarly active rotations in A4+ have been shown to factor the expres-
sion 1/0F E’é‘E* W+ (E}) into terms corresponding to partitioning of E+
n

among the active rotations and vibrations of A4+ [7].
8 Chem. Elementarprozesse
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5. The Influence of Centrifugal Potential

We now consider the influence of changing centrifugal potential on the
unimolecular reaction rate. Taking (15) as the approximation for the density
of energy states we define

W*(E* 4 Ef — EJ) _ (1 E;— Ej \s+t/2—1
W* (E¥) h E* + an) ’

i<

F= (16)

For rigid activated compleses E; and Ef are normally about equal
and F is very close to unity. For loose activated complexes leading to a
dissociation, E; and E7F differ primarily for two rotations in which the two
resulting fragments are treated as the “atoms” of a diatomic molecule. The
mean value of E; — Ef can be shown to be pressuze insensitive and to equal
(I+—1I)] RT|2I where/is the number of adiabatic rotations and 7+// is the
ratio of the moments of inertia for these rotations [3]. The value of &g, is
relatively insensitive to fluctuations of E; — E} about this mean, and the
corresponding value of &g; obtained by making this replacement. for
E;— Ej is denoted by ,é‘,'; for the given value of E+

t=3% [ > W+<E+> GFW*E9), (A7)

E#(Ef )
where . : S
F = WH*(E* — | R T(I* - I)[21}] W* (E*). (18)

For the dissociation of ethane into methyl radicals and dissociation of
N,O; into NO, and NO,; F has been calculated to be about 0.8 and 0.4,
respectively, at E* = I, [3].

Upon introducing (17) into (11) and integtating over J one finds

s we@Ehe (77)

pfg—-E 1T J Et<E* dE*
Runi = Z Ty - (19)

Et=0

In (19) the properties of A* (e.g. «g, E,, PT, W+ and 03) may depend on
the path g.
6. Concluding Remarks

The high prcssuré value of £, given by (20), is obtained from (19)
by setting w = o0, interchanging order of suramation and mtegranon
(E*+ = E; to o, and then E} =0 to oo) integrating and summing.

Buni, 0 = -—}‘ exp(-— E,[kT). (20)
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This expression can be used to discuss statistical factors in reaction rates.
An alternative group theoretical description of the statistical effect has been
given by other authors [72]. It should be noted that equation (20) is equi-
valent to that derived previously by Eyring [13].

If one wants to calculate £,,; as a function of pressure, the Arrhenius
activation energy E,, must be known for the homogeneous reaction and the
properties of the activated complex must be chosen in a reasonable manner.
This choice is guided by the knowledge of the vibrational frequencies (and
the properties of the internal rotations) for the reacting molecules and the
product molecules and by the knowledge of the experimental value of
kuni,  Which must agree with the value calculated from equation (20).

Appendix
NOTATIONS: )
A, A¥, At = reactant, active molecule (an A with enough cnergy to
react), and the activated complex.
Ey E} = zero-point energy of A4, At.
E,E*+ = energy of the active modes of A* and of A, respectively.

E, Ef = energy of adiabatic modes of A* and of 4%, respectively.

E, = energy of A+ in its lowest vibrational, rotational and
translational state minus that of A4 in its lowest state.
(Hence, E, also equals the activation energy at 0 °K).

E* = E, + E*, '

key = specific rate constant for molecules with energy E in

their active modes and in quantum state J of their adia-
batic modes (eq. 2).

kesg = specific rate constant as before, but only for a particular
reaction path.

4 p _ reaction coordinate and its conjugate momentum.

E} internal translational energy of A+; Ef = p*[2 m.

E}f - - = energy of the active vibrations and rotations of an A+
in quantum state #.
g = label for a geometrically isomeric path.

&g = number of optically isomeric reaction paths for each
geometrically different path leading from the initial A
molecule (or A isomer if there is more than one) through
A* to the given product.

2% (%) = number of states of active modes of A* (formed by a
given path) in an energy interval (x, x 4 dx).
2% () = number of states of .4* per unit energy, when the energy

of the active modes is y (energy density at y).
8
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W+ (x),W*(y)= number of such states of A+and A* when symmctry
numbets are ignored.

W (), WX (y)= number of rotational and vibrational states per unit of
energy.

o*, ot = symmetry numbers of A* and A+,

o3 = symmetry number for the active rotations of A*.

b, P+ = partition function of all the rotational and vibrational
modes of A4 and A*, respectively.

Py, P} = partmon functions of the adiabatic modes of A and of A*.

P, P} = partition functions of the active modes of 4 and of A4*.

P = P,-P,, P+ = P P}
Py = rotational partition funcuon for active rotations of A.
w the specific collisional deactivation probability, which is for
a strong collision mechanism equal to the probability ofa
collision per unit of time and hence approximately propos-
tional to the total pressure.

f
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