In Chemische Elementarprozesse, H.
Hartmann, ed. (Springer-Verlag,
New York, 1968) p. 23.

Remarks on the Generalization of Activated
Complex Theory
R. A. Marcus

Activated complex theory has been very useful to chemists in their
treatment of chemical reaction rates: For any given potential energy surface
one can calculate the rate constant of a reaction if the assumptions of
activated complex thcory are correct. In effect, activated complex theory
is principally used nowadays to calculate the pre-exponential factor A in
the Arrhenius expression for rate constant, £ = A exp(—E[£&T). The
activation energy £ is usually too difficult to calculate # priori except for
a few reactions.

The assumptions of activated complex theory are now being examined
more rigorously than before and one should have a good idea of their
correctness or crror in the not too distant future, partly as a result of
electronic computer calculations.

The principal assumptions of activated complex theory are (1) an
equilibrium between reactants and those activated complexes that are
moving in the forward direction along the reaction coordinate ¢, and (2)
a treatment of the motion along 4 as being rectilinear. Several additional,
usually minor approximations are also usually made (e.g., neglect of
centrifugal potential on the course of motion along the reaction coordinate).

Assumption (2) has been made largely for convenience. It is an un-
necessary one and has recently been removed [7], by using 2 curvilinear
reaction coordinate and translating the usual derivation into one for which a
curvilinear metric is appropriate at every stage of the derivation.

Assumption (1) is under current active investigation. Some years ago
several authors [2] pointed out that if, somehow, the reacting system
remained in the same quantum state for the vibrational-rotational motion,
as the system moved along the reaction coordinate, a striking consequence
would occur: If the distribution of quantum states of the reactants were one
of thermal equilibrium then the distribution of quantum states of activated
complexes moving in the forward direction along the reaction coordinate ¢
would also be an equilibrium one. Since the former type of thermal equi-
librium is expected to be achieved in typical cxperiments, the latter type
of equilibrium would also be achieved then, and so assumption (1) would
be justified. The condition that the system temain in the same vibrational-
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rotational quantum state during the motion along ¢ might well be called the
“vibrationally-adiabatic condition: The process would be quantum
mechanically adiabatic with respect to the vibration-rotation degrees of
freedom.

Clearly, the investigation of the correctness of this condition must
be one of analytical mechanics — quantum mechanical or classical. The
entire concept of “remaining in the same vibrational-rotational state” must
be more sharply defined, as must the nature of the reaction coordinate
curves throughout the configuration space. To this end, the analytical
mechanics of linear collisions was investigated recently [3], with the aid
of a coordinate system which passed smoothly from one suited to reac-
tants to onc suited to products during the reactive collision. The coor-
dinate systemn is not one of the usual ones, that is, it is not tied to “sepa-
ration of variables”, but has been used in treatments of orbits of particles
in accelerators.

Mote recently, this analytical mechanics was extended from linear
collisions to collisions in ordinary space [34]. In this case it was necessary
to study in some detail the evolution of the various degrees of freedom
during the course of the collision. A “vibrationally-adiabatic” approxima-
tion was used to solve the various equations of motion. This evolution
may be described as follows:

In a reaction 4 + BC - AB 4 C the BC vibration evolves into an
~1BC symmetric stretching vibration of the activated complex and finally
into an /18 vibration. The initial radial relative translational coordinate
of A with respect to BC evolves into the usual asymmetric translational
coordinate in the activated complex (teaction coordinate) and finally into
the radial relative translational coordinate of the products. The two
orbital relative translational coordinates of A4 with respect to BC evolve
into two rotations of the activated complex and fnally into the two orbital
or relative translational coordinates of C with respect to AB. The two
rotations of BC evolve, after some coupling with the orbital motions, into
the two bending modes of a linear activated complex, and finally into the
two rotations of 4B,

Extensive numerical integrations of the classical mechanical equations
of motion of the atoms during the collision have been petformed by several

- research groups, particularly by those of Karprus and those of BUNKER {41
«~. (#oncering work was done by WaLL and his collabotators [5].) An analysis
(6] of the numerical studies [44] for the H + H, - H, + H reaction
#-provides encouraging results for assumption (1) of activated complex
- theory, for this reaction at least. (There are also reactions for which one
would not expect the vibrationally adiabatic assumption to be valid.)
Reasoning in this dircction has also led to a statistical dynamical theory of
chemical reaction cross-sections [7]-
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Nowadays, very detailed results on chemically reactive collisions are
being obtained experimentally, duc to the use of molecular beam techaiques,
to the study of light emission from exothermic teactions in flow systcms
and in flash photolyses, to the investigations of ion-molecule reactions, and
to others. Thus, theories are needed which are much more detailed than
those used for rate constants of reactions at thermal equilibrium. Indced,
these new experimental sources of information represent the main motiva-_,
tion for the numcrical integrations and for the analytical mechanics studics:

Hopefully, from such studies one can learn about a varicty of problems
including (1) contribution of vibrational excitation to the reaction rate,
(2) accuracy of the activated complex theory, (3) extent of vibrational
excitation of the reaction products, (4) angular distribution of reactant and
product molecules in molecular scattering, (5) extent of quantization of the
vatious degrees of freedom in the actual complex theory, (6) calculation of
atom tunneling contribution to the reaction rate, (7) nonadiabatic contri-
butions (vibrational, rotational excitation), (8) telation between classical
and quantum mechanical cross-sections, and (9) relation of thteshold
energy [8] of a reaction to other properties (e.g., to activation encrgy).

The potentialities for future investigators in this field are clearly
considerable.
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