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Theoretical Relations among Rate Constants, Barriers, and

Bronsted Slopes of Chemical Reactions!

by R. A. Marcus
Noyea Chemical Laboratory, University of Illinois, Urbana, Illinots 61801 (Received August 10, 1967)

A simple relation, AF* = M1 4 A/\)%/4, derived originally for weak-overlap electron
transfers, is explored in & slightly modified version for reactions with considerable resonance
splitting, such as atom transfers, proton transfers, and strong-overlap electron transfers.
A useful additivity property, s = (Au + M2)/2, permits barriers AF* for cross-reactions
to be computed from those of exchange reactions, A;/4. Some 45 barriers, calculated
from some ten others, agreed with BEBO results, within a few kilocalories per mole.
The agreement is analyzed and more general models for which it might occur are con-
sidered. A functional relationship between barrier and a degree-of-reaction parameter
is devised to avoid commitment to too specific & model. An example where breakdown
should occur is also given. Experimental data, as well as quantum mechanical caleula-
tions of barriers, will permit further tests. Corollaries of the relation include: (1) a classi-
fication of reaction barriers in terms of intrinsic (\y) and extrinsic (AF*’) contributions,
(2) a rate-constant relation ky 22 (kuknKisfn)"* and modifications thereof, (3) a calcula-
tion of the local Brgnsted slope « from the intercept of the AF* ys. AFY plot, « = (1 +
A/X)/2, (4) a relation between ke/kp vs. AFY plots and local «'s, and (5) other relations

among rate constants. Throughout, AF* and AFY refer to an elementary step.

Introduction

A simple relation has been derived for the free-energy
barrier and rate constant of weak-overlap electron-
transfer reactions®?

k = Z exp(—AF*/RT) Q)
AF* = w' + A1 + AFY/NY4 @

where Z is a bimolecular collision frequency in solution
(22 10" 1./mol sec), AF 5%’ denotes AF®’ 4 wp — wr, AFY is
the “standard” free energy of the reaction for the pre-
vailing medium and temperature, w* (or w?) is the work
required to bring the reactants (or products) together to
the mean separation distance in the activated complex,
and A for a cross-reaction is the mean of that for two
electron-exchange reactions!

M= (4 M)/2 )
As a consequence of eq 1-3 one finds?®*
ki ¢ (knkaKiofie)' @

where k12 and Ky, are the rate constant and equilibrium
constant of the cross-reaction, ki and ks are the rate
constants of the electron-exchange reaction of the two
different redox systems, and In fy,, which equals — AF2'2/
2)\R7T, is given by eq 5.

In fiz 2 (0 K12)%/4 In (kuke/Z?) 6)

Equation 4 has been applied in the literature to
weak-overlap electron transfers.® Recently, as a con-
jecture, it was applied to a few examples of atom-trans-
fer reactions.” Equations 1 and 2 have been similarly
used to calculate Brgnsted slopes in atom- and proton-
transfer reactions.! In each case, the results were

(1) Acknowledgment is made to the donors of the Petroleum Re-
search Fund, administered by the American Chemical Sosiety, and
to the National S8cisnce Foundation for their support of this research.

(2) (a) J. Chem. Phys., 24, 966 (1956); (b) Discussions Faraday
Soc., 29, 21 (1860); (c) R. A. Marous, J. Phys. Chem., 67, 8563, 2889
(1883); (d) Ann. Rer. Phys. Chem., 13, 166 (1964); (o) J. Chem.
Phya., 44, 679 (18658); (f) a review of this work and of that of other
investigators (e.g., Levich and Dogonadze, Hush) is given in ref 2d.
A factor of xp, omitted in eq 1, is about unity for an adiabatic reac-
tion and is not relevant for the present purposes.

(3) When the reaction is partlally or completely diffusion con-
trolled, & is only one contribution to the observed rute constant.
E.g., when the diffusion step is followed by an irreversible reaction
otep, kobed ™t = k=! 4 kgies~). Compare R. A. Marcus, Proc, Ez-
change Reactions Symp., Upton, N. Y., 1 (1965); and R. A. Marous,
Discusetons Faraday Soc,, 29, 129 (1860).

(4) The cross-reaction is AyP* 4 Ay —» A;red 4 A%, where A%
and Ay« differ only in their redox state. The exchange reactions
are A% + Arr¥ — Arred  Arex and As®* 4 AgTod — Ayt AR,
(5) The work terms are omitted in eq 4. When they are included
and fu 2¢ 1, the right side of eq 4 has an additional factor exp[= (ws
+ wn? — wyt — we’)/2RT). (Note that wif = w;P.) When fu
is n2ot close to unity, the appropriate correction of eq 4 is made using
eq 2.

(8) N, Butin, Ann. Rev. Phys, Chem., 17, 119 (18686).

(7) (a) N. Butin, ibid., 17, 154 (1988); (b) N, Sutin, Proc. Exchange
Reactione Symp., Upton, N, Y., 7 (1965); (c) A. Haim and N. Sutin,
J. Am, Chem. Soc., 88, 484 (1966),

(8) A. O. Cohen and R. A, Marcus, unpublished data.
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encouraging, but more extensive application is needed.

A semi-empirical, bond energy-bond order (BEBO)
method has been used to calculate activation energies
of gas-phase atom transfers.” The potential energy
form of eq 2,slightly modified in a way expected for atom
transfers, permitted’® the calculation of potential-
energy barriers for some 45 cross-reactions from those
of 10 exchange reactions, with a reasonable agreement
of about 2 keal/mol. (There were 90 cross-reactions,
but only 43 were independent.) The results are given
in Appendix I.

In the present paper these equations are discussed
for “strong-overlap” reactions, such as atom transfers,
proton transfers, and strong-overlap electron transfers,
and various consequences are noted. In some re-
spects, the present discussion is a quantitative treat-
ment of the common notion in the literature!* that
the Brgnsted slope reflects the extent to which the
activated complex resembles the reaction products
{e.g., our eq 31). The definitions or physical meanings
of principal symbols are given in the Glossary.

A Modiftcation of Eq 2

Because of an expected difference in potential-energy
surfaces, discussed in Appendix II, any applicability of
eq 2 to gas-phase atom-transfer reactions is expected
to be limited to |AF’] < A. Outside that interval,
eq 6istobeused. The same remarks apply to reactions
in solution (Appendix II) if most of the reorganization
comes from the bonds being broken and formed, rather
than from all the other coordinates.!?

(—=aFg" 2 N)
(aF" 2 N)

AF* = wr
(6)
AF* = AFY + yp

The X in eq 2 and 6 is seen from eq 2 to equal ap-
proximately 4AFy*, where AFo* is the value of AF* at
AFY =0,

The following potential-energy counterparts (for
gas-phase reactions) of eq 2 and 8 were used to calculate
the energy barriers for gas-phase atom transfers men-
tioned earlier. (The work terms, w* and w®, usually
coulombic, are absent now.) Let Ey be the potential
energy barrier of the atom transfer (7)

AfB + A,""Ag"'B"‘AJ'#A“F BA’ (7)

and let AE® be the net potential-energy change when
i=1landj = 2. Then

Eyw = E(1 + AEY/4E)*  (AFY < 4E) (8a)

Eu=0 (AE° 2 4F)
(8b)
Ey = AE°  (AR® 2 4E))
In (8a) and (8b)
E = (By + E»)/2 (8¢)
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QOutline of Treatment

Before proceeding with detailed derivations, aspects
of the paper are first reviewed. In weak-overlap
electron-transfor reactions, it may be recalled, re-
actants experience work terms w*, which are of coulom-
bic and, in some cases,* ‘hydrophobic-hydrophilic”
origin (solvent structural effects). These reactants also
experience a readjustment of bond lengths, of bond
angles when appropriate, and of orientations of solvent
molecules outside the reactants’ coordination shells.
Typically, the need for making these readjustments,
more than wr, constitutes the principal barrier to re-
action. They occur because the system not only has to
undergo electron transfer, but also has to eventually
adopt values of these coordinates which are appropriate
to the reaction products.

In the present paper, the arguments are extended to
reactions in which bonds are broken and formed.
Initially, a very simple bond energy-bond order model
for gas-phase reactions (eq 9), is considered and eq 12
is derived. The main purpose of using eq 12 is to
provide a simple, plausible vehicle for considering
atom transfers and for comparing with eq 8, not for
making a detailed calculation for these reactions.
More elaborate quantum-mechanical calculations of
Ey, Ey, and Es would be useful for testing eq 8 or for
testing eq 20, a result derived from eq 12.

For some purposes, it is not necessary to employ an
equation which contains the specific assumptions pres-
entin eq 12 or 8. A more general, functional equation
(16) is therefore introduced to generalize a portion of
the subsequent treatment. Equation 16 includes eq 8
and 12 as special cases and, like them, relates barriers
of cross-reactions to exchange reactions and serves also
as a basis for a discussion of Brgnsted slopes.

A comparison of these equations is then given. At
low AE°/4E, they are found to give exactly the same
first-order term for the barrier, and the latter term is
found to contain no intrinsic asymmetry. When eq 8
and a symmotrized eq 12 are compared at arbitrary
AEP/4E, they are found to give fairly similar results.

Reactions in solution are considered next. The
coordinates of the reactants and solvent molecules in
such systems can be roughly grouped as follows: (1)
several bond distances, for bonds undergoing rupture or
formation, and (2) coordinates deseribing more minor

(9) C. Parr and H. S. Johnston, J. Am. Chem, Soc., 85, 2544 (1963).

(10) I am indebted to Mrs. Audrey Cohen for these calculations.
The mean-square deviation was 1.5 kecal/mol.

1) {(a) E.g., I. E, Leffler and E, Grunwald, "“Rates and Equilibria
of Organic Reactions,” John Wiley and Sons, Inc., New York,
N, Y., 1083, p 157; (b) see also R. P. Bell, ““The Proton in Chemis.
try,” Cotnell University Press, Ithaca, N. Y., 1969, Chapter 10;
J. O. Edwards, "Inorganic Reaction Mechanisms,” W. A. Ben-
jamin, Ino., New York, N. Y., 1864, Chapter 3.

(12) We note that eq 8 and 2 form a continuous function for AP
for all values of AFgY. Also, in each cuse in eq 6 tho rate constant
or that of the reverse reaction is now essentially diffusion controlied
in solution, and one calculates Kobes accordingly.’
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adjustments in bond lengths and angles in reactants, of
which the soivent may be one, and orientations of
solvent molecules. A simple treatment of group 1
could parallel the one used to obtain eq 8 and, simul-
taneously, group 2 could be treated by the method used
to obtain eq 2. The details of the latter would differ
somewhat from that for weak-overlap electron trans-
fers,! and so the contribution of group 2 coordinates to
intrinsic terms g, in eq 21 would differ. However, the
basic approach could be made rather similar. A dis-
cussion of steric and statistical factors is also given.
(They were absent in weak-overlap electron transfers.)

Equation 4 relating rate constants of cross-reactions
to those of exchange reactions is next examined, and
the implications of the preceding results are given.
The discussion suggests that eq 4 comes through fairly
intact, particularly at low AFY/4AF,* In several
subsequent sections, the meaning and magnitude of the
Brgnsted slope are considered, as is its relation to a
kinetic isotope effect. The various findings are then
summarized and, in a concluding section, the classi-
fication of activation free energies into intrinsic and
extrinsic contributions is noted.

One Model for Atom Transfers

In the BEBO method,!* the energy of the 4B bond
in a gas-phase reaction (7) is written empirically as
—~Vn®, where n is the instantaneous bond order of
AB, V,is the AB bond energy when n, = 1, and p, is
a quantity determined from bond energy-bond order
relations in the literature; p, is quite close to unity.
Thus, Ey, the potential energy of formation of the
system from the initial configuration is eq 9 when

= 1 and n; = 0 initially.

Ei= (-Vm™ = V™) + W1 9)

In the cited model of the gas-phase reaction, it is
then assumed that the total bond order ny, + n; is
constant along the reaction path; it is unity in the
present case. By setting dEy/dn; = 0 at the energy
maximum along the reaction path, the activation
energy is calculated from empirically known V's and
p.’s.

To later compare eq 8 with 9, we first note that the
former depends on only three quantities, En, Eg, and
AEP, while the latter depends on four, Vi, Vs, p1, and
p2.  We may remove this difference as follows. Since
p¢ 22 1, a Taylor's expansion of eq 9 can be made and
powers of (p; — 1) higher than the first neglected.
The instantaneous bond energy of AB is then

Vol —Vn + (p. ~ ) n¢lnn,]  (10)
Maximization of eq 9 using eq 10 yields #, = !/, for

an exchange reaction.’® One finds
Eqy=Vpi—1)In2 (11)
_ minn ng In ng
E; = mAE" Eu ln 2 Eﬂ ln 2 (12)

Since n; + n; equals unity, and since 7, is determined
from dE./dns = 0, one sees £; now depends only on
three properties, Ey, Es, and AEY,

It is useful to introduce E, the symmetric combina-
tion of Ey and Ey given by eq 8¢, and an antisym-
metric combination ¢ defined by

¢ = (Ey — En)/(Ey + Ex) (13)

The terms intrinsic asymmetry, measured by ¢, and
extrinsic asymmetry, measured by AE®/4E, will be em-
ployed throughout this paper.

In the region of small intrinsic and extrinsic asym-
metry eq 12 can be expanded about the symmetric
condition ny = !/3, and powers of (ny — 1/») higher
than the second neglected. Maximization of E; with
respect to n, yields

Ey=E + '30B + (22 E/In2) + - (14)
—_ l/‘;) is
= {—4F° + 2¢E[1 — (1/In 2)}(n 2)/4E (15)

A More General Equation

Equations 8 and 12 are special cases of a more general
one

Ey = nAE + /:Eugi(n) + /sEugs(1 — n)

where z¥ (= m¥

(16)

dE/dn = 0 (n = n¥)

where n is some degree-of-reaction parameter, being zero
initially, unity finally, and n = for the activated complex.
Eyy and Ey, retain their earlier definitions. The term
g¢(n) is any function!®¥? of n, normalized so that g(1/s)
= 1.

In the region of small intrinsic and extrinsic asym-
metry, eq 16 may be expanded in powers of n = 1/,
and terms beyond the second power neglected. One
obtains eq 17

{13) In this reaction, there is a relatively abrupt charge transfer,
nnmely near a value of the renction coordmnto defining the inter-

of tants’ and product: tenti gy surfaces, In
the casoe of proton or strong-overlap eleocmn transfers, the change
of charge distribution is expected to occur more gradually, t.e.,
over a wider interval along the reaction coordinate.

(14) For simplicity, the method discussed is the one originally
used in H. 8. Johnston, Advan. Chem, Phys., 3, 181 (1980).

(15) While (p; — 1) In 2 varies widely from bond to bond, it averages
around 0,06 to 0.1, so that the energy barrier (11) of an atom-
exchange reaction might be about 5-10% of the bond erergy, a

reasonable figure. In a fow cases p; — 1 was negative, so the maxi-
rlnlum ocourred at the end points and one sets By = O instead of eq

(16) In this notat:on the n and 1 — n in the last two terms of eq 16
ave the ar, ts of the functions gy, rather than multiplying factom

(17) (a) Equation 8a follows from eq 16 by eettingg¢(n) = 4n(1 — n)in
the interval (0 <7 < 1) and so outsideof the infinitesimal regions around
n=0andn = 1. In those regions, one ¢ould choose the g; toapproach
zero extremely rapidly and thereby. approximam eq 8b as olosely
as d 1. The detail ice of g¢ are unimportant for our
purposes, but a study of tho gs in footnote 17b is revealing; (b) to
ol):;-finnzeq 12, one sata n = ns, gi(n) = gx(n) = —2(1 — n) In (1 —
n,
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)
Ei = E + ;0B — 54— (Eugi’” + Engs’] (17)

where z¥ (= n¥ — 1/)) is
¥ = 2[—AE® — Yy(BEugy' — Exg)]/
Eng” + Exgd') (18)

The primes denote derivatives evaluated at n = !/,

Relation among Eq 8, 12, and 16

It has already been noted that eq 8 and 12 are special
cases of eq 16. Unlike eq 8, eq 12 and 16 do have an
intrinsic asymmetry term. However, a rather striking
result can be proven when the intrinsic and the extrinsic
asymmetry (AE°/4E) are both small: the intrinsic
ssymmetry makes no contribution to the first-order
term in those equations for Ey. For example, in eq 14
and 17, the first-order term is E + !/;AE?, the same as
it is in eq 8. It contains no intrinsic asymmetry, e
Thus, all three equations agree at low AEY/4E. (A
consequence of this absence of ¢ is noted under Remarks
in eq 4.)

‘We next consider the relation between eq 8 and 12 at
any value of AE°/4E. 1In both equations, £y becomes 0
or AE®, accordingly, as AE°/4E becomes very negative
or very positive. For other AE*/4E, eq 8 is most easily
compared with eq 19, the symmetrized form of eq 12,
since 8 contains no intrinsic asymmetry.

Ey=nAE° — Elnlnn +
A=n)In{1 —n))/In2 (19)

The value of n which solves dE,/dn = 0 is found and
inserted into eq 19. Manipulation yields!*

E; = E + /,AE° 4+ (1/2AE%/y) Incosh y  (20)

where ¥y = (AE%/2E) In 2. The AE%/16E term in
eq 8a can be written for comparison, as !/;AE%/4 In 2.

When y tends to + «, In cosh y tends to =y — In 2.
Thereby, E; in eq 20 tends to 0 or AE®, according
as AE® tends to — @ or to + =, respectively, in agree-
ment with eq 8b. When AE® = 2E, which is midway
between the extremes of small AE%/4F and of AEY/4E ~
1, (1/y) In cosh y is about !/ while /4 In 2 is /.
The difference of eq 8a and 20 is, therefore, !/3AF,
which is small.

E, defined by eq 8c, is sometimes of the order of 10
keal/mole, so that a AE® of about 2E is then about 20
keal/mole.

Reactions in Solution

Two quite different gas-phase models of a reaction
obeyed eq 16, one being BEBO and the other (see
Appendix II) having a pair of intersecting potential
energy parabolas. In the frec-energy analogof eq 16, to
be used for reactions in solution, Ey, AE?, and E, are
replaced by their analogs at a mean separation dis-
tance, R, in the activated complex, AF* — wr, AFRY,
and AFu‘ - Wy

The Journal of Physical Chemisiry
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AF* — yr = nAFRY + V/o(AFy* —
wn) gu(n) + Ye(AFn* — wp) g2(1 — n) (1)
dAF*/on'=0 (n = n¥)

where wy = wyf = wy? and AFRY = AFY 4 1P — yr,

The quadratic expression (2) can in fact be written
asin eq 21, with gi () = gs(n) = 4n(1 — n) and AF * —
wy = Ay/4. In Appendix III the results of ref 2e
are used to show that weak-overlap electron transfers
in solution obey eq 21, even before some approximations
present in eq 2 are introduced.

As noted earlier, the nuclear coordinates in electron-
transfer reactions are of two types: (a) vibrational
coordinates (bond lengths and angles) in reactants,
including those of any solvent molecules in the coordi-
nation shell, and (b) orientational coordinates of solvent
molecules outside the coordination shell. For the
former, a quadratic potential-energy function is ap-
propriate. For the latter, it is not. Instead, the
statistical mechanical equivalent of dielectric unsatura-
tion for partial saturation was introduced into the free-
energy expression for the solvent system.?»!® The
free energy of the solvent then became a quadratic
function of fluctuations in solvent polarization, just as
the harmonic potential energy for vibrational coordi-
nates is a quadratic function of fluctuations in those
coordinates, The total of the two -contributions
to AF* leads, as noted in Appendix I1I, to eq 21.

In the case of an atom, proton, or strong-overlap
electron transfer reaction in solution, it was noted that
there are: (a) bonds being broken or formed, including
any involving addition or removal of a solvent molecule
to or from a reactant; (b) vibrational coordinates
undergoing smaller changes; and (c) orientations of
solvent molecules changing their distribution because
of a change in charge distribution in the reactants.
The first group might be treated as in eq 12 or 16, the
second as in the preceding paragraph, and the third
by the statistical mechanical dielectric unsaturation
method noted there. The final result for the latter two
contributions would differ somewhat from that found
for weak-overlap electron transfers, because the change
in charge distribution as the system moves along the
reaction coordinate is now less abrupt. However,
gince quite different models led to eq 16, there is little
doubt that a reasonable theory consistent with eq 21
can be formulated.

Steric and Statistical Factors

In atom or proton transfers, steric and statistical
factors may contribute to the rate constant in 2 manner
which depends on details of the potential-energy surface.

(18) E.g., one finds (AE° In 2)/E = In [n/(L — n)). Thus, n =
exp(2y)/ (1 + exp(2y)] = exp(¥)/2 cosh y and 1 — n = exp(~—y)/2
cosh y. Substitution In eq 19 yields eq 20.

(18) R. A, Marcus, J. Chem. Phyas., 38, 1858 (1963); 39, 1734 (1863).
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Several models can be considered in such a way as to
permit the preceding formalism to be utilized intact,
as for example the following. (1) The reactants come
together, requiring the coulombic or other work term,
w*. They reorient, with a steric and statistical factor
of 87 and &, respectively.? (2) The system undergoes
the pertinent changes of bond lengths and solvation
and so reaction oceurs. (3) The products separate,
the relevant terms for the reverse process being w®, S?,
and sP.

The free-energy change in steps 1 and 3 is w* — RT
In 8§ and w» — RT In Srs?, respectively, and we
write

Wt = w* — RT In Svsr (22)

The over-all “standard” free energy of reaction in
steps 1-3 is AF®, so that in step 2 is AFRY = AFY +
We — Wr, The configurational free-energy barrier to
form the activated complex is /A1 + AFgY/N)?
when |AF /)| < 1, according to the arguments which
led to eq 2; A has the additivity in eq 3.

The “translational” contribution?®! to the free energy
of activation AF¥ is —&T In (hZ/kT), where Z is the
collision number of uncharged species in solution (~10"
1./mol sec). Thus from knew = (kT/h) exp(—AFF/
RT), one again obtains eq 1-3, where now the % and
wP are replaced by Wr and W», E.g.

AF* = W + 2 A+ AFZA? (@)

|aFg¥/N < 1, where AFgY = AFY + W» — W now.

Remarks on Eq 4

In this section, a modification of eq 4 based on the
free-energy analog of eq 20 is first given. We also
consider a case where eq 4 could break down.

The free-energy analog of eq 20 yields eq 4, but with

Ju = Ky e comb ) (240)
where
y = (In Kyo)(In 2)/In (knke/Z%
For comparison, eq 5 can be rewritten as
fu = Ky/*? (23)

When, as in a previous section, AE°/2F ~ 1 and so
¥ = In 2, and when Kj; = 103, the f,,/”s in eq 24a
and 25 differ only by a factor of 3.

The breakdown of eq 4 can be investigated by
examining the breakdown of the first-order term in eq
8a, E + !/;AE®, because of the related theoretical origin
of both equations. Equation 4 rests on the dependence
of all terms in the energy change on any degree-of-
reaction variable n. Even a natural asymmetry in
the potential-energy surface did not affect this equation
in the region of small AE®/4E, because of a compensa-
tion.

(24b)

Correspondingly, some breakdown will occur in these
equations when an important term in the free-energy
barrier does not vary with n. For example, in the
case of eq 16, let a fraction ¢ of the AE® occur before the
principal reorganization, Then E; is zero initially,
and is given by eq 16, subsequently, with nAE® re-
placed by cAE, + (1 — ¢) nAE®. Manipulation as
before leads to

*
o= B+l + AR — 2= Eg"(/) + -+ (29)

where z¥ is given by eq 18, with AE? replaced by (1 —
¢)AE®, and where we have let g1(n) = go(n) for sim-
plicity of illustration.

From eq 26, or really from its free-energy counter-
part, one finds

ki = (bukanKi' ) Y (27)

When ¢ is small, K1,/ becomes a second-order term.

Eg., if ¢ = 0.1 and K2 = 10%, Kuy/? 223
When steric and statistical effects are included, eq 4
becomes

Fas = (enkzKaafin) /*($19%/ fudm) (28)
where ¢ for a reaction is
¢ = (SrsrSegr)'/t (29)
and fi; is
In fiz = (In K12)?/4 In (kuks/tutnZ?) (30)

(Similarly, eq 24b can be corrected for the ¢’s by
diwdlng kuku by g'nfn.)

Meaning of the Brgnsted Slope

The Brgnsted slope, «, is OAF*/dAFY and, accord-
ing to eq 21, equals n + (DAF*/dn)sp(dn/OAFY),
evaluated at n = n¥. Since (QAF*/dn),p vanishes
at n = n¥, we obtain

a=n¥ (31)

For the BEBO model described earlier for a gas-
phase reaction, »¥, and hence a, is the bond order of
the bond being formed. For weak-overlap transfers

(20) S can be expreased in terms of a ratio of a vibrational partition
function of the activated complex to the rotational-vibrational one of
the reactants. &' can be expressed soveral ways, one being intuitive
and oll of which give a similar answer. Compare ref 11a, p 133. Bee
also R, A, Marcus, J. Chem. Phys., 43, 1601 (1965), eq 17; E. W. Schlag
and G, L. Haller, ibid., 42, 584 (1865); D. M. Bishop and K. J. Laidler,
ibid., 42, 1688 (1965).

(21) Of the six tranalational degrees of freedom of the two reactants
{masses mj,ms), five coordinates b three t lati and two
principal rotutions of the activated complex, and a sixth may mix
with other coordinates to yield the reaction coordinate and others.
The partition function ratio of the five coordinates of the activated
complex to the six of the reactants is [2x(my + ma) kT)/s(8xIkT)/
o(2rmik T2rmak T)*/2(h8/h%), where I is the relevant principal moment
of inertia, written suggestively as uR3, ¢ is a symmetry number
(¢ = 1 or 2 according as the reactants are unlike or like), and 4 =
mmy/(m 4+ ma). This ratio equals hZ/kT, whero Z is defined as
(8xkT/u)'/1RY/ o and equals about 101! 1./mol sec.
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in solution, discussed in Appendix III and involving no
bond ruptures, the distribution of coordinates in the
activated complex is determined by a potential-energy
function (1 — n¥) Ur + n*Ur; t.e.,n¥ and, thereby,
« represents the products’ contribution to this function.
For an atom or proton transfer or strong-overlap
electron-transfer solution, if some method, such as that
briefly touched on in a preceding section, were employed
to calculate the terms in eq 21, ¥ and hence, « would
characterize the product-like character of both types of
coordinates.

As exemplified by the equations of the following
section, and in accordance with the usual notion, the
Brgnsted plot should be curved when AFY is varied
over a sufficiently wide range. For any compound the
o and, hence, the n¥ equals the instantaneous slope of
this plot at the given AF® for this compound.

Magnitude of the Brgnsted Slope
Since « is DAF*/QAFY, eq 2 yields
a = l/ 2(1 + AF, Bo'/ )\) (32)

when [AFz”| < N\ If AF,* denotes the intercept at
AFY = 0 of a plot of AF* vs. AF®, then

AF?* = w + 2[1 + (wp — w)/ NP

ut 4 wr A
D) + 1 (33)

gince A > (w* — wr), Thus®
a = (1 + AFRY/4AF*)/2 (34)

When statistical and steric factors are included,
eq 34 again follows, but with w* and w® in AFg®' and
AF,* replaced by Wr and Wr.

For a reaction whose functional dependence of AF*
on AFY is given instead by eq 20 (with E; and AE®
replaced by AF* and AFRY, ete.) « would be

a = (1 4+ tanh y)/2 (35)

where y = (AFRY/24F*) In 2. When AFRY/AF* is
2, this « is 0.8, while that obtained from eq 34 is 0.75.

Comparisons of experimental plots of AF* vs. AFY
with these equations are appropriate when \ is con-
stant for all points in the plot.

Kinetic Isotopic Effect kx/kp and Brgnsted Slope

A maximum in plots of kg /kp vs. pK’s has sometimes
been reported. A ‘useful simple explanation has been
given,? based on little isotopic effect on ApX and on
the reaction’s forward or reverse step becoming fast
(diffusion controlled) at either extremity of the plot.?
With the aid of eq 2, we can formulate the suggestion
in quantitative terms. We consider, then, reactions
for which there is little isotopic effect on AF® (and W*
or W»). The barrier difference for hydrogen and
deuterium isotopes is then found from eq 2 to be %
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AFg* — AFp* & 1/, — xn)[1 - (Afj)’] (36)

when [AF*| € Ms.  We have used the fact that Audp 2%
An?. The barrier difference is seen to pass through a
maximum. Since a — 1/; i8 AFzY/2\y, the last factor
ineq36is [1 — 4(a — */2)%].

Summary of Findings for Cross-Relatlon

and for Brgnsted Slope

We summarize -our findings regarding eq 4. (1)
Except as noted in Appendix II, the application of eq 4
to atom or proton transfers is probably limited to
[aR'/4AF* < 1, a normally minor limitation. (2)
Several models, including the BEBO one and a general-
ization thereof, lead to eq 4 in the vicinity of small
AFY/4AF*. Intrinsic asymmetry does not alter
this equation when AFY/4AF¢* is small. (3) The
difference of the BEBO and quadratic approximations,
eq 20 and 8, is rather small where we have tested it.
(4) Since eq 4 rests ultimately upon a continuous de-
pendence of the main configurational free-energy change
on some reaction parameter, the equation will break
down when some appreciable fraction of the total
free-energy change becomes independent of n, to the
extent given by eq 27. (5) When steric and statistical
effects occur, several models can be considered, one of
which replaces eq 4 by 28. (8) Any effects which are
specific only for the cross-reaction or only for one of the
exchange reactions are excluded in eq 16, and so tend to
cause eq 4 to break down.

The Brgnsted slope, « is expected to be 0.5, when
AFY = 0. However, deviations would occur (a) if
¢ # 0in eq 27, .e., if an appreciable fraction of the free-
energy change were independent of the reaction param-
eter o, or (b) if g4/ ¢ 0in eq 18 and, at the same time,
the asymmetry e is large. Equation 34 is a simple,
approximate expression for « for any AFY for which
|aFe'/4AF* < 1. It yielded a value (0.75) close to that
obtained (0.8) from a quite different model (eq 35)
even when AFY/AFo* had the fairly large value of 2.
An interpretation of a for a certain class of models,
those for which eq 21 is applicable, is given by eq 31 and
the associated discussion.

Remark on Intrinsic Barriers

Reaction barriers have been considered here in terms
of intrinsic (\y) and thermodynamic (AF') contribu-
tions, as well as of steric ({) and statistical ones. Some
test of the intrinsic-extrinsic separation can be made
with data on Brgnsted slopes and with the cross-re-
lation, e.g., with tests of eq 4 and 34.

(22) In writing eq 34, }/a(w* + w®) was neglected relative to AR,
sinoe it is normally much smaller. To avoid this approximation,
the APy in eq 34 can be replaced by AFs® — V/a2(u® + wP),

(23) E. 8. Lewis and C. H. Funderburk, J. Am. Chem. Soc., 89,
2322 (1067); eq 33 shows that the diffusion-control aspect is inoi-
dental, ruther than necessary.

(24) All zero-point effects have been included in the \'s.
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Table I: Comparison of BEBO Calculations with Eq 8

A F HO H CFs Cl
F 6
HO 0.3 4
()
H 2 6 10
(0) 4)
CF, 3 7 12 13
0.2) (3 (1
Cl 0.3 0.3 5 8 0
(0) 0) 4) (8)
CH, 3 6 11 12 7
0.1) (5) (10) (12) (6)
Et 2 4 8 9 4
(0} (2) (€)) (9) (3)
Me,CH 2 4 8 9 3
(0 (2) (8) (8) (3)
Me,C 2 3 [} 7 2
(0) (1) (3) () (1)
Br 0 0.4 2 3 0
(0) (0) (0) (1) (0)

CHy Et Me:CH MeiC Br J279: ¢
140
115
109
107
106
13 105
10 12 100
(10)
9 11 12 98
(9) (11)
7 9 10 12 93
("N (9) (10)
3 4 4 5 0 90
N (2) (3) &)

In interpretations of Brgnsted slopes, A has been
assumed constant as a conjecture for a reaction series
when the substituent is not part of the reaction site.%®
When a similar assumption is valid for other reactions,
such as those involved in the Hammett ¢p relation,
there is an interesting consequence. In the region of
« = !5 o and p then depend only on variations in
AFY. For other «'s they depend on variations in
AFY (1 + AF%/2)) at constant A. Then, with )
estimated from the data, discussions of substituent
effects reduce purely to a discussion of effects on AFY’
and so fall within a broader class of problems concerning
the effect of substituents on thermodynamic proper-
ties.

Appendix 1. Comparison of BEBO
Calculations and Eq 8

Equation 8 relates the barriers of cross-reactions
[¢ ¢ 7 in eq 7], to exchange reactions [¢ = jin eq 7]
Table I gives a comparison with calculations made for a
BEBO model more complicated than eq 9. The re-
actions in this table are hydrogen-atom transfers, i.e.,
Bineq 7 is Hnow. The diagonal elements in Table I
provide the values of the exchange barriers E;;. Values
of AE® are obtained by subtracting the dissociation
energies of the AJH used in the BEBO calculations,
Dy, given in the last column. Use of eq 8 then per-
mits the nondiagonal elements of the table to be com-
puted. They are given in parentheses. TFor brevity,
only values below the diagonal are given. Those above
the diagonal refer to the reverse reaction and are not
independent of the former.

The values based on eq 8 are seen to be close to the
BEBO ones. The two sets of results show about the
same agreement with the experimental data.

Appendix II. Potential Energy
Surfaces in Reactions

If the potential energy of a reaction along the reaction
coordinate involves a pair of intersecting parabolas,
eq 8a is obtained. In this case, the predominant
motion along the reaction coordinate is a vibrational or
pseudo-vibrational one. In the case of a weak-overlap
electron transfer in solution, numerous coordinates are
involved and this plot is a profile of the potential energy
along a reaction coordinate in many dimensional con-
figuration space (e.g., Figure 1 of ref 2b). The re-
action coordinate is expected to be associated in part
with vibrational motion of the ligands and dielectric
relaxation of the solvent polarization.?

In a gas-phase atom transfer, the reaction coordinate
involves a concerted motion of a compressing of one
bond and a stretching of the other. Here, using the
usual potential contour diagrams, one can plot the
potential energy along the reactants’ valley, up to the
saddle point, and down to the products’ valley. Here,
the curve, potential energy vs. reaction coordinate, is
initially constant, then rises to a maximum, like an
Eckart barrier, and then falls to .another constant
value.¥ One can no longer, therefore, obtain the
“inverted chemical effect’’*® possible with eq 2 at large
|aFo’/A), and go the added equation (6) is imposed.

When the bond rupture-bond formation in atom or
proton transfers in solution is the principal contributor
to the reaction coordinate, as one would expect, the
remarks of the last paragraph apply here as well.
However, when most of the reorganization is associated

(25) Eg., 1. Amadur and G. G. Hammes, ‘“Chemical Kinetics:
Principles and Seleotad Topics," McGraw-Hill Book Co., New York,
N. Y., 1088, p 47.
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with coordinates not involved in bond rupture or
formation, eq 6 would no longer be applicable. The
“inverted chemical effect” could again occur, and the
unrestricted eq 2 would again be relevant.

Appendix III. Weak-Overlap Electron Transfers
and the Free Energy Analog of Eq 16

We denote by AFz* the configurational contribution
to AF* at any separation distance, t.e.

AFg* = AF* — ur (A1)

Similarly, for formation of activated complex from
products at a separation distance R, we write

AFg* = AF* — up (A2)

In ref 2b and Ze, it was noted (i) that the distribu-
tion of activated complex configurations for weak-
overlap reactions was centered at the intersection of
two potential energy functions Ur and U® in many
dimensional configuration space, (ii) that the distribu-
tion can be expressed in terms of an equivalent equi-
librium distribution for which the configurations are
distributed in accordance?® with the function f* =
A exp{—[(1 = m)Ur + nU?)/kT}, where A is a
normalizing constant, and (iii) that f* is unchanged
when the symbols (r, p, and n) are changed to (p, r,
and 1 — n), respectively.

AF* can be written as (1 — n) AFz* 4 nAFp* +
nAFgY, since AFY equals AFp* — AFgz*P. There is
now a useful symmetry property. Because of prop-
erty iii, examination of an expression for AFg* shows
at once that when (r, p, and ») is replaced by (p, r,
and 1 — n), respectively, AFp* goes over to AFg*?,
AF*» goes over to AFg*, and, thus, (1 — n)AF* +
nAF*® remains unchanged. This result is used later
to obtain eq A4.

We shall first show that 0AFgz*/dn = 0. From
the definition of Fg*, t.e., {U? + kT{n f*), [eq 35,
ref 2e], where { )} denotes average with respect to f*,
and from the equation reflecting the centered distribu-
tion, (U%) = (U?) [eq Al, ref 2e], one finds that OF z*/
on = 0. Thus, dAFz*/dn = 0, and part of eq 21 has
been derived.

We next derive eq A4.

If, for the moment, we regard the ions as far apart,
the distribution function f* can be factored into two
parts, one for each ion and its environment. So can
that of the initial reactants. Thereby, the expression
(1 — n)AFg* + nAFg*® can also be written as the
sum of two functions, fu (r, p, n) and fa (r, p, n), one for
each reactant. Thus, we may write

AFR* = nAFRY + fu(A%, Ayed, n) +
j”(AZ"dl Aﬁo‘y n) (A3)
since the reactants are A;°* and As”*¢, In virtue of the

symmetry property proven earlier, the last term also
equals fa(A%, As*d, 1 — n). For brevity, we denote
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this term by fz2(1 — n) and the term before it in eq A3
by fu(n)

AFB‘ = nAF,;°’ + fu(ﬂ) + fn(l - n) (A4)

We consider now the case where the ions are close
together in the activated complex rather than sepa-
rated. Their vibrational contributions to U~ and U®
are largely additive, so this contribution to the dis-
tribution function f* factors as before. The solvent-
polarization contributions from the two ions are not
independent. However, as noted on p 693 of ref 2e,
deviation from an apparent additivity can be estimated
to be small. Thus, eq A3 applies even for interacting
cases.

For an exchange reaction, f»(r) = fu(n). For these
systems, according to the analysis, n = /.. (There
is no double maximum for barrier vs. reaction coordi-
nate in this treatment.) Thus, for an exchange we
have

AF* = 2fu(t/2)

If we denote fi(n)/fu(*/2) by g«n), the free energy
analog of eq 16 follows.

In summary, there are two basic ingredients to this
free energy analog of eq 16: (1) a dependence of
AF* on a parameter n, and (2) an additivity, which is
partly apparent and partly actual, of intrinsic barrier for
the changes of configuration around each center, A, and
Aq, 1. e., for the changes that would occur if AFz" were
Zero.

(A5)

Glossary of Principal Symbols

Physical Meaning or Definition

Gibbs free energy barrier to reaction, re-
lated to rate constant k£ by 1.

Gibbs free energy of activation (= AF*
— RT In kT/hZ; compare footnote
21).

N4 Intrinsic contribution to the barrier for
electron transfers. It equals the
average of the reorganizational bar-
riers (A\u/4, A/4) of two exchange
reactions, as in eq 3.

Gibbs “standard” free energy of reaction
for the prevailing medium and temper-
ature. It differs slightly from the stan-
dard free energy change, which refers
to STP and to infinite dilution.

Ky Equilibrium “constant,” given by exp-
(—AFY/RT).

“Qtandard” free energy of reaction at a
typical separation distance R for the
prevailing medium and temperature

Symbola
AF*

AF#

AFY

AFp

(26) We have replaced the —m, in ref 2 by n, to conform with present
notation.
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(AFRY = AFY + we — ¥ in eq 2
and = AFY 4 Wr — Wrin eq 23).

w*, wP uwf is work required to bring reactants
together to mean separation distance
R; wr is the similar quantity for the
products.

Ju Defined by eq 5. Compare also eq 25.

ks kny, ko Rate constants of the cross-reaction (k)
and of the exchange reactions (ky, ka).

AF* Value of AF* extrapolated, in a AF* vs.

AFY plot, to AFY = 0.
Ey, Potential-energy barrier of a gas-phase
cross-reaction (7).

Ey, Exn Potential-energy barriers of gaseous ex-
change reactions (7) (with ¢ = j).

E Average barrier for the two exchange
reactions, as in eq 8c.

AE? Potential-energy change in the reaction.

Vi, Ve Bond energies of A;B and A,B single
bonds.

7y, N2 Bond orders of A;B and A,B.

P, Pe Exponents in bond energy vs. bond order
plots.

E, Potential energy in atom transfer (7)
relative to initial potential energy.

¢ Intrinsic asymmetry defined by eq 13.

z¥ n¥ — 1/zineq 14orn® — 1/yineq 18.

a1, g2 Intrinsic barrier terms in eq 16.

n Degree-of-reaction parameter in eq 18.

n* Value of »n at barrier maximum.

9, 9¢" dg./dn and d%,/dn? at barrier maximum.

AFy*, AFn*  Free-energy barriers in two exchange re-
actions.

wn, Wa Work terms in two exchange reactions
(Wt = weP).

Sr, Sp Steric factors for forward and reverse
reactions,

8, 8P Statistical factors for forward and reverse
reactions.

We, We Contributions to AF* before (W) and
after (—Wpv) the rearrangements, de-
fined in eq 22.

et See eq 24b, paragraph before eq 26, and

29, respectively.
o Brgnsted slope. For its variation with
AFY, see eq 34 or 35.

The Effect of Solutes and Temperature on the Structure of Water

by O. D. Bonner and G. B. Woolsey

Department of Chemistry, University of South Caroling, Columbia, South Carolina 29208 (Received August 14, 1967)

The spectrum of liquid water has been observed over the range 600-1800 mu by a differential method in which
water at 25° is compared either with an aqueous solution at the same temperature or water at an elevated
temperature. Five overtones have been observed, which may be identified with the same ones occurring in
the vapor phase, and are believed to be due to the presence of nonbonded liquid water. The band at 958 my
was chosen for quantitative studies, and solvation numbers have been caleulated for a series of simple elec-
trolytes and also for several organic solutes. The numbers obtained for electrolytes differ only slightly from
those which appear as parameters in certain equations, but the sequence for the alkali halides is not the same.
Water-structure enhancement by organic solutes is experimentally confirmed. Temperatures studies show
that the concentration of monomeric water increases approximately linearly with temperature and doubles
over the range from 25 to 80°. The strength of the hydrogen bond, based upon this temperature dependence
of the monomer concentration, is estimated to be 2.67 keal/mol. A combination of these data with those
from th; literature yields a caleulated value of the concentration of nonbonded water at 25° of 3.5 mol/l. or
about 6 0+

Introduction

The structure of water has been the subject of nu-
merous investigations and of much controversy for
many years. Various techniques, such as infrared
and Raman spectroscopy, nmr, X-ray diffraction, and di-
electric relaxation measurements, have been used in
these studies, which have also been extended to aqueous

solutions. An extensive bibliography on water struc-
ture will not be presented in this paper, since excellent
ones are available in Kavanau’s monograph and in the
book published by Pimentel and McClellan.! Some of
(1) (a) J. L. Kavanau, “Water and Solute~Water Intoractions,”
Holden-Day, San Franciseo, Calif., 1884; (b) “The Hydrogen

Bond,” G. C. Pimentel and A. L. McClellan, W, H. Freeman and
Co., Ban Francisco, Calif., 1860.
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