

358

Figure 2. The rates of decomposition of cumene at 60° . The rate of decomposition at 40° for the cumene adsorbed of 4.17 cc was found to be 5.64×10^{-6} cc (STP)/g of catalyst, min. Comparison of the rates at both temperatures corresponding to the same amount adsorbed (4.17 cc) leads to an activation energy of 20.5 kcal/mole.

usual flow method, owing to a marked difference in the experimental conditions, e.g., the reaction temperature or the coverage of cumene during the reaction.

Kinetics of Ferrocyanide Reduction of Quinones

by S. A. Levison^{1a} and R. A. Marcus^{1b}

Department of Chemistry, Polytechnic Institute of Brooklyn, Brooklyn, New York (Received July 10, 1967)

We describe here the kinetics of ferrocyanide reduction of 2,5-dichloro-, benzo-, and 2,5-dimethylquinones (denoted below by I, II, III) in 1 M KCl. Reagent materials were used where available and the hydroquinones of I and III were synthesized by SnCl₂ reduction and recrystallization. Slightly alcoholic solutions of quinones^{4,8} in 1 M KCl were deoxygenated, placed in blackened vessels at 27°, and then in a 10-cm path Beckman cell. Buffered 1 M KCl ferrocyanide at 27° was added and the rate was measured from ferrocyanide diappearance at 420 m μ or disappearance of I at 275 m μ , using a Beckman.⁴

The acid dissociation constants of H_2 Fe(CN)₆²⁻ and HFe(CN)₆²⁻ in 1 M KCl were measured with a Beckman (260-280 m μ) at concentrations of 0.4-4.5 \times 10⁻⁵ M and found to be 0.32 \pm 0.02 and (4.7 \pm 0.2) \times 10⁻² M, respectively^{1a} The equilibrium constant, K, of

$$Q + 2Fe(CN)_6$$
 + $2H$ +

$$QH_2 + 2Fe(CN)_6^{2-}$$
 (1)

was measured from the formal potentials E_0 ' of the two half-cells using a Leeds and Northrup potentiometer. The E_0 ' (relative to see) of the ferrocyanide system in 1 M KCl was 0.22 V, and those for I, II, and III in 1 M KCl were 0.47, 0.44, and 0.34 V yielding K's of (2.8 \pm 0.5) \times 10³, (3.1 \pm 0.5) \times 10⁷, and (1.1 \pm 0.2) \times 10⁴ M^{-2} , respectively. (The anions in (1) are largely paired with K^+ ; concentrations throughout this paper

include all species, paired or unpaired.) E_0 ' for ferroferri was constant from pH 3.7 to 6.7 and E_0 ' for Q-QH₂ was constant from pH 2 to 6.7. (These E_0 ''s were defined by $E=E_0$ ' and $E=E_0$ ' + 2.3(RT/F)pH, respectively, for the systems in the cited pH ranges, for equal concentration of oxidized and reduced forms.

The stoichoimetric equation (1) was confirmed spectrophotometrically by determining the amount of $Fe(CN)_6^{*-}$ formed in excess quinone and then in excess $Fe(CN)_6^{*-}$. The reaction order was investigated by (1) pseudo-first-order plots with ferrocyanide in large excess, and (2) when no reagent was in large excess, by determining best tangents to amount reacted vs. time plots. The slopes and known concentrations yielded apparent second-order k's [= rate/(ferro)_{*}(Q), where s denotes stoichiometric].

All k's were constant at fixed (ferri)_{*}/(ferro)_{*} at pH 2.74 to 4.74. Typical data for I and II are plotted in Figures 1 and 2.⁵ The k's for III were constant in this range of ratios. The (ferro)_{*} was varied from 0.3 to 4, 0.2 to 2, and 1 to 10 (\times 10⁻⁴ M), respectively, and the (Q)'s from 0.1 to 1, 1 to 5, and 1 to 10 (\times 10⁻⁵ M). All data obeyed

$$\frac{1}{k} = \frac{1}{k_1'} + \frac{C \text{ (ferri)}_{\bullet}}{\text{(ferro)}_{\bullet}} \tag{2}$$

and are summarized in Table I: k_1' is fairly insensitive to pH in the range (2.74 to 3.74) where it was measured.⁶ $C \propto (H^+)^{-1}$ for I, and $C \propto (H^+)^{-1.4}$ for II.

Table I: Summary of Kinetic Data

	(2,5-Dichloro- quinone)		(Benzoquinone)		(2,5- Dimethyl- quinone)	
pН	ሐ′ X 10~፥	7 × 100	&1' × 10−•	C × 10³	kı'	ø
2.74	3.6	0.036	3.7	0.014	36	ь
3.74	3.6	0.39	3.7	0.54	26	ь
4.74 5.74		2.7	•••	20. 390.	•••	5

• Units for k_1' and C^{-1} are $(M \text{ min})^{-1}$. • Not measured.•

 ^{(1) (}a) S. A. Levison, Ph.D. Thesis, Polytechnic Institute of Brooklyn, June 1962.
 (b) Address correspondence to this author at Noyes Chemical Laboratory, University of Illinois, Urbana, Ill.

⁽²⁾ I and III were dissolved in ethanol because of slow dissolution in water and were diluted to 1.0 to 0.01% alcoholic content, a variation without effect on potentials or reaction rates.

⁽³⁾ Versene, 10⁻⁴ M, added to the ferrooyanide solution to remove a slight turbidity, perhaps due to Pb₁Fe(CN)₁, did not affect rates.

⁽⁴⁾ In the kinetically important time of 10 min, a ΔT (0.7°) was estimated to cause a minor increase of 7% in rate.

⁽⁵⁾ When (ferri)_s/(ferro)_s changed during reaction in pseudo-first-order data, a mean was used. In ref 1a, C and E in Table 32 should be interchanged.

⁽⁶⁾ A flow system would permit determination of k_1' at pH 4.74 and 5.74 by permitting measurements at very low conversions and hence at very low mean (ferri)_s/(ferro)_s ratios. For compound III at pH 2.74 and 3.74, only initial rates were measured and no effort was made to determine C. Those initial rates were unchanged when (ferro)_s was increased from 1 to $10 \times 10^{-4} M$.

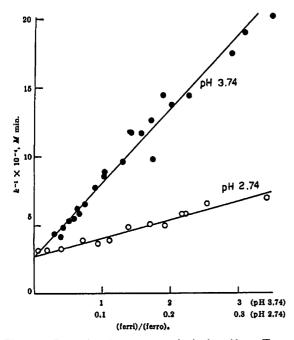


Figure 1. Depression of rate constants by ferriovanide at pH 2.74 and 3.74 (benzoquinone). At pH 2.74, (ferro) = $20 \mu M$ and (Q) = $50 \mu M$. At pH 3.74, (ferro) = $20 \text{ and } 10 \mu M$ and (Q) = $10 \mu M$.

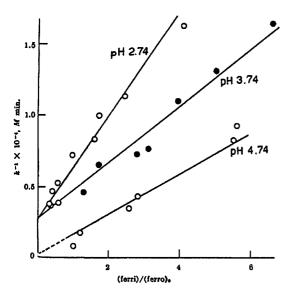


Figure 2. Depression of rate constants by ferricyanide at pH 2.74, 3.74, and 4.74 (2,5-dichloroquinone). For pH 4.74, the ordinate numerals should be multiplied by 5. For pH 3.74 and 4.74, the abscissa numerals should be multiplied by $^{1}/_{10}$ and by $^{1}/_{40}$, respectively. Various values of (Q) and (ferro) were used.

With a pK of 2.3, the unprotonated form of ferro predominates (\geq 70%) in pH 2.74 to 3.74 and, since k_1 ' was pH independent in this range, the principal elementary step involves unprotonated ferro and quinone.

Thus, it cannot involve H-atom transfer. Using a steady-state treatment for

$$ferro + Q \xrightarrow{k_1} ferri + Q^-$$
 (3)

and $Q^- + H^+ \rightleftharpoons QH^-$, Ferro $+ QH^- \rightleftharpoons QH^- + ferri$, one obtains (2) with $k_1' = 2k_1$, and $C = k_{-1}K_{QH}/2k_1k_2(H^+)$, where K_{QH} is the acid dissociation constant for QH⁻. [(ferro)_s = (ferro) in this range.] The mechanism agrees with $C \propto (H^+)^{-1}$ for I. To explain $C \propto (H^+)^{-1.4}$ for II, one can add reactions such as QH⁻ + HFe(CN)₆⁸⁻ or Q⁻ + H₂Fe(CN)₆⁸⁻.

The $\Delta F^{\circ\prime}$ values in Table II were computed from

$$\Delta F^{\circ\prime} = -RT \ln (KK_{QH}, K_{QH} - K_{8})^{1/2}$$
 (4)

where $K_{\rm QH_1}$ and $K_{\rm QH}$ - are acid dissociation constants of the hydroquinone and of its anion, and K_{8} - refers to $Q + Q^{2-} \rightleftharpoons 2Q^{-}$. K was given earlier and the other constants in (4) are known.⁵ The $\Delta F^*_{\rm expt}$ in Table II were calculated from $k_1' = 10^{11} \exp(-\Delta F^*/RT) M^{-1} \sec^{-1}$. For comparison with other data, we extrapolate these $\Delta F^*_{\rm expt}$ to $\Delta F^{\circ\prime} = 0$ using⁹

$$\Delta F^* = \Delta F_0^* (1 + \Delta F^{\circ} / 4 \Delta F_0^*)^2 \tag{5}$$

The ΔF^*_{calod} in Table II were obtained using $\Delta F_0^* = 8.4$ kcal mole⁻¹.

Table II: Kinetic and Thermodynamic Data for Q + Fe(CN). Reaction 3

Quinone	k ₁ ', (M min) -1	AF°', kcal mole-t	ΔP* _{expt} , kcal mole ⁻¹	ΔF*caled: kcal mole=1
2,5-Dichloro	1.9×10^4	5.7	11.7	11.5
Benzo	$1.9 \times 10^{\circ}$	9.1	13.1	13.6
2,5-Dimethyl	1.3×10^{1}	12.5	16.1	15.8

We may compare this ΔF_0^* with that which we estimate from one-electron oxidation of the anion (IH₂⁻) of 2,6-dichlorophenol indophenol by ferricyanide and one-electron reduction of a cation (IH₂⁺) of leuco 2,3-dichlorophenol indophenol by ferrocyanide.¹⁰ The

- (7) $\Delta F^{\circ \prime}$ is the " $\Delta F^{\circ \prime \prime}$ of (3) for the given T and medium.
- (8) C. A. Bishop and L. K. S. Tong, J. Am. Chem. Soc., 87, 501 (1965).
- (1905).

 (9) This relation is motivated by the electron transfer theory in J. Chem. Phys., 43, 679 (1965), J. Phys. Chem., 67, 853 (1963), etc. As noted there, the theory does not exclude ion-paired systems. ΔF_0^+ (i.e., ΔF^0 extrapolated to zero ΔF^0) depends on intrinsic reorganization terms, $^{1}/_{1}\lambda$, on work terms, and now on ion-pair constants. This ΔF_0^+ , according to theory, equals $^{1}/_{2}|AF^0$ (ferroferri exchange) + ΔF^0 (equal and the work terms are small. (Compare eq A42, Appendix VIII, of the 1965 article. Our extrapolation based on (6) permitted the fulfillment of the linear ΔF^0 condition in that Appendix.) When the work terms are not small, this ΔF_0^+ is still a useful property for characterising intrinsic reactivities of different series of substrates towards a given reagent in a given medium.
- (10) H. Diebler, Z. Elektrochem., 67, 396 (1963). (11° and $\mu = 0.1 M$).

360 Notes

corresponding ΔF^*_{expt} are 4.6 and 2.8 kcal mole⁻¹ and, we estimate,¹¹ the corresponding $\Delta F^{0'}$ are -1.8 and -3.2 kcal mole⁻¹. Thereby, the ΔF_{0}^{*} is ca. 5 kcal mole⁻¹. That is, the indophenols are intrinsically more reactive than the quinones. Several explanations could be offered, based on differences in molecular sizes and on a milder rearrangement of bond lengths for the larger conjugated system. However, comparisons with ΔF_{0}^{*} 's of related systems would be useful first.

(11) The $\Delta F^{\circ \prime \prime}$'s for the IH_2^- and IH_2^+ reactions are $-RT \ln (K_*/K_*^{\circ \prime})^{1/2}$, where K_* , K_* , K_* and K_*' refer to $\text{IH} + 2\text{Fe}(\text{CN})_4^{\circ -} + 2\text{H}^+ \rightleftharpoons \text{IH}_3 + 2\text{Fe}(\text{CN})_2^{\circ -}$, $\text{IH}_3 \rightleftharpoons \text{IH}_2^- + \text{H}^+$, $\text{IH}_1^+ + \text{IH}_1^+ \rightleftharpoons \text{IH}_2^+ \Rightarrow \text{IH}_3^+ + \text{H}^+$, respectively. In ref 10, $K_* = 1 \times 10^{\circ 1}M$ and $K_*' = 0.3M$. In O. Tomicek, "Chemical Indicators," Butterworth and Co. Ltd., London, 1951, p 156, $K = 3.6 \times 10^3 M^{-3}$. K_* for phenol blue, an analog of the dichloro compound, is $ca. 2 \times 10^{-3}$, using data in G. Schwarsenbach and L. Michaelis, J. Am. Chem. Soc., 60, 1667 (1938).

Osmotic Coefficients of Tungstosilicic Acid¹

by J. S. Johnson, Jr., and R. M. Rush

Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennesses (Received July 81, 1967)

The heteropolyacid H₄SiW₁₁O₄₀ has attracted considerable interest as one of the few known examples of a strong 1:4 electrolyte and as a well-characterized monodisperse solute of molecular weight between those of simple electrolytes and such large species as proteins. Some years back we measured the activity coefficients of tungstosilicic acid in dilute aqueous solution (0.004-0.04 M) by equilibrium ultracentrifugation and found that turbidities calculated from these activity coefficients agreed with our light scattering measurements. These turbidities were substantially lower than some earlier measurements in the literature. Since then, there have been reports of several other studies in related areas, and the controversy has, if anything, widened.

A group (KKOM)⁴ associated with Kerker remeasured turbidities and included higher concentrations than our measurements. Their values fell between ours and those of Kronman and Timasheff.⁵ They calculated water activities from turbidities, and claimed agreement with some preliminary values obtained isopiestically by Tyree and co-workers at the University of North Carolina (UNC). The turbidities they calculated from the isopiestic measurements were 6-10% lower than their measured values. However, differences between turbidities measured in the various laboratories are considerably greater.

Scatchard and Yoest at the Massachusetts Institute of Technology (MIT) also carried out some isopiestic measurements, and in collaboration with the UNC group, published an analysis of both sets (MIT-UNC).

They concluded that some early low concentration UNC points, which appeared to extrapolate to lower activity coefficient values than we obtained by ultracentrifugation, were in error, that the ultracentrifugation and isopiestic methods were in reasonably good agreement, and that their values were substantially different from KKOM over the entire concentration range.

Shortly before their paper appeared, a second Kerker group (KOK) published another study⁶ of water activities of tungstosilicic acid solutions, this time measured with a vapor-phase osmometer. This set of values fell between KKOM and MIT-UNC. Pelzer and Schönert⁷ have recently published osmotic coefficients of aqueous HCl-H₄SiW₁₂O₄₀ solutions. Although no two-component tungstosilicic acid solutions were included in their study, they concluded that their data indicated closer agreement at low concentrations with the preliminary UNC osmotic coefficients than with our ultracentrifugation values.

From this summary, it is apparent that there is no general agreement concerning the free energies of tungstosilicic acid-water solutions. Although equilibrium ultracentrifugation and the MIT-UNC study are consistent, the scatter of the data makes further study desirable, and the rejection of low-concentration points from the preliminary UNC study should be confirmed. Resolution of these conflicts with other laboratories is desirable, not only because of the widespread interest in this system, but also because a suggestion we made,2 that $H_4SiW_{12}O_{40}$ solutions might be useful in calibration of light scattering photometers for measurements of aqueous solutions, depends on knowledge of the nonideality of the system. We have therefore carried out isopiestic measurements extending both higher and lower in concentration (from 0.02 to 1.3 m) than previously made by this technique.

Experimental Section

The isopiestic equipment and the techniques of measurement have been described previously.⁸ Sodium chloride solutions were used as standards, and two cups were used for each solution and standard; the concentration of solutions in each of the duplicates for each

- (1) Research sponsored by the U. S. Atomic Energy Commission under contract with Union Carbide Corporation.
- (2) J. S. Johnson, K. A. Kraus, and G. Scatchard, J. Phys. Chem., 64, 1967 (1960).
- (3) M. J. Kronman and S. N. Timasheff, ibid., 63, 629 (1959).
- (4) M. Kerker, J. P. Kratohvil, R. H. Ottewill, and E. Matijevic, ibid., 67, 1097 (1983).
- (5) S. Y. Tyree, Jr., R. L. Angstadt, F. C. Hents, Jr., R. L. Yoest, and G. Scatchard, ibid., 70, 3917 (1988).
- (6) J. P. Kratohvil, L. E. Oppenheimer, and M. Kerker, ibid., 70, 2834 (1966).
- (7) H. Pelser and H. Schönert, Ber. Bunsenges. Physik. Chem., 70, 897 (1966).
- (8) R. M. Rush and J. S. Johnson, J. Chem. Eng. Data, 11, 590 (1986).