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Co-ordinates and * vibrationally-adiabatic ™ approximations are described for reactions in three
dimensions. Some reactions may demonstrate a fairlystrict adiabaticity for certain degrees of freedom
and a statistical adiabaticity for others. Some will simply be strongly vibrationally-nonadiabatic.
Several topics in kinetics are considered from the viewpoint of vibrational-adiabaticity or mild
non-adiabaticity.

1.—INTRODUCTION

To treat the mechanics of chemical reactions it is desirable to have a set of
co-ordinates (natural collision co-ordinates) which pass smoothly from those suited
to reactants to those suited to products. Such a set was recently given for linear
collisions ! and an approximate solution was obtained for nearly vibrationally-
adiabatic reactions. A recent extension to three dimensions 2 is summarized below,
and the probable nature of several nearly vibrationally-adiabatic solutions is outlined.
In anticipation of the results of such a mode of solution, several problems are
examined: translation-vibration interaction inchemically-reactive collisions, mechanics
and a statistical-dynamical theory of reaction cross-sections,® quantum corrections
to computer trajectories, and the quasi-equilibrium assumption in Kinetics.

2.—NATURAL COLLISION CO-ORDINATES

In a three-centre reaction,*
AB+C—-A+BC (2.1)

there are six-co-ordinates in the centre-of-mass system. On introducing body-fixed
co-ordinates via an Eulerian angle (6, ¢, x) rotation matrix® and then letting the
body-fixed yz plane be the instantaneous plane of the three atoms, there are obtained
seven co-ordinates of which one is redundant. This seventh is eliminated by defining
the orientation of the body-fixed axes in the yz plane. A locally Cartesian method
was used.®

Curvilinear co-ordinates n and s were introduced ! to replace z and Z, as in fig. 1.
(Here, z is a scaled 7z-component of the AB distance and Z is a scaled z-component
of the distance between C and the centre of mass of AB.) A co-ordinate m of
magnitude (y?+ Y?)* was then defined.® It describes the nonlinearity of the
configurations.

The six independent co-ordinates are now s, n, m, 0, ¢, x. Potential energy
profiles in the (m, n, s) subspace have cross-sectional shapes indicated by the shaded
regions in fig. 2. The reacting system typically moves through these regions. For
this reason, co-ordinates (m, n) were transformed into polar co-ordinates (r, y), where
m and n equal r sin y and ry-r cos 9, r, being determined by the shape of the profiles
and being a function of s, the reaction co-ordinate.

Finally, to remove bothersome cross-terms at large +s between p and @, o X
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the angles y and x can be transformed into angles desc ibing orientation with respect to
space-fixed axes: a matrix (sin ® cos @, sin © sin @, cos ©) was expressed in terms
of (0, sin y, cos y) by the Eulerian angle rotation matrix. (However, for some purposes,
co-ordinates s, T, 7, 6, ¢, x may be more convenient than s, r, ©, ®, 6, ¢.)
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Fic. 1.—Orthogonal curvilinear co-ordinates (», s) of any point P. »n is the perpendicular distance

to any curve C and s is the distance from any fixed point on C to the foot of that perpendicular,
m

0N

Fig. 2.—Cross-sections of a potential energy surface. The Zz plane, curve C, and skewed axes are

those of fig. 1. A reacting system moves throught the shaded regions, executing a rotation (free at

first), a vibration and a translation in this (. n, 5) internal co-ordinate space. Initially, the rotation
is about the OZ axis, the vibration is perpendicular to OZ and the translation is parallel to OZ.

)

The potential energy is a relatively simple function of (s, r, y).? The Hamiltonian
is of the form given by (2-2), where T, denotes a number of cross-terms, of which
those between the two sets of angle variables, (9, ¢) and (®, @), are most prominent.
These cross terms vanish when s2 & c0.

1, .8\, 1 (., P 1(, p}
SO (RS WS (5 SRS T T (. T,+V. :
H 2y<p' + nz) 2ur§(p ot i’ @ +oi\ P tSin? 6 et (2.2)
Here, u is [m mgmc/[(m4+mg+mc)t, nisessentially 1+(ro—r)k, k(s) is the curvature of
curve C in fig. | at any s, and I(s) is essentially the largest moment of inertia at each s.
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The potential energy ¥ can be written as the value V,(s) for any point on curve

C plus the increment V,(s, r, 7) to go to any other point in the (m, n, s) space at the

same s. If the r-motion is assumed to be coupled mainly to the s-motion, (approxi-
mation 3 of §3) then

VE Vl(s)"' VZ(S, To, ?)+ Vz(S, r, 0)— VZ(S’ Fo, 0)° (2'3)

TABLE 1.—PHYSICAL NATURE OF THE CO-ORDINATES FOR SEVERAL VALUES
OF REACTION CO-ORDINATE §

co-ordinate nature at s & —c0 nature at s = s¥ nature at s = + 0
s radial translation of  asym. stretching vibra- radial translation of A
AB relative to C tion of ABC # relative to BC
r vibration of AB sym. stretching vibra- vibration of BC
tion of ABC #
0,¢ orbital translation of  rotation of ABC # @ orbital translation of A
AB relative to C relative to BC
0,0 rotation of AB doubly degenerate ben- rotations of BC

ding vibration of ABC * &b

a This nature applies only the adiabatic case A in the text. For adiabatic case B these two items
would be interchanged.
b ®—9 and P-¢ describe the bending.

The physical significance of the co-ordinates, in various regions of the six-
dimensional configuration space, is given in table 1. At values of s intermediate
between large +s and s*, the ©, @ motions are hindered rotations rather than
rotations or bending vibrations.

3,—SOLUTION OF THE EQUATIONS OF MOTION

The Hamilton-Jacobi and Schrodinger partial differential equations are obtained
from a Hamiltonian such as (2.2) in the standard way.!% !! Because of the close
relationship between the two partial differential equations, paralle] treatments of the
classical and quantum mechanics can be made. As the extensive literature on
collisions and on molecular vibration-rotation interactions amply testifies, there is a
variety of subsequent treatments of these equations which can be introduced. An
adiabatic-nonadiabatic approach is perhaps the most tractable. One adiabatic
version assumes?: (1) all motions are adiabatic relative to the motion along s, the
r-motion being the most adiabatic of all; (2) Case A the ®, ® motion is adiabatic
relative to the 6, ¢ one, or Case B the 0, ¢ motion is adiabatic relative to the ©, ® one;
(3) apparently minor r, y coupling terms can be neglected in the potential energy.

Because of the assumed adiabaticity of the r-motion especially, approximation (3)
could be fairly easily avoided, but it does lead to simpler results. Approximations
(1) and (2) are made classically and quantum mechanically by writing (for case A,

for example)
Wy ,(s) Ua(r; 5) ¥3(©, @; 6, ¢, 5) Y6, 95 5) @.1)
W W (s)+ Wa(r; )+ Wi (O, @; 0, ¢, )+ Wa(6, ¢; 3), 3.2)
where W is Hamilton’s characteristic function. The adiabatic approximation is
actually made by neglecting the partial derivatives of each ¥, or W, with respect to
the variables to the right of the semicolon, which we shall call its weakly-dependent
variables. In case B, the ®, ® and the 6, ¢ in the above equations are interchanged.
In the adiabatic approximation, variations in weakly-dependent variables of
a ¥, (or W) do not change the quantum numbers (or classical phase integrals)
associated with it. Neverthless, in this adiabatic approximation large changes may
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occur in the physical nature of the strongly-dependent degrees of freedom (viz.,
table 1), in the shape of ¥, or W,, and in the energy associated with the y; or W,.
(One obtains, in fact, adiabatic correlation diagrams for the energy contributions.)

In the next approximation the various approximations (1)-(3) can be examined.
For example, (3) and others not mentioned can be examined by perturbation methods.
The non-adiabatic corrections to (1) and (2) can be studied in several ways, one
approximate one being of particular interest. It is relatively straightforward,
maintains the parallelism of the classical and quantum calculations, and has intuitive
appeal : the weakly-dependent parameters in any ; or W, are replaced by the classical
time-dependent solutions of the adiabatic equations, and the time-independent
Schrodinger and Hamilton-Jacobi equations for a ; and a W, are replaced by the
corresponding time-dependent ones.

In this way it is possible to calculate approximately the extent of excitation of the
vibrational, rotational and orbital motions of the products. In this time-dependent
treatment of non-adiabatic calculations of cases A and B can be regarded as the
chemical counterparts of the low mass and flywheel approximations, respectively.
The latter were introduced by Cross and Herschbach !2 in their calculation of classical
rotational-translational energy exchange. Moreover, the adiabatic collision in the
chemical reaction case can be regarded as the analogue of the elastic collision in
physical scattering : in both cases some event happens (e.g., reaction or scattering),
but there is no change in quantum numbers or classical phase integrals of the periodic
motions.

When a considerable change of reduced mass occurs, as, for example, in

H+Cl,-»HCI+Cl, (3.3
one limiting approximation might prevail before the activated complex region

(s<s*) and the other one after (s>s*). In (3.3) the flywheel analogue could prevail
initially and the low mass one finally.

4, —VIBRATION-REACTION CO-ORDINATE INTERACTIONS

It appears that the present equations for the r, s motions can be made similar to
those derived for linear collisions elsewhere,! so that analogous deductions would
then follow. Several are summarized below,

CURVILINEAR TUNNELLING.—The standard method of computing tunnelling rates
in chemical reactions calculates the barrier along the “ reaction path ” and assumes
a one-dimensional Cartesian co-ordinate kinetic energy. It actually over-estimates
the tunnelling rate for any given potential energy surface thereby.! The error is
small with energies just below the top of the barrier, but increases as the energy
difference becomes increasingly negative. Two-dimensional calculations based on
natural collision co-ordinates r and s have been used ! to estimate the correct tunnelling
rate, and may explain overestimates of tunnelling rates by the standard method.
Detailed comparison with computer results would be of interest.

CONTRIBUTION OF VIBRATION TO RATE.—If the vibration frequencies of AB and
(symmetric stretching) of ABC* are v and v*, the adiabatic change of vibrational

energy is (v+1) h(v* —v)(quantum), or J, (v* —v)(classical), where J, is 55p,dr, the

phase integral for the vibrational motion.*® Typically, v* <v, causing a decrease in
vibrational energy. According to the present r, s equations, the liberated energy
goes into the energy of the s-motion, and so helps the system overcome the barrier
by that amount. The agreement of this result with the results of numerical classical
mechanical integrations for linear collisions has been discussed previously.*?
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VIBRATION EXCITATION OF PRODUCTS.—In addition to adiabatic changes of vibra-
tional energy non-adiabatic changes can also occur, corresponding to changes in
vibrational quantum number or phase integral. A comparison of thecalculated results
with computer data will be interesting. The theory should break down when the
non-adiabatic effects become too large.

S.—RELATION TO A STATISTICAL-DYNAMICAL THEORY OF REACTION
CROSS-SECTIONS

The earlier analytical mechanical discussion indicates that for any given impact
parameter and initial relative velocity of the colliding pair the barrier to reaction is
several-fold : (1) the potential energy barrier; (2) the centrifugal potential energy
barrier, which is calculated in a simple way when approximate adiabaticity of the
co-ordinate associated with the orbital angular momentum prevails ; (3) the change of
vibrational energy in forming the activated complex in the given vibrational state for
the r-motion ; and (4) the increment in energy when the transient bending modes are
formed from the initial rotational ones (states for bending modes are more widely
spaced then those for the rotations).

In a recent statistical-dynamical theory 3 of these reactions, simple expressions
were obtained for the total reaction cross-section and for the reaction probability
at any impact parameter, as a function of initial rotational, vibrational, and transla-
tional state of the reactants. In the theory the above four contributions to the effective
barrier were taken into account, the fourth in a statistically-adiabatic manner such
that the quasi-equilibrium assumption in §7 was satisfied. Detailed classical computer
data have been given for the reaction cross-sections of the H +H, reaction.!* Ina
comparison of the theory with these data the agreement between was encouraging,
there being no adjustable parameters.> At high translational energies the comparison
indicated occurrence of some vibrational non-adiabaticity. With the aid of an
approximate solution for the present equation for the s-motion it would be possible
to extend this simple model to estimate differential reaction cross-sections.

6.—QUANTUM CORRECTIONS FOR CLASSICAL TRAJECTORIES

Reaction cross-sections have been obtained from computer data only for classical
mechanical systems. Some quantum correction of the results for the H + H reaction
was made !4 by restricting the initial rotational-vibrational energy to values allowed
by quantum mechanics. This point is now explored further.

At any value of the reaction co-ordinate s before the system reacts, some quantum
corrections can be made via the WKB method. Namely, the initial vibrational, rota-
tional, orbital, z-component of rotational and z-component of orbital phase integrals

55p,dq‘ are set equal to the values (v+4)k, (j+ b, (I+3)h, mh, m,h, respectively.l*

(These refer to the r, (©, @), (6, ¢), ® and ¢ motions, respectively.) If the adiabaticity
occurred at later values of s, i.e., if the equations were adiabatically separable into one-
dimensional equations for all s, the above restrictions on the phase integral would be
automatically imposed by virtue of their having been imposed initially.

The procedure of only restricting the initial rotational-vibrational energies to
those allowed by quantum mechanics amounts to imposing two of the above five
phase integral conditions. Because of the possible adiabatic cerrelation of the
original orbital-rotational motion of the reactants with the rotational-bending vibra-
tional motion of the activated complex, it is desirable to impose the other phase
integral conditions to achieve better results for the threshold region. Otherwise,
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any zero-point, bending vibrational motion (if it indeed occurs) would be missed.
However, outside of the threshold region the procedure originally used !4 should
suffice.

As application of the WKB method to the adiabatically-separated equations
shows, there are additional quantum effects influencing the motion along the reaction
co-ordinate (e.g., diffraction). However, they are less important for the reaction
rate, except at low enough energies for tunnelling to occur.

A further effort towards computing quantum effects might be made by comparing
the classical mechanical computer data of the original equations with those based on
equations involving natural collision co-ordinates and into which various simplifying
approximations have been introduced. If suitable agreement is achieved, computer
studies of the quantum analogues of the latter would be useful.

7.—QUASI-EQUILIBRIUM, ADIABATICITY AND STATISTICAL ADIABATICITY

In the present section a quasi-equilibrium relation between reactants and activated
complexes of the same energy E is derived assuming adiabaticity.!® The resulting
quasi-equilibrium equation has been tested 7 by comparison with the computer
data. The results are summarized later.

We consider a reacting pair whose total energy lies in (E, E+dE) and which isin a
quantum state v for certain vibrational modes. The quantum numbers of the other
vibrational and rotational modes are denoted by n. The remaining quantum numbers
are [ and m;, where / describes the initial orbital angular momentum. If the initial
momentum along the reaction co-ordinate g is p and the initial energy of the rotational-
vibrational modes of the reacting pairs in E,,,, then

E = Ey+p*[2u, (7.1)
where E,,, is independent of . The number of translational states of a pair in state
Ivn, in (E, E+dE) and in (g, g+dg) is dpdg/h, where pdp/uis dE. The reactive flux of
such states, computed by dividing by dg to obtain a density along g and by multiplying
by ¢ and by the reaction probability Wy, is Wy, dE/k, since dE is gdp. The reactive
flux from all states in (E, E+dE) is dEY (2/+ 1)Wi,np/h. The sum is over all » for

n

which E,,,<E.

A state lon adiabatically connects with one whose energy for all rotational-
vibrational modes in the activated complexregion is E%,. Enowequals Ej,+pi [2p,,
where the second term is the kinetic energy along the reaction co-ordinate. Of the
original states, those which lead to reaction are those for which Ej, <E. The number
of states /on in dg* and in dE is dg*dp, /h, where dp, = p,dE/p,. The flux is
G*dp,/hand sois dE/h. An adiabatic noncrossing rule is now invoked, and thereby
this flux expression is summed over all states for which Ej,<E and over all reaction
paths if there is more than one. Thus, v

;:(21 + 1wy, =T 1 (7.2)

: meln
(Elun<E) . (Elfm <E)

where I' is a summation operator over all reaction paths. To avoid confusion we
replace m,/n on the right side by n*. (The designation m,/n merely indicates origin
of a state in a correlation diagram.)

Eqn.. (7.2) is a quantitative statement of a quasi-equilibrium between reacting
pairs and activated complexes of the same E moving in the forward direction and was
originally derived !¢ in that way. From it,anactivated complex theory rate expression
can also be derived if an equilibrium distribution of reactants, states is assumed.
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In terms of reaction cross-sections 6,,,, (7.2) becomes
Z(k’/n)a,,,,p =T) 1, (7.3)
n n’ﬁ

since o,,, equals'® (n/k?) Y (21+ L)wy,,,.
i=0

In a test of (7.3) using computer data and classical versions of the sums, the left-
hand side was found to be 9-6, 24-5 and 55, while the right-side was 7-0, 22 and 50,
when E was 15-5, 17-0 and 18-5 kcal/mole, respectively.!?> 1® The agreement is
encouraging.?® The E are those of interest in thermal reaction studies.

However, one might expect the rotational and orbital modes to be adiabatic in at
best a statistical sense rather than a rigorous one. This statistical adiabaticity would
prevail when each relevant initial state yields at each s not necessarily a single state
but a group of states fairly symmetrically distributed in energy about the adiabatically
determined state at that s. It will be interesting to see if the computer data exhibit a
statistical adiabaticity for those modes and to see when the quasi-equilibrium relation
(7.3) can be derived from a suitable statistical adiabaticity.
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