REACTIONS OF

agreement with the experimental data points indicates
that Eq. (C) can adequately describe the results. The
dependence of the O3 quantum yield on the flow rate
has previously been attributed by Groth® to the
failure of removing all of the generated ozone, but the
present analysis shows that it is inherent to the kinetic
mechanism. It is also significant that the ozone quan-
tum yield is a function of the light intensity. However,
Eq. (C) predicts that, if 7/v can be made sufficiently
small by the choice of the flow rate, the production of
ozone in O, at atmospheric pressures provides a suitable
1470-A actinometer regardless of the intensity of the
radiation.
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Summarizing briefly, the amount of ozone formed in
the 1470-A photolysis of oxygen has been studied in a
flow system as a function of pressure and temperature.
At atmospheric pressure, the ozone quantum yield tends
toward two, provided the flow rate is sufficiently high.
At lower pressures, the ozone quantum yield decreases
with decreasing pressure and increasing temperature.
These effects are interpreted as arising from the
reactions of !D oxygen atoms. The data are used to
derive ratios of the rate constants associated with the
individual O(*D) reactions. On this basis, the reaction
of O(D) with ozone is found to be fast, whereas those
with oxygen and helium are relatively slow.
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On the Theory of Chemical-Reaction Cross Sections. II. Application
to the H + H, Reaction*

R. A. Marcus
Noyes Chemical Laboratory, University of Illinois, Urbana, Illinois
(Received 16 June 1966)

The statistical-dynamical model formulated in Paper I is applied to the H+Hy—H,+H reaction and
compared with the exact three-dimensional classical-mechanical computer calculations of reaction cross
sections. Encouraging agreement is obtained in the low-to-moderate relative velocity range, without the
use of adjustable parameters. At very high velocities the comparison indicates the occurrence of some
vibrational nonadiabaticity. Calculations are presently in progress to see if this nonadiabaticity equals
that expected from a companion paper on analytical mechanics of certain collisions. Applications are also
made to several topics: relations between classical and quantum computer calculations of cross sections,
between activation energy and the recently reported threshold energy of reaction (D+H,—DH-+H),

and tests of activated-complex theory.

I. INTRODUCTION

N Paper I a statistical-dynamical theory was
formulated for chemical-reaction cross sections.! It
is applied in the present paper to the H+Hy—H,+H
reaction. Extensive computer studies have been made
for this reaction by numerical integration of the
classical-mechanical equations of motion, both for the
case of three atoms on a line? and for actual collisions
in three dimensions.??® In the latter study® reaction
cross sections o,;, were calculated for various rotational
states of Hy, (=0 to 5), for one vibrational state of
H, (v=0), and for various initial relative velocities
(Ve=0.9X10° to 2.0X10% cm sec™!). A comparison of
these computer results with the theory of Paper I is
given below.

II. EQUATIONS

In Paper I the activated-complex concept was used,
in conjunction with statistical-dynamical postulates,

* Supported by a grant from the National Science Foundation.

1R. A. Marcus, J. Chem. Phys. 45, 2630 (1966).

¢ F. T. Wall, L. A. Hiller, Jr., and J. Mazur, J. Chem. Phys.
29, 255 (1958), and subsequent papers.

3 M. Karplus, R. N. Porter, and R. D. Sharma, J. Chem. Phys.
43, 3259 (1965).

whose possible dynamical origin is discussed in a later
paper:

(i) quasiequilibrium postulate for population of
activated complexes,

(ii) adiabaticity of some degrees of freedom, where
appropriate, and

(ili) a reaction probability postulated to be a func
tion of the excess energy along the reaction coordinate.
(The excess is the initial relative translational energy
minus the energy of the reaction barrier.)

In (iii) the barrier consists of the natural barrier, the
centrifugal barrier, and the contribution from the
adiabatic coordinates. The quasiequilibrium postulate
(i) is the following: In an ensemble of reacting pairs
having a given energy, a given total angular-momentum
quantum number J (rotation plus orbital), a given
quantum number v for the adiabatic degrees of freedom,
and a uniform distribution over all 9 quantum states
consistent with this description, the ¢ priori probability
of finding the pair in any quantum state near the
activated-complex region is 1/9. Weaker forms of this
postulate were obtained by summing over J, or over v,
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or over both, for all J and v consistent with the given
energy.

Postulates (i) to (iil) were used to obtain an integral
equation which was, in turn, solved to obtain an
expression for the reaction cross section as a function
of the relative velocity and of the initial state of
reactants. The equations for the reaction of particular
interest here are given below, namely for an atom
reacting with a diatomic molecule to form an assumed
linear activated complex, the system having one
adiabatic vibration during the collision.? This adiabatic
vibration is the degree of freedom which is an H,
vibration in the Hy and which goes over into a sym-
metric stretching vibration in the H; activated complex.®

The rotations were treated classically. We quote the
equations [Eq. (1) outside of the threshold region and
Eq. (2) inside] in a form which neglects rotation-
vibration interaction. The latter is included, however,
in the original equations (15) and (25) of Ref. 1 from
which (1) and (2) were obtained as particular cases.
Outside of the threshold region

aoip=(Tal?/2uE,) (I'o/Io%) [N*,n(E,—V.) ], (1)

and at the threshold,

Ovip= (Tw#2/2u E,) [ (I*+1)o/Io+]
XN*in(Ep—V—EF) ] (2)

In these equations T' represents a summation over
all geometrically isomeric and optically isomeric
reaction paths. u is the reduced mass of the two re-
actants. It and I denote the moments of inertia of the
linear activated complex and of the diatomic reactant,
respectively. ¢t and o are the symmetry numbers.
N+,i5(y) is the number of bending vibrational quantum
states having an energy equal to or less than y in the
activated complex. E;* is (I/It) E;, where E; is the
rotational energy of the reactant. E, is the initial
translational energy in the center-of-mass system.
V.is an energy barrier, given by

Ve=€v+'— Ev; (3)

where E, is the vibrational energy of the adiabatic
modes of the reactants and e,* is the sum of the vibra-
tional energy of the adiabatic modes of the activated
complex E,* and the potential energy of the (reaction
coordinate) ¢" motion.” (et is the minimum energy—

4 Compare use of a similar postulate in unimolecular reaction
rate theory for a local quasiequilibrium between energized mole-
cules and activated complexes of the same .J and E [R. A. Marcus
and O. K. Rice, J. Phys. & Colloid Chem. 55, 894 (1951); R. A.
Marcus, J. Chem, Phys. 20, 359 (1952); 43, 2658 (1965) .

§R. A. Marcus, J. Chem. Phys. 43, 1598 (1965).

¢ (a) For a summary of evidence based on analysis of computer
results see Footnote 8 of Ref. 6(b); (b) R. A. Marcus, J. Chem.
Phys. 45, 4500 (1966); (c) 45, 4493 (1966); (d) (to be pub-
lished).

7 When proper coordinates are used, the energy can be written
as the sum of various contributions, though the parameters
appearing in the properties of the adiabatic modes may vary
with position along the reaction coordinate.t®
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aside from the external centrifugal contribution—
needed to pass through the set of activated-complex
configurations.) A possible correction to Egs. (1) and
{2) for an expected nonadiabaticity when the velocity
along ¢" is too high in the curved region is discussed
later.

Equations (1) and (2) are compared below with
classical-mechanical computer calculations of ¢,;,. A
quantum-mechanical treatment of the ¢" motion leads
to the presence of a transmission coefficient, but we
omit the equations! for a quantum ¢" motion here.

When the bending vibrations are treated classically,
Ntuin(y) equals m?/242 where m is the maximum
value of the classical vibration action #pdg cor-
responding to the energy y. It is essentially equal to
(m—+1) k, where m is the principal quantum number for
the doubly degenerate bending vibration (Appendix I).

III. APPLICATION TO THE H + H; REACTION

The sum of the cross sections for the reaction
A+4+BC—AB+C and —A+BC was tabulated® for
the conditions cited earlier. This sum can be obtained
from (1) to (4) by taking s=c¢t=1 and I'=2; there
are two geometric isomeric paths, and A, B, and C are
distinguishable in the calculation.

A. Threshold

The potential energy V, at the saddle point of the
linear complex was 9.13 kcal mole~.3 The change in
vibrational energy E,t— E,, in the adiabatic vibration
was the difference of zero-point energy, 3.08 kcal
mole'.2 Thereby, V,in Eq. (3) is 6.05 kcal mole~!. The
threshold energy is the value of E, for which sy,
exceeds some preassigned amount. For example, at
7=0 this E, is 6.89 and 6.93 kcal mole™? according to
a least-squares equation,® when the preassigned o is
0.010 and 0.033 a.u., respectively [1 a.u.=#(0.529 &)2].
[However, the accuracy of this six-constant equation
over this very small part of the range (5 a.u.) of gy
values is not clear.] The corresponding values of E,
computed from Eq. (2) are 6.35 and 6.60 kcal mole™,
respectively. The mean difference of about 0.4 kcal
mole™! is not far from the corresponding difference of
0.3 kcal mole™* for the one-dimensional case® of all
three atoms on a line, and might be due to a small
nonadiabatic internal centrifugal effect.?

The difference in effective threshold energies for the
j=0and j=35 cross section is, according to (2), expected
to equal the value of (7/I*)E;, which is about 0.9
kcal mole!. The computer value of about 0.7 kcal
mole is fairly close to this value. (For accuracy limita-
tion of the 0.7, however, see above.)

B. Cross Sections

Outside of the threshold region the computer-
calculated plots of o,;, versus relative velocity Vg for
7=0 to j=35 were virtually superimposable, particularly
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Fic. 1. Total reaction cross section gvp, for all paths, versus
relative velocity of reactants Vg. Reaction: H4+Hy—H,+H at
7=3. Exact results: Ref. 3 (computer trajectories). Second curve:
Eqs. (1) and (2). Units: ojp (atomic units), Vg (units of
0.979<10% cm sec™?).

when the scatter in the computer calculations is taken
into account. A least-squares fit of the computer results
for j=3 is plotted in Fig. 1.

Similarly, Egs. (1) and (2) yield very similar plots
for j=0 to j=S5, except at threshold. In Fig. 1 the o.;,’s
calculated from Egs. (1) and (2) are plotted for j=3,
taking the anharmonicity of the bending modes into
account (see below). In the threshold region, Eq. (2)
should be used, while above the region (1) should be
used. For j=3 they yield the same answer at V=12,
and we have used (2) for smaller Vg’s and (1) for
larger ones for simplicity.®

At incident translational energies not far from
threshold, the harmonic treatment of the bending
vibrations is adequate. However, at high energies
anharmonicity should be included in computing the
function N+*.(E,—V.) in Eq. (1). The quartic
anharmonicity used in the plot in Fig. 1 was estimated
from the value of the saddle-point potential energy
given? for bond angles of 7, 5/8, and /3. The function
N+, was then calculated with the aid of some recent
results on the energy of an anharmonic oscillator as a
function of its quantum number? and action (Appendix
I). In this way N*.;(y) was found to have a some-
what lower value than the harmonic value, since the
actual anharmonic bending oscillators were stiffer than
the harmonic ones. At the highest velocity, the dif-
ference in Nty (y) was only 35%, and was less at
lower velocities.

The agreement between Egs. (1) and (2) and the
computer results is seen to be reasonably good, when
the absence of arbitrary or adjustable parameters is
taken into account. In the moderate velocity range

8 An integral equation bridging the gap between (1) and (2)
was actually given in Ref. 1 but not solved. Since the difference
between (1) and (2) is minor the alternative approximate pro-
cedure is quite adequate.

9 S, I. Chan, D. Stelman, and L. E. Thompson, J. Chem. Phys.
41, 2828 (1964).

961

(this range is the one of typical thermal interest®) of
about 1.1 to 1.25 the curve based on Egs. (1) and (2)
is slightly lower than the computer one. There is some
tendency for the two curves to diverge at high velocities.

The deviation at thermal velocities is rather small.
It is about the same as that found in the test of the
quasiequilibrium hypothesis,’? and so is not due to the
dynamical postulates. If it is due to neglect of rotation—
vibration and other anharmonic interactions, Egs.
(15) and (25) of Ref. 1 could be used to calculate
ovjp- One would introduce into those equations the
value of a function w* appropriate for the case when
these interactions are included.

The divergence of the two plots at high Vg’s leads
to a ratio of apparent limiting values® of a factor of
about 3 (Appendix IT). At high Vz’s the approximation
of adiabaticity for the symmetric stretching mode of
Hi* must break down: When the system strikes the
curved part of the reaction path in the usual center-of-
mass plot of potential-energy contours for linear
collisions, translational energy is converted to vibra-
tional energy of this mode in excess of the adiabatic
change.®®—4 This extra energy is “locked in” and so is
unavailable for distribution among the bending modes.
Thus, the excess energy, E,— V. in Eq. (1), estimated
on an adiabatic basis is too high at high Vz’s and so
Nt (Ep,—V,) and 6., are correspondingly too high.

One might conjecture that Eq. (1) may still be
applicable, provided E, is not too large, but that
the value used for ¢;+ in (3) should be that computed
from an equation which includes the nonadiabatic
correction [Eq. (33) of Ref. 6(b)]. Computations of
nonadiabatic contributions are in progress. However,
an independent analysis of this point can be made
by examining the distribution of vibrational energies
in the symmetric stretching mode in the activated-
complex region, presently hidden in the computer-
calculated trajectory studies.

10 The rate constant for a given state v varies as

> f fiE,,
i JBy

where f is Epoypexp[ — (Ep+E;)/RT]. (Compare Eliason and
Hirschielder.!t) The thermal average of E, is therefore

E/ Epdep/ E/ fdE,.
i JEp iJEp

Introduction of Eq. (1) and the harmonic approximation for
avip yields (E,)=V,+3RT when VO RT.

u 1. O. Hirschfelder and E. Wigner, J. Chem. Phys. 7, 616
(1939); M. A. Eliason and J. O. Hirschfelder, sbid. 30, 1426
(1959); L. Hofacker, Z. Naturforsch. 18a, 607 (1963); R. A.
Marcus, J. Chem. Phys, 43, 1598 (1965).

2R, A. Marcus, J. Chem. Phys. 45, 2138 (1966).

13 Expression (1) certainly leads to a limiting value: At high
energies the configuration space contribution to Nty becomes
constant because then the bending mode becomes essentially
a rotation, The harmonic equation, Eq. (2), leads to a a,;, which
increases indefinitely with energy since the configuration space
conﬁfibution increases with energy without limit for a harmonic
oscillator.
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Even at low energies there is some nonadiabaticity,
which should give rise to a nonadiabatic leak; that is,
there will be a small but finite cross section for reactions
in which the symmetric stretching mode of the activated
complex has an action even as small as zero rather than
that of the initial H, vibration. A quantitative classical
and quantum-mechanical treatment of that effect has
been given elsewhere.®®Using it, it should be possible to
calculate the “nonadiabatic tail” of the g, versus Vg
plot at energies below “threshold,” and compare
with the tail observed? in the computer studies.

IV. COMPARISON OF QUANTUM AND CLASSICAL
CROSS SECTIONS

The computer problem of exact calculation of
reaction cross sections for the quantum-mechanical
system is more formidable than that for the classical-
mechanical one. Indeed, only one quantum study for a
chemical reaction has appeared, and in that study only
several transmission coefficients have been reported
thus far.* Some comparison of the quantum and
classical forms of Eqgs. (1) and (2) is of interest,
therefore, particularly since a question which lies at the
heart of any justification of activated-complex theory
also arises here.

When only the symmetric stretching and bending
modes are treated in a quantum manner, the ratio of
quantum to classical cross sections is

aip(quantum) /oy, (classical)
=N+, (quantum) /N+p(classical), (4)

according to Egs. (1) or (2).

We assume for N+yi,(quantum) that the bending
modes are fully quantized in the activated complex. It
should be noted, however, that although there is a
good reason for such quantization of the symmetric
stretching mode (vibrational adiabaticity plus initial
quantization implies subsequent quantization),!! the
question is still moot for the bending modes: Unlike
the stretching mode they arise not from vibrations
but from a combination of orbital and rotational
modes of the reactants. Suitable quantum-mechanical
computer studies will resolve this question of the extent
of quantization of the bending modes. An analytical
mechanical discussion is given in a later paper.5d

The ratio in (4) tends to unity as the energy is
increased. At low energies the harmonic-oscillator
approximation may be used. N*tyjp(quantum) is

(N+1), where N is the principal quantum number
of the degenerate oscillator and varies in the sum from
0 to its maximum M for the given energy available, y.
The sum equals 3(M+1)(M+2), therefore. Nty
(classical) is ¥2/2(4v)?, where v is the bending frequency.
If a continuous variable M, is defined by the relation

4 E, M. Mortensen and K. S. Pitzer, Chem. Soc. (London)
Spec. Publ. 16, 57 (1962).
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y={(M.+1) v, M agrees exactly with M, when M is an
integer. We have

ovip(quantum) /o,;,(classical)
=(M+1)(M+2)/(MA+1)2 (5)

This ratio is zero until the excess energy equals the
zero-point energy kv for this degenerate vibration, 2.8
kcal mole™ according to the surface used earlier.
The ratio in Eq. (5) is then 2 and the quantum g,
is about 0.6 a.u. according to Egs. (1) or (2). If the
threshold energy were defined as one for which o,
exceeded 0.01 a.u., as suggested by Karplus ef al.® for
purposes of tabulation of their computer data, the
difference in quantum and classical threshold energies
at =0 would be about (2.8—0.3), i.e., 2.5 kcal mole~™.
If the experimental threshold energy were defined as
that energy for which ,;, exceeded 0.2 a.u. (say), the
difference in quantum and classical threshold energies
would be (2.8—1.5) =1.3 kcal mole™.

The plots of ¢,;, versus Vg for the quantum and
classical treatments are otherwise fairly similar though
the former has a staircase shape and the latter is a
smooth curve which passes through the centers of the
stair risers. The usual splitting of degeneracies rounds
the staircase edges somewhat.

For the H+-H; reaction the difference in quantal
and classical behavior should be most noticeable at
temperatures below 1000°K, say, where the difference
in threshold energy is comparable to or greater than
the thermal energy RT.

V. ACTIVATION ENERGY AND THRESHOLD
ENERGY

When a classical description suffices for the bending
modes, ¢,;, in the region near threshold varies as the
second power of the energy excess, according to Egs.
(1) and (2). The threshold energy is then quite
sensitive to the sensitivity of the experimental detection
system. Indeed, for an extremely sensitive detector the
nonadiabatic leak discussed in a preceding section would
also give a long tail to the observed behavior. According
to Egs. (1) or (2) the quantum ¢,;, is less sensitive
than the classical one to detection limits when zero-
point effects are appreciable, because of the staircase
nature of the ¢,;,(quantum)-vs-Vx plots.

As another example of application of these equations,
we consider the relation between threshold energy for
reaction and the activation energy, when the zero-
point vibrational energies are large in the threshold
studies. Most systems are then present in their ground
vibrational states. Let 14wy, $hv,*, hve* be the zero-point
energies of the reactant, of the symmetric stretching
mode of the activated complex, and of the doubly
degenerate bending mode of this complex, respectively.
According to Eq. (1) and the preceding discussion for
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the quantum behavior, the threshold energy A is
A= Vo+%h(V1+—V1+ 2V2+) +Ej+. (6)

The activation energy E, is the average energy of
the molecules that do react, {E+), minus that of all
the reactant molecules.® (Et+) is also equal to the
average energy of the activated complexes: translation
along reaction coordinate, RT'; vibration, 1y t+ kvt
rotation, RT; potential energy, Vy; translation of center
of mass, $RT. The average energy of the reactants
contains vibration, Aw; rotation, RT'; translation in
the center-of-mass system, 3RT/2; and translation of
center of mass, 3RT/2. Thus,

E,=Vyt+3h{vr—u+20") —3RT. )

The E;t in (6) is (I/I1) E; ie., about (I/IT)RT
in thermal systems, which is about (RT for the
H+H, reaction and can then be neglected. We then
obtain

E,=A—%RT. (8)

When the vibrations are excited thermally in the ac-
tivation energy studies, a thermal term {(gt)— {(&)+
(e2t) should be added to the right sides of (7) and (8).
A thermal correction can also be computed for A
using Eq. (1). It will be small if A is measured photo-
chemically at low temperatures.

Recently, a threshold energy for the reaction

D+H—DH+H (9)

has been reported.’® The value (about 8 kcal mole™)
is close to that found" for the activation energy (about
7.5 kcal mole™! around 400°K). Such agreement with
Eq. (8) is well within the experimental error.

Expressions for the relation between threshold and
activation energy for reactions for which a more
classical treatment suffices could also be obtained from
Eqgs. (1) and (2), the result being sensitive to the
extent of about 1 kcal mole™! to that of the detector.
With this uncertainty the result is very similar to (8).

At lower temperatures the activation energy would
be sensitive to tunneling (for evidence see Ref. 17)
and perhaps to the nonadiabatic leak. (The tunneling
effect could swamp the leak effect.) With a very
sensitive detector the threshold energy could also be
sensitive to tunneling and perhaps to nonadiabatic
leak. These corrections can be calculated with the aid
of equations present or derivable from those in Refs. 1,
6(b), and 6(c). We omit them here.

1 Compare R. C. Tolman, J. Am. Chem. Soc. 47, 2652 (1925).
For our purposes the argument given there for bimolecular
reactions should be replaced by one paralleling exactly his argu-
ment for unimolecular reactions. An equilibrium distribution of
reactants’ states is assumed.

8 A, Kupperman and J. M. White, J. Chem. Phys. 44, 4352
(1226); J. M. White, Ph.D. thesis, University of Illinois, June
1966.

17 B. A. Ridley, W. R. Schulz, and D. J. LeRoy, J. Chem.
Phys. 44, 3344 (1965). The value of ~7.5 kcal mole™ was es-
timated from Fig. 2 at low 1/7.
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VI. REMARK ON TESTS OF
ACTIVATED-COMPLEX THEORY

Existing justification of activated-complex theory
rests on an adiabaticity for all degrees of freedom
(exclusive of the reaction coordinate). (Justifications
also exist based on a ‘“compound nucleus” model
for the activated complex,'® but current computer-
calculated trajectories do not support the idea of
long-lived complexes. They would occur if there were a
sufficiently deep potential well in the activated-complex
region.)

The adiabatic-based justification,! stripped of any
curvilinear trappings is straightforward (see particu-
larly Eliason and Hirschfelder'). The adiabatic aspect
is apparently still largely unknown to some active
researchers in the field and the argument is recalled
briefly in Appendix III, emphasizing this point, freed
as much as possible from notational encumbrances.

In the present instance the argument in favor of an
adiabatic assumption for the formation of the symmetric
stretching mode has been noted earlier, as well as the
uncertainty that the other modes are strictly adiabatic.
In the reaction-cross-section theory used in the present
paper, we have not explicitly assumed an adiabaticity
for those other modes, except as required by angular-
momentum conservation. Instead, a distribution about
an adiabatic value might suffice to fulfill the starting
equation, Eq. (2) of Ref. 1.

The present agreement between calculated and
computer-calculated ¢,;,’s, as well as the less stringent
agreement'? of Eq. (2) of Ref. 1 with the computer
data, support the activated-complex rate equation in
the thermal region, though not yet the existing justi-
fications of that equation. For this purpose one needs an
analysis of computed-calculated reaction probabilities®
Wiy’ and of other quantities.®

APPENDIXI: RELATION BETWEEN ENERGY AND
CLASSICAL ACTION FOR ANHARMONIC
OSCILLATORS

A. Nondegenerate Vibration

The action J is given by

7=§p.s,

where x is the oscillator-displacement coordinate and
pis [2u( E—V) ]2 When a quartic anharmonic term
occurs, V(%) = bkat+ant, (A2)

and the expansion of p, for small ¢ leads to

(A1)

J= f [2u(E—1kx?) ]”%x—paff; [ 2u( E—1ka®) T2y,

(A3)

18 Compare B. C. Eu and J. Ross, J. Chem. Phys. 44, 2467
(1966) .
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Contour integration' of these two terms yields
J=(E/v)—(3va/2k?) (E/v)%. (A4)

Equation (A4) agrees with the result® of quantum-
mechanical perturbation theory for a nondegenerate
vibration, as it should, when one sets J=~v+1 and
replaces (with no error to order @) the (E/»)? by J=

B. Doubly Degenerate Bending Vibration

The Hamiltonian is

H=[(p+/)/2u]+V (r), (AS)

where x and y are components of the oscillator dis-
placement and r is (x*44*)Y2. If r and ¢ are new
coordinates (x=r cos¢, y=r sing), H becomes

b2 (/7
2u
The action J4, equal to Fpudep, is 2mp, since py is

constant. Thus, the action J,, equal to £p, dr is, on
expansion of p, for small a,

Je= f’ [ZME—Mer- (ii>2]m dr
2wy

H +V(r). (A6)

]¢ 27]-1/2
—uafﬂ[ZuE—pkﬂ—(——) ] dr (A7)
2nr
Contour integration of these two terms yields
J=(E/v)— (va/2B")[3(E/v)*— T ], (A8)

where J=J,+J .

Since | J4 | does not exceed J and averages about
J/2, and since (E/v)*%22J?% the term in brackets is
about 2.75(E/v)?. Thus, a comparison of (A4) and
(A8) shows that the function E(J), where J is the
principal action, is essentially the same for the non-
degenerate and doubly degenerate bending vibration.

The function E(J) may be obtained from (A4) or
(A8). Alternatively, since E has been calculated
exactly as a function of the vibrational quantum
number # for a nondegenerate oscillator, one may
merely replace v;+1% in the latter by J and so obtain
E(J), as in Appendix I.C below. This same E(J) can
then be used for the doubly degenerate bending
oscillator, with relatively small errors for our purpose
[e.g., neglect of J,*in Eq. (A8)].

For a doubly degenerate gquantum oscillator, if the
dependence of E on all but the principal quantum
number v; is neglected, the function E(w;) could be
obtained from the above function E(.J) by replacing J

¥ We use a method described by M. Born, The Mechanics of
the Atom (Frederick Ungar Publ. Co., New York, 1960), pp. 303ff;
H. Goldstein, Classical Mechanics (Addison~Wesley Publ. Co.,
Inc., Reading, Mass., 1950), pp. 302-303.

2 L. Pauling and E. B. Wilson, Jr., Iniroduction to Quantum
Mechanics (McGraw-Hill Book Co., Inc., New York, 1935),
p. 161, Eq. (23-30).
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by its equivalent for a degenerate oscillator (v;+1)k.
(The latter equivalence is exact for the harmonic
oscillator.) However, for our present purposes we do
not need E(v;).

C. Exact Quantum Result for a Nondegenerate
Oscillator

In Eq. (A10) below, the symbol m was used to
replace 9,13, where v, is the quantum number of the
nondegenerate vibration.

The eigenvalues of the harmonic-quartic oscillator
are given in Ref. 9. The potential-energy function is
Lkx®+ax*, and the Hamiltonian H is written in terms
of another one, H,. The relation between the two, after
some manipulation, is found to be

H=3%w(1—a)2H,, (A9)

where o/ (1—a) = (ehv/k*)?? and v=1frequency when a
vanishes. The eigenvalues of H, are tabulated as A,.

For our purposes, an approximate formula of
McWeeny and Coulson,? checked by numerical
methods in Ref. 9, is quite accurate. One finds, thereby,
that the eigenvalues of H are y where

y=21mhy(3x,+x,71), (A10)
and z, is the real root of
B—x—6[e/(1—a) PPm=0. (Al1)

[In (A11) we neglected a term % relative to m?, since
m is large for the significant parts of Fig. 1.]

To obtain a plot of m versus y, y and m were each
calculated as a function of a third variable %, using
(A10) and (All). The anharmonicity term a/k?,
needed for the evaluation of a/(1—a), was calculated
from the readily derived result

(V=V2)/Vi2=4a/R, (A12)

where V), is the harmonic term 3k2? and V is the actual
potential function in H. Since ¥V was about 0.40, 0.80,
and 2.75 eV when the bond angle was =, 57/8, and x/3
(Ref. 22, Fig. 2), and since hy is 2.80 kcal/mole one
finds [a/(1—a) P2=ahy/k*=20.021. (At a bond angle
of 57/8, V was taken equal to V3.)

D. Calculation of Nt;,(y)

The exact classical expression for Nty (y) is J2/242
when the dependence of E on J, is neglected. Using
the plot of m versus y in Appendix 1.C, setting J=m#,
y=FE,—V, in (A10), and y=E,—V.— E;* in (A10),
Nt,m(y) was calculated for Egs. (1) and (2).

The correction of ¢, for anharmonicity was 359, at
the highest velocity (1.95), about 179, at a velocity
of 1.40, 5% at a velocity of 1.05, etc.

AR, McWeeny and C. A. Coulson, Proc. Cambridge Phil.
Soc. 44, 413 (1948).
2 R. N. Porter and M. Karplus, J. Chem. Phys. 40, 1105 (1964).
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APPENDIX II: CASE OF LARGE BENDING
ANGLES. LIMITING 0.,

At high energies large bending angles occur and a
simple Cartesian expression for the kinetic energy of
the bending modes no longer suffices. The actual
kinetic energy is used below to calculate the partition
function and, thereby, the limiting value of o,j, at high
energies. For simplicity, rotation-vibration interaction
is neglected in the present paper.

The three atoms in the Hs complex are denoted in
sequence by 1, 2, and 3. The doubly degenerate bending
motion can be discussed in terms of a set of axes, so
chosen that x;=x3=—34xs, y1=y3=—1%ys, 21=—2, and
2=0. The angular momentum about the x and y axes
and momentum of the center of mass are seen to vanish
in this coordinate system.

The angle which the 1-2 bond (or 2-3) makes with
the 2 axis is denoted by 6 and the angle which the plane
of the three atoms makes with xz plane is denoted by ¢.
The 1-2 and 2-3 bond lengths are each denoted by a
fixed length R in this symmetrical complex, for purposes
of discussing the bending mode. The transformation
corresponds to: x—x2=R sinf cosp, yi—ye.= R sinf sing,
2r-22= R cosf.

The kinetic energy T is

3
mu Z F(x2y2+22),
=

where my is the mass of the H atom. Upon transforming
these Cartesian coordinates to the new coordinates
R, 8, ¢, by introducing the above constraints one
obtains (A13), where It=2muR%;

T=(It/6)[ (142 sin%) 6>+ sin?¢?]. (A13)
From (A13) ps and p, may be calculated as 97/96
and 8T /¢, respectively.

The partition function (p.f.) for the bending modes
is

- d dod
(pf) = / /exp (ﬁé’)ﬂ%if’ (A14)
where
e [pe?/ (142 sin%) T4 (p42/sin%) +U@). (AL5)

21+/3
Integration yields

RTI*
3r?

/2 _ U
(pf)= / sinf (142 sin?) 12 exp(-——-—) ds.
0 RT
(A16)

The density of bending mode states Q(E) of energy
E is obtained from (Al16) by Laplace transform
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techniques.® N+, (y) is

f"Q(E)dE.
0

To obtain Q(E) at low energies only the behavior
of (A16) at low T is relevant. Here, U can be re-
placed by %«k#%, where « is a force constant, and siné
can be replaced by 8, and (142 sin%) by 1. Thereby,
one obtains the usual harmonic-oscillator expres-
sion (kT/hv)?, where the bending frequency » is*
(1/2x) (3«/I*)'2. From this (p.f.) Q(E) is found to be
E/(lw)* and Nty to be v/2(hw)*.

To obtain Q(E) at high energies, only the behavior
of (A16) at high T is needed. Then, because of the
anharmonicity at a high enough energy U can be taken
as zero in some interval (0, 6,) and infinite outside.
Thereby, at high 7', Eq. (A16) yields

(pf.) =(RTI+/2V21?) (¥;—V¥p— 1 sin2¥;+1 sin2¥,),
(AL7)

where cos¥g= (2)V2 and cos¥,= (3) /2 cost,.

By a Laplace transform method® Q(E) is found to
be the coefficient of 27T in (A17) and N7+, (y) to be y
times that. The corresponding value of ¢,j,, obtained
from (1) is (A18), since p is 2myu/3:

ovip=Tm R I*o/Ic*) (3/4V2)
X (U1 —¥—% sin2¥,4-1 sin2¥)[1— (V./E;) ] (A18)

The angle term in brackets varies roughly as 6, being
0.025xz, 0.108x, and 0.4557, when 6, is #/8, x/4, and
7/2, respectively. The numerical value of all but the
last two factors is 56.5 a.u. From the published potential
energy surfaces, there is a cusp which makes entrance
through the activated-complex region improbable if
the angle of deviation of H; from linearity, #, is as
much as 27/3. By definition 8 is half v, so the cor-
responding maximum value of 6, 6, would be /3.
There is a perceptible beginning of this cusplike
behavior when v is 7/2, so 6, lies in the interval x/3
and =/4. Thus, if 6, is 7/4, ¢,;p(max) is 19.2 a.u., which
is three times the expected extrapolation of the com-
puter values.

It is of interest to compare the values with the well-
known hard-sphere-collision-theory value. The latter
can be recovered from Eq. (1) by noting that the
internal degrees of freedom which contribute to
N*yip in that case are the two rotations of BC. Thereby,

Kmlx
M= [ 2K = Knas,
0

% See C. Kittel, Elementary Statistical Physics (John Wiley &
Sons, Inc., New York, 1958), p. 57.

%y is obtained as follows: First, one finds the action J¢=2mp4.
Next by contour integration (compare Appendix I) one finds
Jo=—Js+2x £(I*/3x)}. The frequency for the bending motion
v(=wp) is defined in the usual way (Goldstein,!? p. 293) as dE/Js,
and so equals (1/2x) (3x/I)3,
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where K is the rotational quantum number of BC in
the hard-sphere-collision-theory ‘‘activated complex,”
and Kpex is the maximum K for the given E,—V,
(K2pox?/2I =E,—V,). For I we have uc# in this
case; ¢4 is the collision diameter. ¢+ and ¢ are unity
as before. However, T is unity instead of 2, in the hard-
sphere case, since the two resulting reaction paths,
one to form AB and the other to form AC, become
competitive rather than additive. In this way one
obtains from Eq. (1) the value ne? (1—V./E,) for
the hard-sphere reaction cross section. According to the
potential-energy surface, interaction occurs when
0= (1 1.543) =3.75 a.u., vielding a value of 44 a.u.
for the limiting hard-sphere cross section.

APPENDIX III: ADIABATIC JUSTIFICATION OF
ACTIVATED-COMPLEX THEORY

If the distribution of reactants is a Boltzmann one,
the probability of finding the reactants in a vibrational-
rotational-orbital state » and in phase space region
dxdp. (x is reaction coordinate and p. is conjugate
momentum) is

dxdp, exp(— E/kT)
h 0

in a center-of-mass system. Q is the reactants’ partition
function in that system and E is their total energy.
When the reactants are far apart, x is simply the
distance between their centers of gravity.

The corresponding probability per unit « is obtained
by dividing by dx, and the corresponding contribution
to the reaction rate constant is obtained by multiplying
with the velocity  and with the transmission coefficient
«(Em), and finally by integrating over all E and
summing over all #. Since E is the sum of E, (the

R. A. MARCUS

vibration-rotation—orbital energy of reactants in state
n) and of p,*/2u, where u is their reduced mass, dE is
pdps/u, ie., £dp,, at a given n. The expression for
k:rate Decomes

—E\dE

bvm 5 [ 5w e Z2) 22

te ; Ex( ) exp T ) W0

If an adiabaticity existed for all degrees of freedom,

one would have a 1:1 correspondence between states

in the activated-complex region and those of the
reactants:

(A19)

E=En+t (p/20) = Ei*+ Ey*, (A20)

where E,* is the rotation-vibration energy of the
activated complex and E,* is its kinetic energy along
the reaction coordinate. Introduction of (A20) into
(A19), treatment of the reaction coordinate as classical
[ie., replacing «(E, #) by 1 if E,* >0, and by 0
otherwise ], and integration yields the usual activated-
complex theory expression

(kT/h)Q*

kra e= T,
t 0
where Ot is 3, exp(— E.*/kT). [A « could have been
left in (A19) for tunneling purposes. |
In the classical version, the summations over quan-
tum states can be replaced® by integrations over angle-
action variables and E,* by E*(J;). For example,

E+ Ji N-1
Ot= / exp[— %l] 1} dJ dwi/WF,

(A21)

(A22)

.V is the number of degrees of freedom in the center-
of-mass system. Integration over the angle variables
w; contributes a factor of unity.



