
REACTIONS OF ID OXYGEN ATOMS. III 959 

agreement with the experimental data points indicates 
that Eq. (C) can adequately describe the results. The 
dependence of the 0 3 quantum yield on the flow rate 
has previously been attributed by Groth6 to the 
failure of removing all of the generated ozone, but the 
present analysis shows that it is inherent to the kinetic 
mechanism. It is also significant that the ozone quan-
tum yield is a function of the light intensity. However, 
Eq. (C) predicts that, if [/v can be made sufficiently 
small by the choice of the flow rate, the production of 
ozone in O2 at atmospheric pressures provides a suitable 
1470-A actinometer regardless of the intensity of the 
radiation. 
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Summarizing briefly, the amount of ozone formed in 
the 1470-A photolysis of oxygen has been studied in a 
flow system as a function of pressure and temperature. 
At atmospheric pressure, the ozone quantum yield tends 
toward two, provided the flow rate is sufficiently high. 
At lower pressures, the ozone quantum yield decreases 
with decreasing pressure and increasing temperature. 
These effects are interpreted as arising from the 
reactions of ID oxygen atoms. The data are used to 
derive ratios of the rate constants associated with the 
individual 0 (ID) reactions. On this basis, the reaction 
of O(ID) with ozone is found to be fast, whereas those 
with oxygen and helium are relatively slow. 
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The statistical-dynamical model formulated in Paper I is applied to the H + H 2->H2+ H reaction and 
compared with the exact three-dimensional classical-mechanical computer calculations of reaction cross 
sections. Encouraging agreement is obtained in the low-to-moderate relative velocity range, without the 
use of adjustable parameters. At very high velocities the comparison indicates the occurrence of some 
vibrational nonadiabaticity. Calculations are presently in progress to see if this nonadiabaticity equals 
that expected from a companion paper on analytical mechanics of certain collisions. Applications are also 
made to several topics: relations between classical and quantum computer calculations of cross sections, 
between activation energy and the recently reported threshold energy of reaction (D+H2->DH+H), 
and tests of activated-complex theory. 

1. INTRODUCTION 

I N Paper I a statistical-dynamical theory was 
formulated for chemical-reaction cross sections. I It 

is applied in the present paper to the H+H:r-tH2+H 
reaction. Extensive computer studies have been made 
for this reaction by numerical integration of the 
classical-mechanical equations of motion, both for the 
case of three atoms on a line2 and for actual collisions 
in three dimensions.2 ,3 In the latter studi reaction 
cross sections fTvjp were calculated for various rotational 
states of H2 (j = 0 to 5), for one vibrational state of 
H2 (v = 0), and for various initial relative velocities 
(VR =O.9X106 to 2.0X106 em secI). A comparison of 
these computer results with the theory of Paper I is 
given below. 

II. EQUATIONS 
In Paper I the activated-complex concept was used, 

in conjunction with statistical-dynamical postulates, 
* Supported by a grant from the National Science Foundation. 
1 R. A. Marcus, J. Chern. Phys. 45,2630 (1966). 
2 F. T. Wall, L. A. Hiller, Jr., and J. Mazur, J. Chern. Phys. 

29,255 (1958), and subsequent papers. 
3 M. Karplus, R. N. Porter, and R. D. Sharma, J. Chern. Phys. 

43,3259 (1965). 

whose possible dynamical origin is discussed in a later 
paper: 

(i) quasiequilibrium postulate for population of 
activated complexes, 

(ii) adiabaticity of some degrees of freedom, where 
appropriate, and 

(iii) a reaction probability postulated to be a func-
tion of the excess energy along the reaction coordinate. 
(The excess is the initial relative translational energy 
minus the energy of the reaction barrier.) 

In (iii) the barrier consists of the natural barrier, the 
centrifugal barrier, and the contribution from the 
adiabatic coordinates. The quasiequilibrium postulate 
(i) is the following: In an ensemble of reacting pairs 
having a given energy, a given total angular-momentum 
quantum number J (rotation plus orbital), a given 
quantum number v for the adiabatic degrees of freedom, 
and a uniform distribution over all ;n quantum states 
consistent with this description, the a priori probability 
of finding the pair in any quantum state near the 
activated-complex region is 1/;n. Weaker forms of this 
postulate were obtained by summing over J, or over v, 
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or over both, for all J and v consistent with the given 
energy.4 

Postulates (i) to (iii) were used to obtain an integral 
equation which was, in turn, solved to obtain an 
expression for the reaction cross section as a function 
of the relative velocity and of the initial state of 
reactants. The equations for the reaction of particular 
interest here are given below, namely for an atom 
reacting with a diatomic molecule to form an assumed 
linear activated complex, the system having one 
adiabatic vibration during the collision.5 This adiabatic 
vibration is the degree of freedom which is an H2 
vibration in the H2 and which goes over into a sym-
metric stretching vibration in the Ha activated complex.s 

The rotations were treated classically. We quote the 
equations [Eq. (1) outside of the threshold region and 
Eq. (2) insideJ in a form which neglects rotation-
vibration interaction. The latter is included, however, 
in the original equations (15) and (25) of Ref. 1 from 
which (1) and (2) were obtained as particular cases. 
Outside of the threshold region 

Uvip= (r7rn,2/2J.tEp) (I+u/lu+) [N+vib(Ep- V e) J, (1) 
and at the threshold, 

Uvjp= (r7rfN2J.tEp) [(I++ I) u/ 1 u+ J 
X [N+vib(Ep- Ve-Ej+)]' (2) 

In these equations r represents a summation over 
all geometrically isomeric and optically isomeric 
reaction paths. J.t is the reduced mass of the two re-
actants. 1+ and 1 denote the moments of inertia of the 
linear activated complex and of the diatomic reactant, 
respectively. u+ and u are the symmetry numbers. 
N+ vib(Y) is the number of bending vibrational quantum 
states having an energy equal to or less than y in the 
activated complex. E/ is (I/I+)Ej, where Ei is the 
rotational energy of the reactant. Ep is the initial 
translational energy in the center-of-mass system. 
V. is an energy barrier, given by 

(3) 

where Ev is the vibrational energy of the adiabatic 
modes of the reactants and Ev + is the sum of the vibra-
tional energy of the adiabatic modes of the activated 
complex Ev+ and the potential energy of the (reaction 
coordinate) qr motion.7 (Ev+ is the minimum energy-

4 Compare use of a similar postulate in unimolecular reaction 
rate theory for a local quasiequilibrium between energized mole-
cules and activated complexes of the same J and E [R. A. Marcus 
and O. K. Rice, J. Phys. & Colloid Chern. 55, 894 (1951); R. A. 
Marcus, J. Chern. Phys. 20, 359 (1952); 43,2658 (1965)]. 

6 R. A. Marcus, J. Chern. Phys. 43,1598 (1965). 
6 (a) For a summary of evidence based on analysis of computer 

results see Footnote 8 of Ref. 6(b); (b) R. A. Marcus, J. Chern. 
Phys. 45, 4500 (1966); (c) 45, 4493 (1966); (d) (to be pub-
lished) . 

7 When proper coordinates are used, the energy can be written 
as the sum of various contributions, though the parameters 
appearing in the properties of the adiabatic modes may vary 
with position along the reaction coordinate.6b 

aside from the external centrifugal contribution-
needed to pass through the set of activated-complex 
configurations.) A possible correction to Eqs. (1) and 
(2) for an expected nonadiabaticity when the velocity 
along qr is too high in the curved region is discussed 
later. 

Equations (1) and (2) are compared below with 
classical-mechanical computer calculations of Uvjp' A 
quantum-mechanical treatment of the qr motion leads 
to the presence of a transmission coefficient, but we 
omit the equations! for a quantum qr motion here. 

When the bending vibrations are treated classically, 
N+vib(Y) equals m2/2h2, where m is the maximum 
value of the classical vibration action ji' pdq cor-
responding to the energy y. It is essentially equal to 
(m+l)h, where m is the principal quantum number for 
the doubly degenerate bending vibration (Appendix I). 

III. APPLICATION TO THE H + H2 REACTION 

The sum of the cross sections for the reaction 
A+BC--tAB+C and --tA+BC was tabulated3 for 
the conditions cited earlier. This sum can be obtained 
from (1) to (4) by taking u=u+=1 and r=2; there 
are two geometric isomeric paths, and A, B, and Care 
distinguishable in the calculation. 

A. Threshold 

The potential energy Vo at the saddle point of the 
linear complex was 9.13 kcal mole-l .s The change in 
vibrational energy Ev+- Ev, in the adiabatic vibration 
was the difference of zero-point energy, 3.08 kcal 
mole-!.3 Thereby, V. in Eq. (3) is 6.05 kcal mole-I. The 
threshold energy is the value of Ep for which Uvip 
exceeds some preassigned amount. For example, at 
j = 0 this Ep is 6.89 and 6.93 kcal mole-l according to 
a least-squares equation,3 when the preassigned U is 
0.010 and 0.033 a.u., respectively [1 a.u.=7r(0.529 1)2J. 
[However, the accuracy of this six-constant equation 
over this very small part of the range (5 a. u.) of U vip 
values is not clear.J The corresponding values of Ep 
computed from Eq. (2) are 6.35 and 6.60 kcal mole-I, 
respectively. The mean difference of about 0.4 kcal 
mole-! is not far from the corresponding difference of 
0.3 kcal mole-! for the one-dimensional case3 of all 
three atoms on a line, and might be due to a small 
nonadiabatic internal centrifugal effect. Sb 

The difference in effective threshold energies for the 
j = 0 and j = 5 cross section is, according to (2), expected 
to equal the value of (I/I+) Ej, which is about 0.9 
kcal mole-I. The computer value of about 0.7 kcal 
mole-! is fairly close to this value. (For accuracy limita-
tion of the 0.7, however, see above.) 

B. Cross Sections 

Outside of the threshold region the computer-
calculated plots of Uvjp versus relative velocity V R for 
j = 0 to j = 5 were virtually superimposable, particularly 
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FIG. 1. Total reaction cross section O'.lp, for all paths, versus 
relative velocity of reactants VR. Reaction: H+H2-+H2+H at 
j=3. Exact results: Ref. 3 (computer trajectories). Second curve: 
Eqs. (1) and (2). Units: 0'.1" (atomic units), VR (units of 
0.979 X 1()& cm sec-I). 

when the scatter in the computer calculations is taken 
into account. A least-squares fit of the computer results 
for j = 3 is plotted in Fig. 1. 

Similarly, Eqs. (1) and (2) yield very similar plots 
forj=O toj=5, except at threshold. In Fig. 1 the CTvjp'S 

calculated from Eqs. (1) and (2) are plotted for j=3, 
taking the anharmonicity of the bending modes into 
account (see below). In the threshold region, Eq. (2) 
should be used, while above the region (1) should be 
used. For j = 3 they yield the same answer at V R""1.2, 
and we have used (2) for smaller VR's and (1) for 
larger ones for simplicity.s 

At incident translational energies not far from 
threshold, the harmonic treatment of the bending 
vibrations is adequate. However, at high energies 
anharmonicity should be included in computing the 
function N+vib(Ep- V e ) in Eq. (1). The quartic 
anharmonicity used in the plot in Fig. 1 was estimated 
from the value of the saddle-point potential energy 
givenS for bond angles of 11",511"/8, and 11"/3. The function 
N+ vib was then calculated with the aid of some recent 
results on the energy of an anharmonic oscillator as a 
function of its quantum number9 and action (Appendix 
I). In this way N+ vib(Y) was found to have a some-
what lower value than the harmonic value, since the 
actual anharmonic bending oscillators were stiffer than 
the harmonic ones. At the highest velocity, the dif-
ference in N+ vib(Y) was only 35%, and was less at 
lower velocities. 

The agreement between Eqs. (1) and (2) and the 
computer results is seen to be reasonably good, when 
the absence of arbitrary or adjustable parameters is 
taken into account. In the moderate velocity range 

8 An integral equation bridging the gap between (1) and (2) 
was actually given in Ref. 1 but not solved. Since the difference 
between (1) and (2) is minor the alternative approximate pro-
cedure is quite adequate. 

9 S. 1. Chan, D. SteIman, and L. E. Thompson, J. Chem. Phys. 
41, 2828 (1964). 

(this range is the one of typical thermal interestlO) of 
about 1.1 to 1.25 the curve based on Eqs. (1) and (2) 
is slightly lower than the computer one. There is some 
tendency for the two curves to diverge at high velocities. 

The deviation at thermal velocities is rather small. 
It is about the same as that found in the test of the 
quasiequilibrium hypothesis,12 and so is not due to the 
dynamical postulates. If it is due to neglect of rotation-
vibration and other anharmonic interactions, Eqs. 
(15) and (25) of Ref. 1 could be used to calculate 
CTvjp. One would introduce into those equations the 
value of a function w+ appropriate for the case when 
these interactions are included. 

The divergence of the two plots at high V R'S leads 
to a ratio of apparent limiting valuesl3 of a factor of 
about 3 (Appendix II) . At high V R'S the approximation 
of adiabaticity for the symmetric stretching mode of 
Hst must break down: When the system strikes the 
curved part of the reaction path in the usual center-of-
mass plot of potential-energy contours for linear 
collisions, translational energy is converted to vibra-
tional energy of this mode in excess of the adiabatic 
change.6b- d This extra energy is "locked in" and so is 
unavailable for distribution among the bending modes. 
Thus, the excess energy, Ep- Ve in Eq. (1), estimated 
on an adiabatic basis is too high at high V R'S and so 
N+ vib (Ep- V e) and CTvjp are correspondingly too high. 

One might conjecture that Eq. (1) may still be 
applicable, provided Ep is not too large, but that 
the value used for Ev+ in (3) should be that computed 
from an equation which includes the nonadiabatic 
correction [Eq. (33) of Ref. 6(b) J. Computations of 
nonadiabatic contributions are in progress. However, 
an independent analysis of this point can be made 
by examining the distribution of vibrational energies 
in the symmetric stretching mode in the activated-
complex region, presently hidden in the computer-
calculated trajectory studies. 

10 The rate constant for a given state v varies as 

where f is E"O'vl"exp[ - (E,,+E1)/RT]. (Compare Eliason and 
Hirschfelder.11) The thermal average of E" is therefore 

Introduction of Eq. (1) and the harmonic approximation for 
O'vl" yields (E,,)= V,+3RT when V,»RT. 

11 J. O. Hirschfelder and E. Wigner, J. Chem. Phys. 7, 616 
(1939); M. A. Eliason and J. O. Hirschfelder, ibid. 30, 1426 
(1959); L. Hofacker, Z. Naturforsch. 18a, 607 (1963); R. A. 
Marcus, J. Chem. Phys. 43, 1598 (1965). 

12 R. A. Marcus, J. Chem. Phys. 45,2138 (1966). 
13 Expression (1) certainly leads to a limiting value: At high 

energies the configuration space contribution to N+ vih becomes 
constant because then the bending mode becomes essentially 
a rotation. The harmonic equation, Eq. (2), leads to a 0"1" which 
increases indefinitely with energy since the configuration space 
contribution increases with energy without limit for a harmonic 
oscillator. 
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Even at low energies there is some nonadiabaticity, 
which should give rise to a nonadiabatic leak; that is, 
there will be a small but finite cross section for reactions 
in which the symmetric stretching mode of the activated 
complex has an action even as small as zero rather than 
that of the initial H2 vibration. A quantitative classical 
and quantum-mechanical treatment of that effect has 
been given elsewhere.6b .c Using it, it should be possible to 
calculate the "nonadiabatic tail" of the Uvjp versus V R 

plot at energies below "threshold," and compare 
with the tail observed3 in the computer studies. 

IV. COMPARISON OF QUANTUM AND CLASSICAL 
CROSS SECTIONS 

The computer problem of exact calculation of 
reaction cross sections for the quantum-mechanical 
system is more formidable than that for the classical-
mechanical one. Indeed, only one quantum study for a 
chemical reaction has appeared, and in that study only 
several transmission coefficients have been reported 
thus far.14 Some comparison of the quantum and 
classical forms of Eqs. (1) and (2) is of interest, 
therefore, particularly since a question which lies at the 
heart of any justification of activated-complex theory 
also arises here. 

When only the symmetric stretching and bending 
modes are treated in a quantum manner, the ratio of 
quantum to classical cross sections is 

Uvjp( quantum) / Uvjp( classical) 

=N+ vib(quantum) /N+ vib( classical), (4) 

according to Eqs. (1) or (2). 
We assume for N+vib(quantum) that the bending 

modes are fully quantized in the activated complex. It 
should be noted, however, that although there is a 
good reason for such quantization of the symmetric 
stretching mode (vibrational adiabaticity plus initial 
quantization implies subsequent quantization),u the 
question is still moot for the bending modes: Unlike 
the stretching mode they arise not from vibrations 
but from a combination of orbital and rotational 
modes of the reactants. Suitable quantum-mechanical 
computer studies will resolve this question of the extent 
of quantization of the bending modes. An analytical 
mechanical discussion is given in a later paper.6d 

The ratio in (4) tends to unity as the energy is 
increased. At low energies the harmonic-oscillator 

may be used. N+ vib(quantum) is 
2..,; (N + 1), where N is the principal quantum number 
of the degenerate oscillator and varies in the sum from 
o to its maximum M for the given energy available, y. 
The sum equals !(M+1) (M+2), therefore. N+vib 
(classical) is y2/2(hll )2, where II is the bending frequency. 
If a continuous variable Me is defined by the relation 

14 E. M. Mortensen and K. S. Pitzer, Chern. Soc. (London) 
Spec. Pub!. 16, 57 (1962). 

y= (Me+1)hll, M agrees exactly with Me when M is an 
integer. We have 

Uvjp( quantum) /uvjp( classical) 

This ratio is zero until the excess energy equals the 
zero-point energy hll for this degenerate vibration, 2.8 
kcal mole-I according to the surface used earlier.3 

The ratio in Eq. (5) is then 2 and the quantum Uvjp 

is about 0.6 a.u. according to Eqs. (1) or (2). If the 
threshold energy were defined as one for which Uvjp 

exceeded 0.01 a.u., as suggested by Karplus et al.3 for 
purposes of tabulation of their computer data, the 
difference in quantum and classical threshold energies 
atj=O would be about (2.8-0.3), i.e., 2.5 kcal mole-I. 
If the experimental threshold energy were defined as 
that energy for which Uvjp exceeded 0.2 a.u. (say), the 
difference in quantum and classical threshold energies 
would be (2.8-1.5) = 1.3 kcal mole-I. 

The plots of Uvjp versus V R for the quantum and 
classical treatments are otherwise fairly similar though 
the former has a staircase shape and the latter is a 
smooth curve which passes through the centers of the 
stair risers. The usual splitting of degeneracies rounds 
the staircase edges somewhat. 

For the H + H2 reaction the difference in quantal 
and classical behavior should be most noticeable at 
temperatures below lOOOoK, say, where the difference 
in threshold energy is comparable to or greater than 
the thermal energy RT. 

V. ACTIVATION ENERGY AND THRESHOLD 
ENERGY 

When a classical description suffices for the bending 
modes, Uvjp in the region near threshold varies as the 
second power of the energy excess, according to Eqs. 
(1) and (2). The threshold energy is then quite 
sensitive to the sensitivity of the experimental detection 
system. Indeed, for an extremely sensitive detector the 
nonadiabatic leak discussed in a preceding section would 
also give a long tail to the observed behavior. According 
to Eqs. (1) or (2) the quantum Uvjp is less sensitive 
than the classical one to detection limits when zero-
point effects are appreciable, because of the staircase 
nature of the Uvjp( quantum) -vs-V R plots. 

As another example of application of these equations, 
we consider the relation between threshold energy for 
reaction and the activation energy, when the zero-
point vibrational energies are large in the threshold 
studies. Most systems are then present in their ground 
vibrational states. Let thlll , thlll+' hll2+ be the zero-point 
energies of the reactant, of the symmetric stretching 
mode of the activated complex, and of the doubly 
degenerate bending mode of this complex, respectively. 
According to Eq. (1) and the preceding discussion for 
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the quantum behavior, the threshold energy .1 is 

.1= VO+th(Vl+-Vl+2v2+) + Ej+. (6) 

The activation energy Ea is the average energy of 
the molecules that do react, (E+), minus that of all 
the reactant molecules. 15 (E+) is also equal to the 
average energy of the activated complexes: translation 
along reaction coordinate, RT; vibration, thVI++hv2+; 
rotation, RT; potential energy, Yo; translation of center 
of mass, !RT. The average energy of the reactants 
contains vibration, thl'l; rotation, RT; translation in 
the center-of-mass system, 3RT /2; and translation of 
center of mass, 3RT /2. Thus, 

Ea= VO+th(Vl+-VI+2v2+) -tRT. (7) 
The E/ in (6) is (1/1+) E;, i.e., about (1/1+)RT 

in thermal systems, which is about tRT for the 
H + H2 reaction and can then be neglected. We then 
obtain 

(8) 

When the vibrations are excited thermally in the ac-
tivation energy studies, a thermal term (€I+)- (€l)+ 
(€2+) should be added to the right sides of (7) and (8). 
A thermal correction can also be computed for .1 
using Eq. (1). It will be small if .1 is measured photo-
chemically at low temperatures. 

Recently, a threshold energy for the reaction 

D+H2--tDH+H (9) 

has been reported.16 The value (about 8 kcal mole-I) 
is close to that foundl7 for the activation energy (about 
7.5 kcal mole-l around 4000 K). Such agreement with 
Eq. (8) is well within the experimental error. 

Expressions for the relation between threshold and 
activation energy for reactions for which a more 
classical treatment suffices could also be obtained from 
Eqs. (1) and (2), the result being sensitive to the 
extent of about 1 kcal mole-l to that of the detector. 
With this uncertainty the result is very similar to (8). 

At lower temperatures the activation energy would 
be sensitive to tunneling (for evidence see Ref. 17) 
and perhaps to the nonadiabatic leak. (The tunneling 
effect could swamp the leak effect.) With a very 
sensitive detector the threshold energy could also be 
sensitive to tunneling and perhaps to nonadiabatic 
leak. These corrections can be calculated with the aid 
of equations present or derivable from those in Refs. 1, 
6(b), and 6(c). We omit them here. 

15 Compare R. C. Tolman, J. Am. Chern. Soc. 47,2652 (1925). 
For our purposes the argument given there for bimolecular 
reactions should be replaced by one paralleling exactly his argu-
ment for unimolecular reactions. An equilibrium distribution of 
reactants' states is assumed. 

16 A. Kupperman and J. M. White, J. Chern. Phys. 44, 4352 
(1966); J. M. White, Ph.D. thesis, University of Illinois, June 
1966. 

17 B. A. Ridley, W. R. Schulz, and D. J. LeRoy, J. Chern. 
Phys. 44, 3344 (1965). The value of kcal mole-1 was es-
timated from Fig. 2 at low liT. 

VI. REMARK ON TESTS OF 
ACTIVATED-COMPLEX THEORY 

Existing justification of activated-complex theoryll 
rests on an adiabaticity for all degrees of freedom 
(exclusive of the reaction coordinate). (Justifications 
also exist based on a "compound nucleus" model 
for the activated complex,t8 but current computer-
calculated trajectories do not support the idea of 
long-lived complexes. They would occur if there were a 
sufficiently deep potential well in the activated-complex 
region.) 

The adiabatic-based justification,ll stripped of any 
curvilinear trappings is straightforward (see particu-
larly Eliason and Hirschfelderll). The adiabatic aspect 
is apparently still largely unknown to some active 
researchers in the field and the argument is recalled 
briefly in Appendix III, emphasizing this point, freed 
as much as possible from notational encumbrances. 

In the present instance the argument in favor of an 
adiabatic assumption for the formation of the symmetric 
stretching mode has been noted earlier, as well as the 
uncertainty that the other modes are strictly adiabatic. 
In the reaction-cross-section theory used in the present 
paper, we have not explicitly assumed an adiabaticity 
for those other modes, except as required by angular-
momentum conservation. Instead, a distribution about 
an adiabatic value might suffice to fulfill the starting 
equation, Eq. (2) of Ref. 1. 

The present agreement between calculated and 
computer-calculated (f'vjP'S, as well as the less stringent 
agreementl2 of Eq. (2) of Ref. 1 with the computer 
data, support the activated-complex rate equation in 
the thermal region, though not yet the existing justi-
fications of that equation. For this purpose one needs an 
analysis of computed-calculated reaction probabilitiesl2 
Wlvn/ and of other quantities.6d 

APPENDIX I: RELATION BETWEEN ENERGY AND 
CLASSICAL ACTION FOR ANHARMONIC 

OSCILLATORS 

A. Nondegenerate Vibration 

The action J is given by 

(Al) 

where x is the oscillator-displacement coordinate and 
px is [2J.t(E- V) J1/2. When a quartic anharmonic term 
occurs, 

Vex) =tkx2+ax4, (A2) 

and the expansion of px for small a leads to 

J = f [2J.t (E- tkX2) JI/2dx- J.ta f x4[2J.t (E-tkx2) J-1/2dx. 

(A3) 
18 Compare B. c. Eu and J. Ross, J. Chern. Phys. 44, 2467 

(1966) . 

Downloaded 16 Feb 2012 to 131.215.21.63. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



964 R. A. MARCUS 

Contour integration19 of these two terms yields 

J=(E/v)-(3va/2k2)(E/v)2. (A4) 

Equation (A4) agrees with the resu1t20 of quantum-
mechanical perturbation theory for a nondegenerate 
vibration, as it should, when one sets J""'v+! and 
replaces (with no error to order a) the (E/v}2 by P. 

B. Doubly Degenerate Bending Vibration 

The Hamiltonian is 

where x and yare components of the oscillator dis-
placement and r is (x2+y2) 1/2. If rand cjJ are new 
coordinates (x=r coscp, y=r sincjJ), H becomes 

H=N+(p,Nr
2
) + VCr). 

2}.L 
(A6) 

The action J 0/>, equal to .f p o/>dcjJ, is 27rP 0/> since Po/> is 
constant. Thus, the action Jr, equal to .f pr dr is, on 
expansion of pr for small a, 

(A7) 

Contour integration of these two terms yields 

J = (E/v) - (va/2k2) [3(E/v)2- J 0/>2J, (AB) 

where J = J r+ J 0/>' 
Since I J 0/> I does not exceed J and averages about 

J/2, and since (E/v)2""'P, the term in brackets is 
about 2.75(E/v)2. Thus, a comparison of (A4) and 
(AB) shows that the function EU), where J is the 
principal action, is essentially the same for the non-
degenerate and doubly degenerate bending vibration. 

The function E( J) may be obtained from (A4) or 
(AB). Alternatively, since E has been calculated 
exactly as a function of the vibrational quantum 
number VI for a nondegenerate oscillator, one may 
merely replace Vl+! in the latter by J and so obtain 
E ( J), as in Appendix 1. C below. This same E (J) can 
then be used for the doubly degenerate bending 
oscillator, with relatively small errors for our purpose 
[e.g., neglect of J 0/>2 in Eq. (A8)]. 

For a doubly degenerate quantum oscillator, if the 
dependence of E on all but the principal quantum 
number Va is neglected, the function E(V3) could be 
obtained from the above function E( J) by replacing J 

lQ We use a method described by M. Born, The Mechanics of 
the Atom (Frederick Ungar Pub!. Co., New York, 1960), pp. 303ff; 
H. Goldstein, Classical Mechanics (Addison-Wesley Pub!. Co., 
Inc., Reading, Mass., 1950), pp. 302-303. 

20 L. Pauling and E. B. Wilson, Jr., Introduction to Quantum 
Mechanics (McGraw-Hill Book Co., Inc., New York, 1935), 
p. 161, Eq. (23-30). 

by its equivalent for a degenerate oscillator (va+ 1) h. 
(The latter equivalence is exact for the harmonic 
oscillator.) However, for our present purposes we do 
not need E( va) . 

C. Exact Quantum Result for a Nondegenerate 
Oscillator 

In Eq. (A10) below, the symbol m was used to 
replace Vl+!, where VI is the quantum number of the 
nondegenerate vibration. 

The eigenvalues of the harmonic-quartic oscillator 
are given in Ref. 9. The potential-energy function is 
!kx2+ax4, and the Hamiltonian H is written in terms 
of another one, Ha. The relation between the two, after 
some manipulation, is found to be 

H =!hv(l-OI)-l/Wa , (A9) 

where 01/(1-01) = (ahv/k2)2/a and v = frequency when a 
vanishes. The eigenvalues of Ha are tabulated as Aa. 

For our purposes, an approximate formula of 
McWeeny and Coulson,21 checked by numerical 
methods in Ref. 9, is quite accurate. One finds, thereby, 
that the eigenvalues of Hare y where 

y=!mhv(3xr+xr- 1) , 

and Xr is the real root of 

r-x-6[0I/(1-0I) Ja/2m =0. 

(A10) 

(All) 

[In (All) we neglected a term! relative to m2, since 
m is large for the significant parts of Fig. 1. J 

To obtain a plot of m versus y, y and m were each 
calculated as a function of a third variable Xr using 
(A10) and (All). The anharmonicity term a/k2, 

needed for the evaluation of 01/ (1-01), was calculated 
from the readily derived result 

(A12) 

where Vh is the harmonic term !kx2 and V is the actual 
potential function in H. Since V was about 0.40, O.BO, 
and 2.75 eV when the bond angle was 7r, 57r/8, and 7r/3 
(Ref. 22, Fig. 2), and since hv is 2.BO kcal/mole one 
finds [0I/(1-0I)J3/2=ahv/k2"-'0.021. (At a bond angle 
of 57r/B, V was taken equal to V".) 

D. Calculation of N+"ib(Y) 

The exact classical expression for N+ vib(y) is P/2h2 

when the dependence of E on J 0/> is neglected. Using 
the plot of m versus y in Appendix I.C, setting J =mh, 
y=Ep- V. in (A10), and y=Ep- V.-Ej+ in (A10), 
N+ vib(y) was calculated for Eqs. (1) and (2). 

The correction of IJ"vnp for anharmonicity was 35% at 
the highest velocity (1.95), about 17% at a velocity 
of 1.40, 5% at a velocity of LOS, etc. 

21 R. McWeeny and C. A. Coulson, Proc. Cambridge Phi!. 
Soc. 44, 413 (1948). 

22 R. N. Porter and M. Karplus, J. Chern. Phys. 40, 1105 (1964). 
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APPENDIX IT: CASE OF LARGE BENDING 
ANGLES. LIMITING Uvjp 

At high energies large bending angles occur and a 
simple Cartesian expression for the kinetic energy of 
the bending modes no longer suffices. The actual 
kinetic energy is used below to calculate the partition 
function and, thereby, the limiting value of Uvjp at high 
energies. For simplicity, rotation-vibration interaction 
is neglected in the present paper. 

The three atoms in the Ha complex are denoted in 
sequence by 1, 2, and 3. The doubly degenerate bending 
motion can be discussed in terms of a set of axes so 
chosen that Xl =Xa= -!X2, YI =Ya= -!Y2, Zl = -Za, 
Z2=0. The angular momentum about the X and Y axes 
and momentum of the center of mass are seen to vanish 
in this coordinate system. 

The angle which the 1-2 bond (or 2-3) makes with 
the Z axis is denoted by 8 and the angle which the plane 
of the three atoms makes with xz plane is denoted by rp. 
The 1-2 and 2-3 bond lengths are each denoted by a 
fixed length R in this symmetrical complex, for purposes 
of discussing the bending mode. The transformation 
corresponds to: XI-X2=R sin8 cosrp, YI-Y2=R sin8 sinrp, 
ZI-Z2 = R cosO. 

The kinetic energy T is 

a 
mH :E Hx?+y;2+zl) , 

i-l 

where mH is the mass of the H atom. Upon transforming 
these Cartesian coordinates to the new coordinates 
R, 8, rp, by introducing the above constraints one 
obtains (A13) , where 1+ = 2mHR2: 

(A13) 

From (A13) P8 and p", may be calculated as aT/ae 
and aT /a¢, respectively. 

The partition function (p.f.) for the bending modes 
is 

(p.f.) = f ... f exp (-H) dpedp",d8drp kT h2 ,(A14) 

where 

H - [PN (1 + 2 sin28) J+ (p i / sin28) (A15) 
- 2/+/3 +U(8). 

Integration yields 

(p.f.) = kTI+ 1"/2 sin8(1 +2 sin28) 1/2 exp(- U) d8 
3fi2 () kT . 

(A16) 

The density of bending mode states neE) of energy 
E is obtained from (A16) by Laplace transform 

techniques.23 N+ vib(Y) is 

1'Y fJ(E)dE. 
o 

To obtain fJ(E) at low energies only the behavior 
of (A16) at low T is relevant. Here, U can be re-
placed by !K82, where K is a force constant, and sin8 
can be replaced by 8, and (1+2 sin28) by 1. Thereby, 
one obtains the usual harmonic-oscillator expres-
sion (kT/hv)2, where the bending frequency v is24 

(1/211") (3K/I+) 1/2. From this (p.f.) fJ(E) is found to be 
E/(hv)2 and N+vib to be y2/2(hv)2. 

To obtain fJ(E) at high energies, only the behavior 
of (A16) at high T is needed. Then, because of the 
anharmonicity at a high enough energy U can be taken 
as zero in some interval (0, 80) and infinite outside. 
Thereby, at high T, Eq. (A16) yields 

(p.f.) = (kTI+ /2v'1h2) ('lF1-'lFO-! sin2'lF1+! sin2%), 

(A17) 
where cos'lF 0 = (i) 1/2 and cos'lF 1 = (i )'/2 cosOo. 

By a Laplace transform method2a neE) is found to 
b.e the coefficient of kT in (A17) and N+ vib(Y) to be Y 
times that. The corresponding value of Uvjp, obtained 
from (1) is (A18), since J.' is 2mH/3: 

U V jp=r1l"R2(I+u/lu+) (3/4v'1) 

X ('lFI-'lFO-! sin2'lF1+! sin2%) [1- (Ve/ Ep)]. (A18) 

The angle term in brackets varies roughly as 802, being 
0.02511", 0.10811", and 0.45511", when 80 is 11"/8, 11"/4, and 
11"/2, respectively. The numerical value of all but the 
last two factors is 56.5 a.u. From the published potential 
energy surfaces, there is a cusp which makes entrance 
through the activated-complex region improbable if 
the angle of deviation of Ha from linearity, 'Y, is as 
much as 211"/3. By definition 8 is half 'Y, so the cor-
responding maximum value of 8, 80, would be 11"/3. 
There is a perceptible beginning of this cusplike 
behavior when 'Y is 11"/2, so 80 lies in the interval 11"/3 
and 71"/4. Thus, if 80 is 71"/4, uVjp(max) is 19.2 a.u., which 
is three times the expected extrapolation of the com-
puter values. 

It is of interest to compare the values with the well-
known hard-sphere-collision-theory value. The latter 
can be recovered from Eq. (1) by noting that the 
internal degrees of freedom which contribute to 
N+ vib in that case are the two rotations of BC. Thereby, 

23 See C. Kittel, Elementary Statistical Physics (John Wiley & 
Sons, Inc., New York, 1958), p. 57. 

24 v is obtained First, one finds the action J",=2'ffP",. 
Next by contour mtegratlOn (compare Appendix I) one finds 
Je= The frequency for the bending motion 
v (=vo) 1S defined m the usual way (Goldstein,19 p. 293) as iJE/ iUe, 
and so equals (1/2'ff) (3K/[+)'. 
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where K is the rotational quantum number of BC in 
the hard-sphere-collision-theory "activated complex," 
and Kmax is the maximum K for the given Ep- V. 
(K2maxli,2/2I=Ep-V.). For 1+ we have IU'} in this 
case; (1;' is the collision diameter. (1+ and (1 are unity 
as before. However, r is unity instead of 2, in the hard-
sphere case, since the two resulting reaction paths, 
one to form AB and the other to form AC, become 
competitive rather than additive. In this way one 
obtains from Eq. (1) the value 7r(1;' (1- Vel Ep) for 
the hard-sphere reaction cross section. According to the 
potential-energy surface, interaction occurs when 

1.5+3) =3.75 a.u., yielding a value of 44 a.u. 
for the limiting hard-sphere cross section. 

APPENDIX III: ADIABATIC JUSTIFICATION OF 
ACTIVATED-COMPLEX THEORY 

If the distribution of reactants is a Boltzmann one, 
the probability of finding the reactants in a vibrational-
rotational-orbital state n and in phase space region 
dxdpz (x is reaction coordinate and px is conjugate 
momentum) is 

dxdpz exp( - E/kT) 
h Q 

in a center-of-mass system. Q is the reactants' partition 
function in that system and E is their total energy. 
When the reactants are far apart, x is simply the 
distance between their centers of gravity. 

The corresponding probability per unit x is obtained 
by dividing by dx, and the corresponding contribution 
to the reaction rate constant is obtained by multiplying 
with the velocity x and with the transmission coefficient 
K (E,n) , and finally by integrating over all E and 
summing over all n. Since E is the sum of En (the 

vibration-rotation-orbital energy of reactants in state 
n) and of pz2/2jJ., where jJ. is their reduced mass, dE is 
pxdPz/jJ., i.e., xdpx, at a given n. The expression for 
kraoo becomes 

kraoo = f K(E, n) exp(-E) dE. 
n E kT hQ 

(Al9) 

If an adiabaticity existed for all degrees of freedom, 
one would have a l: 1 correspondence between states 
in the activated-complex region and those of the 
reactants: 

(A20) 

where En+ is the rotation-vibration energy of the 
activated complex and E tr+ is its kinetic energy along 
the reaction coordinate. Introduction of (A20) into 
(Al9), treatment of the reaction coordinate as classical 
[i.e., replacing K(E, n) by 1 if E tr+ and by 0 
otherwise], and integration yields the usual activated-
complex theory expression 

(kT/h)Q+ 
krate = Q ' (A2l) 

where Q+ is Ln exp( - En+ /kT). [A K could have been 
left in (Al9) for tunneling purposes.] 

In the classical version, the summations over quan-
tum states can be replaced12 by integrations over angle-
action variables and En+ by E+( Ji). For example, 

(A22) 

.Y is the number of degrees of freedom in the center-
of-mass system. Integration over the angle variables 
Wi contributes a factor of unity. 
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