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The classical mechanics of chemically reactive linear collisions is investigated for vibrationally near-
adiabatic reactions. A coordinate system which passes smeothly from one suited to the reactants to one
suited to the products is used. The Hamilton-Jacobi equation is then solved in the adiabatic approximation
by introduction of an “adiabatic-separable” method. Nonadiabatic corrections, which describe the prob-
ability of vibrational transitions, are also calculated. They involve the Fourier component of local internal
centrifugal and vibration frequency-change terms. The reaction coordinate for the adiabatic system is
shown to be that curve on which local vibrational and internal centrifugal forces balance pointwise. Appli-
cations can be made to the role of translational-vibrational energy interchange in reactions, reaction-cross-
section theory, bobsled effect, and other topics. The results may be compared with electronic computer cal-

culations as they become available.

INTRODUCTION

N the present paper we consider the dynamical
aspects of motion of a system on a potential-energy
surface for chemical reaction in a linear collision,
A+BC—AB+-C. In a center-of-mass system there are
only two coordinates, but the problem does not permit
separation of variables for actual surfaces. The present
paper is a companion to one recently submitted on the
quantum mechanics of these systems! and the intro-
duction to that paper applies to the present one also.
In this reaction the vibrational mode is originally a
BC vibration, then becomes a symmetric stretching
ABC? vibration and, finally, an AB vibration.? This
vibrational mode is adiabatic under certain circum-
stances, particularly when the system does not strike
the curved part of the * reaction path” with too high
a speed.® We consider such reactions and calculate also
nonadiabatic corrections. They contain a Fourier com-
ponent of a local centrifugal term and of a term de-
pending on vibration-frequency variation. The com-
ponent is shown to involve

exp (i | wdl)

rather than exp(iwt), because of the variation in
vibration frequency during the motion.

Implications of these results for the characterization
of the reaction coordinate in chemical reactions, for
translational-vibrational energy transfer, the bobsled
effect, and vibrationally nonadiabatic “locking in” of
energy in reaction-cross-section calculations are con-

* Supported by a grant from the National Science Foundation.
. A. Marcus, J. Chem. Phys. 45, 4493 (1966), preceding
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2 Thls change in nature of the vibration (AB to ABC? to BC)
g sfee; from the potential-energy contour plots, such as those in

e

® Reactions such as H+H;—H,-+H appear to be vibrationally
adiabatic at low to moderate relative translational velocities.
For analyses of exact electronic computer results on these reactions,
see Footnote 8 of Ref. 1.

sidered. Implications for tunneling calculations have
been considered elsewhere.!

HAMILTONIAN AND COORDINATE SYSTEMS

The potential-energy surface for these collision
problems, plotted using skewed coordinate axes! in a
center-of-mass coordinate system, can be represented
by well-known contour diagrams.® The surface possesses
two valleys, one corresponding to configurations of
initial reactants and the other corresponding to those
of final products. The valleys are frequently separated
by some saddle-point region, a “col.”” In the chemical-
reaction case the system surmounts the barrier, but in
the vibrational energy transfer problem® it lacks the
energy to do so and returns to the valley, perhaps
with some change in vibrational energy.

The path of minimum potential energy from a valley
floor to the top of the pass and then of descent to the
floor of the other valley is a useful one for describing
the potential-energy function for the surface. The
corresponding curve in the coordinate space (a pro-
jection of the path onto that space) is called the
“reaction path’” to distinguish it from the “reaction
coordinate” which is described later. It is a curved
path in the interaction region and a rectilinear path in
the region of separated reactants or separated products.
Motion perpendicular to it is vibrational.

We introduce a coordinate system® suited to the

¢ The axes are skewed to remove cross terms from the kinetic-
encrgy expression in center-of-mass Cartesian coordinates. Be-
cause of this diagonalization the system can be represented in its
motion by that of a single point of mass u.%> Equation (1) of the
present paper is based partly on this fact.

8 (a) S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of
Rate Processes (McGraw-Hill Book Co., Inc., New York, 1941),
Chap. 3; (b) R. E. Weston, J. Chem. Phys. 31, 892 (1959)

¢ When the energy is insufficient to cause reactlon, the present
treatment becomes a method for treating the vibration~translation
energy exchange problem.

. 3, 131 (1961).

H. S. Johnston, Advan. Chem. Phys
“ H. C. Corben and P. Stehle, Classical Mechanics (John Wiley

& Sons, Inc., New York, 1960), 2nd ed., pp. 319,
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surface topography, as follows. Let C be any curve in
the coordinate space. It could be taken as the “reaction
path,” but when greater accuracy is desired it can be
chosen in a different way, described later.

The distance from any point in the space to the
nearest point on the curve is z. The length along C to
that point on C is s. Thus, any point in the space can
be described by coordinates x# and s. (Ambiguities
could occur if C had loops etc.) The kinetic energy T
may be expressed in terms of the momenta p. and 2,
_ conjugate to x and s, respectively?

T =(p.2/2u) +p:2/[2u(1+xx) ], (1)

where « is the curvature of C at the point corresponding
to (x, s) and p is the effective mass of moving point
representing the dynamical system!; u is unity in a
mass-weighted space, but is often chosen to be the
reduced mass of the reactants in the chemical-reaction
case. The final answer is independent of this choice, of
course, since it merely determines the units of the
coordinates.
The potential energy V is

V=Vi(s)+V:(x,s),
VQ(O, S) =0,

2
3)

where Vi(s) is the potential energy along Curve C
and Vi(x, s) is defined by (2) and (3). When C is
chosen to be the “reaction path” V,(x, s) is a vibra-
tional Morse-like potential-energy function of x and
may depend weakly on s.

ADIABATIC SOLUTION

The Hamilton~-Jacobi? equation obtained from (1)
and (2), rewritten slightly, is

G LG +2v0
+(5) G) +tatm o =an @)
where

Us(x, 5) =[1— (1+xx)2]Va(s) +Va(, 8);  (5)

@ is the total energy, and W(x, s, «) is Hamilton’s
characteristic function. It is a generating function for
a canonical transformation,

pi=0W/dq:,  Qi=0W/dex, (6)
where the p; and ¢; are the old momenta (2., ) and
coordinates (x, s), respectively. The new momenta are
constants of the motion ;. The Q; are the new coordi-

nates.

VM, Goldstein, Classical Mechanics (Addison-Wesley Publ.
Co., Inc., Reading, Mass., 1950), pp. 280fi.

CLASSICAL MECHANICS OF LINEAR COLLISIONS

For certain surfaces the function Us(x, s) depends
but weakly on s,° and we can then write (7) as a
zeroth-order solution,

W=W,i(s, a) +Wa(x, a).
From (5) one then obtains
(2u) " (aW,/ds)*+ V1 (s)
=[— (2u)~(dW2/dx) 41— Us(%, 5) IL(1+xx)*]. (8)

The left side is independent of x. If the right side
were independent of s, both sides could be set equal to
a constant, . However, the right side depends weakly
on 5, and so such an ag is now a slowly varying function
of 5, yielding an adiabatic approximation:

(20)~1(aW1/ds)*+V(s) =au(s), (9)
(2u) 2 (@Ws/dx)*+Us(x, s) [/ (1+12)*]=c.  (10)

One sees from (9) with p,=dW,/ds that a; serves
as a slowly varying energy for the angular motion,
referred to Curve C. The weak dependence of a; on
s when C is chosen to coincide with the ‘“reaction co-
ordinate curve” is shown later by Eq. (18).

It is convenient to define a function Us(x, s) which
acts as an effective potential energy for the vibrational
motion:

(7)

Us(z, s) =Us(z, s) +[as/ (14xx)%]. (11)

The minimum of Us occurs at x=xg. Thus (defini-
tion of xy),

an(xo, S)/axo= (az— Vl) 2K/(1+Kxo) a. (12)

The curve xz=x0(s) is the “reaction coordinate,”
often mentioned in chemical kinetics though not
previously defined throughout the space.? When C is
chosen to be the reaction path, the functions Vi(s)
and Va(x, s) are very simply expressed. A better

10 For some surfaces Us:(x, s) minus a function of s depends but
weakly on s. This (initially unknown) function is then added
and subtracted in Eq. (4). It is then present as an additional term
in both sides of Eq. (8). When both sides of this modified (8)
are set equal to a parameter weakly dependent on s, the cited
additional term can be absorbed in the latter, again yielding Eqgs.
(9) and (10). There are of course some reactions which are mark-
edly vibrationally nonadiabatic and for these Eqs. (9) and (10)
are inapplicable.

1 Throughout this paper, 3Vs(xo, 5)/9xy and #Vs(xo, $) /9%
denote the values of aVs(z, s)/3x and 3*Va(x, s)/92® at x=x,.

12 The term “reaction coordinate” is used in the common way as
that curve along which the vibrationally averaged system moves
(strictly speaking, in the harmonic-oscillator approximation) on
goinF from reactants’ region of the space through activated com-
plex’s to the products’ one. The current justification of activated-
complex theory P O. Hirschfelder and E. Wigner, J. Chem.
Phys. 7, 616 (1939); M. A. Eliason and J. O. Hirschfelder, ibid.
30, 1426 (1959); L. Hofacker, Z. Naturforsch. 18a, 607 (1963)]
is tied to an adiabatic hypothesis for the motion of all coordinates
but the reaction coordinate. In this respect, the definition of
“reaction coordinate” should be tied to a vibrationally adiabatic
reaction, as in the present paper. The ‘“reaction coordinate’
defined in the first sentence is of course a member of a family of
curves. When C is taken to be the “reaction coordinate” these
curves are: x=constant.
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choice for C for some purposes, however, is that curve
for which x(s) =0. C then becomes the “reaction
coordinate” itself and, according to (12) is that curve
which satisfies (13):

AV a(0, 5) /0x0=(0a— V1) 2¢
and
%=0. (13)

Examination of (9) and (13) reveals that —aVs/dx,
is the local vibrational force and that the right side,
which equals «p,*/u, is the local centrifugal force.(It
is u$?/R, where R is the radius of curvature of C, 1/«,
at this point s, and where the dot denotes d/d!.)

It is also instructive to rewrite (8) with the aid of
(6) and (11):

[(2p) " (dW/dx)?+-Us(x, 5) — Us(x, 5) J+Va(s)
+Va(xo, 5) + [0/ 21 (1 +x20) ] = err.

The term in brackets is the local vibrational energy
at s. The sum of the next two is the potential energy
on the “reaction coordinate” at s, since Vi(s) is the
potential energy on the “reaction path” C and Va(x, s)
is the increment needed to go from C to the “reaction
coordinate” at the same s. The last term in (14) is the
kinetic energy of the s motion along the reaction-
coordinate curve. The sum of these terms is the total
energy, aj.

In the vibrationally adiabatic approximation the
vibrational action variable J is constant during the
motion,?® just as the vibrational quantum number is
constant in a quantum-mechanical treatment of such
reactions. The local vibrational energy is denoted by
E(J,, 5s),¥ where J is the initial value of J. We obtain

(2p)Y(@W./dx)2+Us(2, s) —Us(xo, s) =E(Jo, 5). (15)
An equation for o, is obtained from (9), (14), and
(15):
ay=ay—E(Jo, 5) —Va(o, 5) +[1— (14xx0) ] (ca— V).
(16)
Equations (12) and (16) can be solved by various
means for as(s) and xo(s). After obtaining a solution
for as(s) and x0(s), Eq. (9) is next solved: Since p,
equals dW,/ds [Eqgs. (6) and (7)] and equals u$(1+

k%), as seen from Hamilton’s equation, $=90H/dp,,
the dependence of s on ¢ is obtained from

*ut(1txmo)ds
20 [2 (aE_ Vl) ]’

where 5o is the value of s at ¢=#, and so depends on
the origin chosen for s.

(14)

t—to, (17)

11 For example, D. Ter Haar, Elements of Hamiltonion Mechanics
(North-Holland Publ. Co., Amsterdam, 1961), Chap. 6.

4 With the use of angle-action variables for the vibration the
esnerg)é c)lepends only on one of them, the action. (Compare Refs.

or 13.
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An adiabatic solution of the problem has thereby
been obtained. When C is chosen to be the reaction-
coordinate curve, x=0, and Egs. (16) and (17)
become

as=ay—E(Jy, 5),

aff g
0 EZ(ag* V) ]‘

(18)

I—bh. (19)

HARMONIC-OSCILLATOR APPROXIMATION

When the harmonic-oscillator approximation is used .
for the effective potential-energy function (11) in
Eq. (10), Egs. (15), (16), and (18) apply as before
with!s

E(Jo, 8) =Jows/2m, (20)

where
pgt=(82Vo/0x5%) +[6(es— V1) ¥/ (14-kx0)¢].  (21)

When the reaction path is chosen as Curve C,
V3 (x, 5) /3xc* equals w?, where w/2x is the “natural”
frequency of vibration at s, i.e., the actual frequency
if centrifugal forces were not considered:

w? =w?+6(ae— V1) «2/u(14xx0) 4.
(22)

(C=reaction path)

When the reaction coordinate is chosen as Curve C,
=0 in (21).

NONADIABATIC CORRECTION

For the following arguments, Curve C is taken to be
the reaction path, and the harmonic-oscillator approxi-
mation for V3(%, s) is used. One way of estimating the
nonadiabatic correction is as follows.

Hamilton’s equations for p. and for £, applied to the
original Hamiltonian, yield

ui+-0Ve/dx=kpd/p(14«x).

On adding —#, to both sides of this equation, intro-
ducing the adiabatic result for p,* on the right side,'
and expanding the right side and dV,/dx about x=ux,,
retaining terms in (x—xo), one finds

(23)

& —Eotwe? (5 —x0) = —o. (24)

Because of the dependence of w; on time, through
the dependence of s and p, on time according to (17),

18 Reference 8, p. 190, Eq. (62.7) yields (20).

18 Logically, this step could have been delayed until gost (30),

so that the latter, at least, would be exact in this respect. Instead
of the right side of (24) one would have

=~ Zo+[epat/1d (1 4x20) 3] — (wPr0/ 1)
X {32t} = 2p (s — V1) I/ (14-x20) 4/13} (x—x0) .

However, the step was made here to abbreviate the notation,
since the results after (30) are the same,.
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we introduce a reduced time scale 7 and a new
variable y7:

t
r= f 2 00+, (25)
tem g 00

y=(ws/wo)}(x—20), (26)

where w, is a function of time # in (25) and wp is the
value of w; at ¢=#. The time {=/ is to be chosen to
correspond to the system’s being in the form of
reactants.

From (25) one now obtains after some manipulation

(dy/d7%) ey = — (wo/ws) o+ Fy, (27)
where
F=(wo/ee)}(d?/dr?) (we/e0)*

and where the dot denotes d/di, as before.
Equation (27) is equivalent to the integral equation
(29), as substitution of the latter into the former shows:

(28)

y= é; sin(wor+8) + = / " sinun(r—r)G(r)dr', (29)
wo W ¢~

where the lower limit of /=4 was replaced by —<,
since G vanishes for #<f. 4 and 8 are constants. G(r)
is the right side of (27), expressed in terms of the
reduced time variable,

G(7) = — (wo/ws) o+ Fy. (30

Introduction of the adiabatic approximation into
the right side of Eq. (29) for y yields a nonadiabatic
correction: the first term on the right side is the adia-
batic result and the second is the nonadiabatic one.

At infinite time, integration of (29) twice by parts
yields

1 ®
y= iii sin (wor+8) + — f sinwg(r—7') G*(v')dr’,
Y Wp Y -0

(31)
where
G*(r) = woto(we/wn) 3+ (d?/dr®) (wo/wn)d.  (32)

The second term in (32) is expected to be negligible
usually.

The nonadiabatic correction is useful in at least
three respects.

(1) In the case of chemical reaction it yields the
vibrational-energy change, in excess of that expected
from adiabatic considerations, Jo(we,—wo)/2w, where
W, in the value of w at =00,

(2) In the case of translation—vibrational energy
transfer it yields the vibrational energy change.

(3) In chemical reaction it yields the nonadiabatic
correction to calculations of the reaction threshold in
the two-dimensional case and of the “nonavailable

17 A similar transformation is used for a related (but homogene-

ous) equation, e.g., A. Erdelyi, Asymptotic Expressions (Dover
Publications, Inc.,, New York, 1956), p. 79.

CLASSICAL MECHANICS OF LINEAR COLLISIONS

energy” in the actual (n-dimensional) case. (The “non-
available energy” is the energy unavailable for distri-
bution among other coordinates when §=0 at the
saddle point. It plays a role in a statistical-dynamical
theory of reaction cross sections.’)

CHEMICAL REACTION

In the region of the separated products, the path C
is rectilinear, and so k=x=0. Let w=w,, in this valley.
The final vibrational energy is juw.2x*+3ui?. For the
change of vibrational energy AE,y, we thus obtain

(e —w0)Jo + (folwm’)’
2r wT

AE =

X f ® cos(wer’+8)GH()dr’

2

22| [ expluarirehar | (9
Wy |-

VIBRATION-TRANSLATION ENERGY TRANSFER

When the system returns to its original valley with-
out being able to surmount the reaction barrier, w,, is
wo and we obtain (34) for the increase of vibrational
energy,

$ ro
AE, = (J%"'i) [ cos (wor'4+8) G¥(+) dr'

-0

+‘-2f| f_: expliver’)GHe)ar' | . (34)

NONAVAILABLE ENERGY AND REACTION
THRESHOLD

In the two-dimensional case, the oy in (4) is a
constant. In applications to the n-dimensional one e
may vary with s, because of energy loss to other
coordinates, the form of ai(s) depending on the model
used.

When § vanishes at the top of the barrier, x also
vanishes there. The total energy at that point then
equals the potential energy there and the vibrational
energy, Eviv. Eoin equals 3u(3—d0) +3uews?(x—20)?
where now w;=w at this point.? From (29) one finds

J Touw?\}
Eip= ——2:0 + (—won- ) f_; cos(wor’+8) G(7)d7’
+hu2 | [ eplion) GG, (39
W | /=

where 7 is the reduced time to reach the top of the
barrier.

18R, A. Marcus, J. Chem. Phys. 45, 2630 (1966).

18 According to (22), ws equals  when as=V:. According to
(9), a2 equals V, when p, vanishes, i.e., when 8 vanishes, That is,
wz equals w for the cited conditions.
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Let s* denote the value of s at the top of the barrier.
When x, is a symmetric function of s—s*, %, vanishes
at s=s* Upon integrating (35) twice by parts one
now obtains (35) but with G replaced by G*.

The threshold energy for the reaction in the two-
dimensional case, AE, is

AE= Vl(s*) +Evib - (Jowo/21r) , (36)

where E.i is given by (35). The second term in (35)
yields the “nonadiabatic leak,” mentioned elsewhere!s
as a way of accounting for the small but finite cross
sections observed in numerical integrations for classical
collisions at energies below “threshold.”

BOBSLED EFFECT

As the system proceeds around the curved part of
the valley bottom, i.e., the region where the “reaction
path” is curved in coordinate space, it experiences the
expected centrifugal force. This result is exhibited by
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Eq. (12), according to which x(s) is positive when
P2 is positive.?® This effect is the bobsled effect noted
by Wall and Porter? in their numerical calculations:
A bobsled going downhill goes partly up the valley
wall when the “reaction path” is curved.

If the downhill velocity in the latter problem is
sufficiently great when the bobsled mounts the curved
portion, it will go up the valley wall as far as it can go,
then down across the valley bottom, up the other wall,
and so on. That is, when the velocity is sufficiently
high while the system reaches the curved part of the
“reaction path,” oscillations are induced where there
were none present originally. This effect is an example
of vibrational nonadiabaticity and is exhibited by
Eq. (33) with Jo=0.

» For example, if .? is positive, ae— V; is positive [Eq. (9)].
In that case, dVs/dxy is positive [ Eq. (12)]. This result implies
that xp(s) >0. (For example, in the harmonic-oscillator approxi-

mation, dV3/dxp is we?2o.) 20(s) =0 when x=0,
#1 F, T. Wall and R. N, Porter, J. Chem. Phys. 39, 3112 (1963).



