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The analytical quantum mechanics of chemically reactive linear collisions is treated in the vibrationally
near-adiabatic approximation. The “reaction coordinate” in this approximation is found to be the curve on
which the classical local vibrational and internal centrifugal forces balance. Expressions are obtained for
the calculation of transmission coefficients for these nonseparable systems. Some implications for tunneling
calculations in the literature are noted. Expressions for nonadiabatic corrections are derived, the latter
being associated with vibrational transitions undergone by the transmitted and reflected waves. When the
system does not have enough energy to react, the last results refer to the vibration-translation energy-

transfer problem in linear collisions.

Two novel features are the introduction of an actual coordinate system which passes smoothly from one
suited to reactants to one suited to products and the introduction of an adiabatic-separable method, a
method which includes curvilinear effects. Extensions to collisions in higher dimensions are given in later

papers.

INTRODUCTION

N the present paper the analytical quantum me-
chanics of chemically reactive linear collisions are

examined. The resulting equations and the qualitative
concepts can be compared with the results obtained! by
numerical integration of the Schrédinger equation. The
equations are applied elsewhere to reaction tunneling
problems and to a recently formulated® statistical-
dynamical theory for chemical reaction cross sections
of n-dimensional systems. Comparisons with other
studies are noted later. Elements in the present work
stem from a recent series of investigations®* but it
itself is self-contained.

For a linear collision only two coordinates in a
center-of-mass system are needed to represent the
positions of the atoms in a triatomic reaction, A+
BC—AB+C. Unfortunately, the problem does not
admit of separation of variables, except globally
(or piecewise) for idealized potential-energy surfaces
(sharp barriers etc.).’ Typically, the surface is plotted
in skewed coordinates to eliminate cross terms in the
kinetic energy.® The surface normally possesses two
valleys parallel to the axes, one corresponding to the
initially separated reactants and the other to the
finally separated products. The wvalleys are often
separated by a saddle-point region (a “col”), and the
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path of minimum potential energy leading up to the
col from either valley is a curved one when projected
onto the coordinate space. This minimum-potential-
energy path (ascent, descent) leading from reactants’
valley to products’ via intermediate configurations is
called the “reaction path,”” to distinguish it from the
“reaction coordinate,” described later.

The vibrational motion of the system is initially a
BC vibration, but, as one sees from the potential-energy
contour plots in the above space changes its nature
smoothly, becoming a symmetric stretching A+« +B««:C
vibration in the saddle-point region and, finally, a
vibration of the AB molecule.® The system initially
has a given vibrational quantum number for BC. If
there is a large probability of retaining this number in
forming the product AB the reaction can be called
vibrationally adiabatic. Nonadiabatic transitions will
occur when the system strikes the curved part of the
reaction path too quickly or when the vibration fre-
quency for motion perpendicular to the reaction path
changes too rapidly along the path.

The quantum mechanics of these problems is con-
sidered here in the near vibrationally adiabatic limit.
Nonadiabatic corrections are also calculated. It has
been shown?® that some results of recent numerical

7H. S. Johnston, Advan. Chem. Phys. 3, 131 (1961).
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studies!?® on the H+H;—H,+H reaction provide
evidence that the reaction is adiabatic with respect to
a certain vibration, at least at low to moderate relative
velocities above threshold. The corresponding vibration
in related three-center abstractions is also expected to
be vibrationally adiabatic if the velocity of the moving
point along the curved part of the reaction coordinate
is not too high.

Vibrationally adiabatic reactions are of particular
interest, since it has been shown!™!? that a thermal
equilibrium distribution among activated-complex
states is actually achieved for such reactions if the
distribution of reactants ainong their own states is a
thermal equilibrium one. That is, only for such reac-
tions has a justification for activated-complex theory
been given so far.

The present calculations apply to the problem of
vibrational energy transfer as well, for this case is a
particular one in which the system does not have
enough energy to react. Another closely related formu-
lation for the latter problem, given elsewhere, is based
less on the surface topography and more on the poten-
tial functions.

The two principal novel features of the present work
and of its classical counterpart’® are the introduction
of a coordinate system which passes very naturally
from one appropriate to reactants to one appropriate
to products, and the use of an adiabatic-separable
approach in converting the partial differential equation
(2) to ordinary differential equations.

THEORY

A coordinate system!® used also in a classical mechan-
ical treatment® of the problem is also used here. Let C
be a curve in the coordinate space. In some situations
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discussed here). The latter arise from a combination of rotations
of BC and orbital motion of A and BC. Perhaps the best that
can be hoped for dynamically is that the distribution of bending
states is a random one about the adiabatic value. (See also Ref. 2.)
A detailed analysis of existing electronic computer results will
provide an answer to this problem.
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For, in Region D the x-coordinate curves will eventually intersect,
unless one modifies the coefficients in Eq. (1) in that region.
Such intersections lead to difficulty.
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noted later it may be convenient to take C to be the
“reaction path.” If ¥ denotes the shortest distance from
any point near C to C and if s denotes the distance
along C to that point, the position of a point in the
space can be defined by specifying x and s. The classical
kinetic energy in this space is

=3u(1+xx)*(ds/dt)*+3u(dx/dt)2 (1)

In (1), x(s) is the curvature of C at the particular s,
and u is the effective mass of the representative point
describing the system. In mass-weighted space p is
unity, but in chemical kinetics calculations p is usually
chosen to equal the reduced mass of the two reactants.
Only the units of the coordinates would be affected
thereby, not the physical results.

In the present case, (as in Fig. 3 of Ref. 17 or Fig.
93-1 of Ref. 16) Curve C is always concave to a singly
connected region and convex to a second, and so the
k in Eq. (1) is of constant sign. We choose it to be
positive, thereby also choosing x to be positive for
points on the convex side of C.

In these curvilinear coordinates the Schrodinger
equation®® is

k29 /1 9 k2 0 3
[‘;5(;5)‘;@(”5;)+V]‘P=E“” 2

where k2=72/2u, V and E are the potential and total
energy, respectively, and

n=1-4«x. 3)

V is written as
V=Vi(s)+V2(x,s), V2(0, s) =0. (4)

That is, Vi(s) is the value of V along C, and Eq. (4)
serves as a definition for Va(x, s). If C is chosen to be
the “reaction path,” V; is a Morse-like potential
function of x and V;(s) is the usual potential barrier
function along that path, V. depends weakly on s.
A trial product solution of (2) is given by (5).1
Equations (4) and (5) are introduced into (2) and,
after adding and subtracting Vy/x?, (6) is obtained:

¥ (x,5) =¥ (s, ) ¥ (2, o), ()

where « denotes a constant (E) and a quasiconstant
(ag below) of the motion;

1 4 (19
— | =k —{-— v A4
ey [ K as <77 6s) T 1(3)]

-7 [ nk2 - (17 ——) +Us(x,s) — E] v, (6)

7 R, E. Weston, J. Chem. Phys. 31, 892 (1959).

18 For example, W. Pauli, Jr., in Handbuch der Physik, S. Fliigge,
Ed. (Springer-Verlag, Berhn, 1958) Vol. 5, p. 39. In our case g*
is 1/u(1+xx)?, g== is 1/p, and gh is p(l—l—xx), according to (1).

1% This method is a less restricted version of the separable-
adiabatic one described in Ref. 4. For example, the condition
made there on the kinetic-energy operator for the s motion (pres-
ent terminology) has been relaxed.
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where

Us(x, s) ={1—[1/(A+x0)2 ]} V1(s) +Valw, 5).  (7)

For the moment we neglect d7/ds; in a region
important for tunneling « is frequently constant and
so dn/0s=0 there; outside that region « decreases
smoothly to zero.

With the neglect of d5/8s, the left side of (6) depends
only on s. The right side depends on x and on s. If
the reaction is largely vibrationally adiabatic, either
the right side is only weakly dependent on s or be-
comes so when a term g(s) is subtracted from both
sides of (6). Now both sides of (6) equal a constant
therefore or equal a weakly s-dependent parameter.
We absorb 8 in this parameter and simplify the sub-
sequent notation by writing the parameter as as+
(3xk)?, yielding (8). The weak dependence of a» on
s when Curve C is chosen to coincide with the “re-
action coordinate curve” is shown later by Eq. (18);
typically, $(«k)? is negligible:

(205 st (hek) = Vi (s,0) =0, ()
% 1
[£2(12) +E-Vite, 9 - & [ (b1
X¥D(x, a) =0. (9)
In (9), ¥® is set equal to ¢@/n}, to give
{—#2(8%/02%) + Us(x, 5) + [/ (1+xx)%]}
Xo® (x, @) =E¢® (x,a). (10)

The function Ua(x, s)+[as/(14xx)%] serves as an
effective potential-energy function for the vibrational
motion, the second term and part of the first being of
“an internal centrifugal” origin. The effective poten-
tial energy has a minimum at some x, ¥y, which varies
with s, Thereby, xo is defined by the equation®

6V2(xo, s)/6x0=(ag—Vl)ZK/(1+xx0)3. (11)

This curve, x=x(s), which acts as a center for the
vibrational motion is the often-spoken-of ‘“‘reaction
coordinate.” This coordinate was previously defined
in the literature in the saddle-point region, neglecting
all curvilinear effects, and in the regions of separated
reactants and of separated products.® It was not

2 Throughout this paper dVs(xo, s)/9% and 82Va(xo, s)/0xe
denote the values of dV(x, 5)/0x and 8Va(x, s)/8x® at x=x,.

% We are using the term “reaction coordinate’” in the sense
that it has most frequently been used in the literature, namely
as a coordinate along which tunneling rates may be estimated
and which represents the vibrationally averaged position (har-
monic-oscillator average, strictly speaking) as the system moves
from reactants to activated complex to products. This particular
coordinate curve is, of course, only a member of a family of
coordinate curves, namely, curves of constant x when x, is taken
to be zero, but one having the vibrationally averaged and (for
x20=0) tunneling properties cited above. The families of coordi-
nate curves, x=constant and s=constant, can be regarded as
particular examples of the coordinate curves g;=constant and
gi=constant in Ref. 4.
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defined, however, in the regions in between. This lack
prevented any dynamical discussion.

We denote by H? an operator for the vibrational
motion at any s,

-k o/ a
o= =22 (3.2) 0o, )~ Ui, 9
7 9dx \ Ox
o+ (3xk)* _ Qs . (12)
(14xx)? (1-4-kao)
The vibrational eigenfunctions of H* are denoted by
| #) and the eigenvalues by E, (both |#) and E,
vary with s)

+

H* | n)=E. | n). (13)

One sees by comparison of (9) with (12) and (13)
that | #) is ¥ (&, a) and that

E=En+ Ug(xo, S) +[O£z/(1+Kxo> 2]. (14)

Since % depends only on oy and s, as does E,, Eqgs.
(11) and (14) serve to determine the functions as(s)
and x(s) for any specified E.

Equation (8) for the s motion contains a kinetic-
energy term, a potential-energy term Vi(s), a very
small term (3«%)%, and ay determined above. ap is
essentially the “local” energy for the s motion referred
to Curve C. This one-dimensional problem can be
solved for the transmission coefficient and for ¥® by
standard techniques: numerical integration; simulation
by a potential function which yields a solution in closed
form; use of WBK or modified?2 WBK methods.

It is instructive to rewrite (14), using (8). We have

E=E,+V1(s)+Va(xo, 5)
— (B2/2u¥ One?) [ (32/05%) + (1) J¥O.  (15)

The first term in (15) is the vibrational energy at
any s; the second term is the potential energy at that s
on Curve C; the third term is the increment of potential
energy on going from that point on C to the point on
the reaction coordinate for the same s. That is, the
second and third terms constitute the potential energy
on the reaction coordinate. The last term [exclusive
of ($x)%] is the kinetic-energy contribution for the s
motion on the reaction coordinate.”® The term «%2/8 p

2 The modified WBK method is found in J. Heading, An
Introduction to Phase Integral Methods (Methuen and Co., Ltd.,
London, 1961), Chap. 5. The explicit equations are listed in
Ref. 4, p. 1604. See also Egs. (21.41) and (21.42) in E. C.
Kemble, The Fundamental Principles of Quantum Mechanics
(Dover Publications, Inc., New York, 1937), which anticipated
the Jater results but which have not been noticed in the tunneling
literature.

23 (a) Incidentally, introduction of ¢y®=exp(:iW/h) into (15)
vields —p2/2une? for the last term there, in the classical limit
of 7i—0, in the standard way. Here, p is dW /ds and is the momen-
tum conjugate to 5. (b) Introduction of y®=exp(iW/h) into
(8) yields —p2/2u for the first term in brackets in (8) in the
classical limit. The third term in brackets vanishes in that limit.
Thus, the right side of (17) equals pgx/p in this limit. It equals
18/ R, therefore, since ps equals u$(1-+«xo), i.e., equals ué on C.
R is the local radius of curvature of C, 1/«, and u$?/R is the well-
known centrifugal force.
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is normally very small and tends to zero in the classical
limit.

The complete calculations are simplest though not
the most accurate when C is chosen to be the reaction
path, since the dependence of V' on x and s is simplest
then: Va(x, s} depends only on weakly s, and in the
harmonic approximation V is given by (16), where w
depends weakly on s:

V=V1(s) +3uwa (16)
However, a term 14-«x occurs in the adiabatic equation
(9). When there is tunneling x, is negative and 1+4-xx
can get fairly small. ap(s) then varies rapidly rather than
weakly with s. In this situation, the choice of xy(s) =0,
instead of the reaction path, for Curve C is much
superior. In fact, since the x for such a curve is easily
shown to be less than that for the reaction path in the
tunneling region, 14-«x turns out to be closer to unity
for two reasons: (1) smaller x, and (2) the typical x is
closer to zero since xo=0.

When C is chosen to correspond to x,=0, C is the
reaction coordinate. In this case, Egs. (11) and (14)
become

3V2(xo, s)/ax0= (az—Vl) 2K;
a2=E-—E,..

(17)
(18)

xo=0,

One can see from (8) that the right side of (17) is the
local classical “internal centrifugal” force at the reaction
coordinate.®® The left side is (except for sign) the local
vibrational force there, at the same point. That is, the
reaction coordinate is the curve for which these two
forces balance.

NONADIABATIC CORRECTION

To apply standard formulas for perturbation or
other theory, it is desirable that formally at least the
unperturbed solution be an exact eigenfunction of some
Hamiltonian. The solution of the preceding section is
not. Rather, it is an approximate (adiabatic) solution.
In this section, an unperturbed Hamiltonian Hj is
derived for which the preceding solution [or, more
precisely, one which agrees exactly with ¥@ (%, &) and
closely with ¥® (s, «)] is an eigenfunction. Standard
formulas are then applied.

In choosing H, we proceed by analogy with a method
given by Hofacker'?: Operators H)* and H.,* are
defined by analogy with his kinetic-energy operators,
T ¢ and Taf The use of a similar notation for the
wavefunctions brings out some similarities.

We define a differential-integral operator H® by

Ho'=2 | n)H. (|, (19)

where the | #) form an orthormalized set (they are
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eigenfunctions of H®) and where

Baflo 1
7 0s \n ds, 7

X[oe—V1+(3xk)2] | #)FUs(ao, 5) +oa/nc.

(See also Footnote 24.)

In (19) the integral operator (n | is applied first, of
course, before applying H,.. Thus, if H® operates on
some | m) the 8/ds does not have an opportunity to
differentiate that |m), since (#|m)=8n. If Hy?’
operates on a product of | m) with some eigenfunction
| v} below, the d/ds [or what remains of it in the
first term of (20) ] does act on the latter function.

The eigenfunctions and eigenvalues of the operator
H..+E, are denoted by | 7ir) and by E.,, respectively,

(Hond-En) | 70)=Eny | ). (21)

From these results it follows that a product function
| nv), equal to | ») | #iv), is an eigenfunction of Hy with
eigenvalue E,,:

(20)

H, | 1) =Eny | mv), (22)
where
H0=H(d)'!+Hx- (23)
An operator H »g)* is next defined by
Heo'= 2. | n)Hun(m|, (24)
nm
where?
ko [la 1
| - F2(L0) L
n 9s \n ds i
X[es—Vi+ (Zck)2] | m), n#Em. (25)

It can be shown that the original Hamiltonian H is
related to these operators by (26), i.e., that Hug? can
serve as the perturbation operator in standard formal-
isms,

H =H0+H(nd)a- (26)

Various methods® may be adapted to the present

problem in order to determine transmission (x) and
reflection (p) coefficients. For example, in the Appendix

% Equations (20) and (25) could have been represented by a
single equation:
Hum={(n | H—H?|m),
that is, by

Hum={n|— (B/n) (8/35)[52(8/3s) ]— (1/2*)
X [ag— Vi+ (3xk) 21+ Us{xo, 5) + (cr2/ne¥) | m ).

% For example, A. Messiah, Quanium Mechanics (Interscience
Publishers, Inc., New York, 1963); T. Y. Wu and T. Ohmura,
Quantum Theory of Scattering (Prentice-Hall Inc., Englewood
Cliffs, N.J., 1962) ; N. F. Mott and H. S. W. Massey, The Theory
of Atomic Collisions (Oxford University Press, Oxford, England,
1965), 3rd ed.
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it is shown that
Knpwmu = (Vo™ /20"")

X | frvima 4 (1/ifivg™) {mp | Heaay® | U™ 2, (27)
Pryormy = (0™ /05"”)

X | farmu™® = (1/iFivg™) (mp | Hengy® | €)Y 2, (28)

where ¥, is an eigenfunction of H, incident from

s=—o in an initial state |#») and consisting of
incident plus outgoing waves. | mu(?) is an eigen-
function of Hy incident from s=—o0 in (27) and from

s=-c0 in (28), in state mu, and consisting of incident
plus incoming waves. The 1’s and v,’s are velocities at
s=—ow at s=-4o for the states indicated by sub-
scripts. The amplitude term fn, " occurs in the
asymptotic value of an eigenfunction |m™) of the
Hamiltonian H,. It describes transmission in (27) and
reflection in (28), and vanishes unless #y=my.

As a first approximation one could take ¥, , (P
| sy in (27) and (28), yielding

Knyomu= (V™ [0g"*)

X | far a4 (1/ih0,m) {ip | Hoa | D) 2, (29)
Prvomu= (2™ /06™)
X | farma D+ (1/ihv™) {pO | Hpy | ) |2 (30)

We conclude this section by considering the relation
between the | #r) and the ¥® of the preceding section.
When d4/3s is neglected and when derivatives of | #)
with respect to s are neglected, H,, | ¥®) yields (31)
when | ¥® is brought inside the integral in H,,, and (8)
is introduced.

H,. | ¥®O)=[Us(xo, s) Fo/ni] | ¥V)=(E—E,) | ¥®),
(31)

where the second equality arises from (14). Comparison
of (31) with (21) shows that | ¥®) is then the eigen-
function | 7iv) with eigenvalue E,,=E, subject to the
two approximations made in arriving at (31).

HARMONIC-OSCILLATOR APPROXIMATION

When the harmonic-oscillator approximation is
introduced for the effective potential energy in (10)
one finds

En=(n+3)hwe, (32)

where #» is the initial vibrational quantum number and
peog® = [0V 50, 5)/006° ]+ [6 (o= V1)*/ (1 +kx0)].  (33)
When the reaction path is chosen as Curve C,

V2 (o, 5) /030?

equals uw?, where w/2r is the “natural” frequency of
vibration at s, i.e., the frequency if internal centrifugal
forces were not considered [cf. Eq. (16)]. The value
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of w/2r at the saddle point, wy/2m, is the symmetric
stretching vibration frequency there. When the re-
action coordinate is Curve C, =0 in (33).

For purposes of application to a tunneling problem
in a later section, we need the equation for the relative
position of the reaction coordinate and the reaction
path at the barrier maximum when the former is chosen
as Curve C. At the barrier maximum the normals to
both curves coincide (exactly so, for symmetrical
reactions at least). In this case let the path through
the saddle point occur at x=xy, s=s;. Since the two
normals coincide, 8*V,/92? at x=0 and s=s; equals
8°V/8a? at =0 and s=s;. Thereby, V,(z, s4) is found
to equal 3 pw(x—xy)*— pwix?]. Equation (17) then
becomes

—X;= (Olg— V1> ZK/M(.UX2 (34)

and oy is given by (18). Let V* be the value of V at the
saddle point. Then Vi in Eq. (34), the value of V at
the barrier maximum along C, is

Vi=Vitiuoled. (35)

QUANTUM BOBSLED EFFECT

The classical “bobsled” effect is one in which a
system rushes headlong along a rectilinear path (down-
hill in the bobsled case), goes up one side of a valley
when the valley bottom’s path becomes curved, goes as
far as it can, and continues downhill. This part of the
effect can be largely adiabatic. When the initial transla-
tional velocity is very high, however, the bobsled not
only goes up the valley wall as far as it can, but then
goes down across the valley bottom, up the other side,
and so on. This second effect involves induced oscilla-
tions where there were none initially. That is, it involves
a vibrationally nonadiabatic effect, whose classical me-
chanics is treated analytically elsewhere.’ The adiabatic
effect was observed by Wall and Porter® in their
electronic computer study of classical trajectories.

There is also an adiabatic quantum negative-positive
centrifugal effect which could be mistaken for the non-
adiabatic classical one. The former, which disappears
when tunneling disappears, is seen from the preceding
equations; when ay<Vj, i.e., when tunneling occurs,
the classical velocity § becomes negative [Eq. (8)].
On taking Curve C to be the reaction path x; equals
zero. According to (11) with the left side equal to”
pwity, xo(s) is first zero (since x=0 initially), then
positive and then, if the system tunnels through the
barrier, negative. Its negative property reflects the
“negative kinetic energy” in the tunneling region, and
was noted in an earlier paper on local approximation
of a potential-energy surface by one permitting separa-
tion of variables.?

% F, T. Wall and R. N. Porter, J. Chem. Phys. 39, 3112 (1963).

% We write here the harmonic-oscillator expression for
Vs (xo, 5)/3x* for simplicity, but the subsequent argument
applies as well to an anharmonic oscillator.
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APPLICATION TO TUNNELING IN CHEMICAL
REACTIONS

In a WBK (or modiied WBK) solution to the
tunneling problem the integral

/; bp,ds

arises where p,? is seen from Eq.
2ulae— Vi— (3xk%) ] and where ¢ and & are seen to
be the points where as— Vi— (3xk)? vanishes. We
neglect (3x%)?, a very small term (~0.2 kcal/mole), for
the moment. We choose the Curve C so that x(s) =0
and use the harmonic-oscillator approximation for
purposes of present discussion.

In the usual tunneling calculation one treats E, as
constant, wy in (33) as wy, and sets k=x,=0 at each s.
In the curvilinear calculation we ignore, for purposes of
present illustration, the variation in w, with s in the
interval (g, b), and so write w;=w; The tunneling
rate, which depends on

b
/ Dsds
a

is found to depend on the value of as—V/; at the barrier
top. In the usual calculation, where V; is set equal to
Vi, ag—Vy is E—E,—V?%, as one sees from (18). In
the curvilinear calculation it is E—E,—V*—uw2?,
[Egs. (18) and (35)]. Thus, the difference in the two
calculations occurs in the presence of a Fuwx* term,
[The turning points are also slightly different but we
have ignored this, by taking ws(s)=wy, for purposes of
the present illustration only.]

Some estimate of juw,?x,? is obtained for the H+H,
reaction, as follows. For the Sato potential-energy
surface used by Weston'” and by others, the curvature
of the reaction path, kp, is about 3.4 A1 in the neigh-
borhood of the saddle point and wy/2m is 2108 cm™. On
taking x“2«, as a first approximation one finds x,=
0.054 and 0.108 A&, while Iuwgr?=0.37 and 1.46
kcal/mole, when a;—Vi=—2 and —4 kcal/mole at
the saddle point. (An improved & could be calculated
in each case using this x;, but we omit this detail
here.) Thus, the term controlling tunneling is —2 and
—4 kcal/mole now, but in the usual calculation it is
—1.63 and —2.54. The difference is appreciable and
leads to less tunneling than those predicted by the
usual calculations. The effect becomes increasingly
marked the greater the negative centrifugal effect, i.e.,
the more negative as— V¥ is.

It has been noted" that tunneling rates predicted by
the usual calculation are too high using the Sato
surface. Smaller tunneling rates were calculated by
Johnston and Rapp,”® who considered tunneling through
potential-energy profiles along straight-line sections
parallel to the reaction path.

(8) to equal

28 H. S. Johnston and D. Rapp, J. Am. Chem. Soc. 83, 1 (1961).
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COMPARISON WITH OTHER STUDIES

The nonadiabatic correction employed here may be
compared with that developed by Hofacker®? in a very
stimulating article. Hofacker assumes that a curvi-
linear coordinate system may be found, in terms of
which a vibrationally adiabatic motion is simply
described. In the nonadiabatic correction a purely-
kinetic-energy operator for motion along the reaction
coordinate appeared, with elements T,, instead of
H.., and elements T,,, instead of H,,. The two formal-
isms differ in that a method for obtaining the curvi-
linear coordinate system is obtained in the present
paper. The article by Hofacker is more devoted to
evolving a formalism for reaction-rate problems and
did not attempt to determine the suitable coordinate
system.

Other analytical approaches to reaction rate prob-
lems include those in which the system moves from
the reactants’ region to the products’ one, along some
valley having infinitely steep walls and having a curved
shape permitting separation of variables throughout
or piecewise.® In the latter case nonadiabaticity occurs
at the boundaries of the pieces.

Reference has already been made to the work of
Johnston and Rapp® on an intuitive approach to
tunneling in the nonseparable region. In a quite
different discussion, R-matrix theory has been used to
describe sufficient, though not necessary, conditions
for various reactive scattering models in the literature.?®
A vibrationally adiabatic approach or some variant!®
was not considered, it being more recent.?

An analytical approach to reaction-rate problems
has recently been formulated using a distorted wave
method.® This method is normally used for inelastic
events which have a low probability of occurrence. For
example, one would expect it to be appropriate in
linear collisions only if the transmission coefficient is
low and only if the original choice for the distorted
waves used is good. It will be interesting to compare
the results of this method with the numerical ones
and with those of the present approach.

APPENDIX: DERIVATION OF EQS. (27) and (28)

The present derivation does not exactly parallel one
in the literature, since it is unusual that there is an
approximate solution in the same coordinates leading
smoothly from reactants to products. The arguments
are rather similar to some® in Ref. 25, however.

Let H and H be two Hamlltomans with eigen-
functions ¥ and ¥. Either H or H or both may be
Hi+H.5® or Hy. An eigenfunction in an incident
state @ or b is so indicated by a subscript. A (+) or
(—) superscript indicates incident plus outgoing and

2 B. C. Eu and J. Ross, J. Chem. Phys. 44, 2467 (1966); see
also E. E. Nikitin, Mol. Phys 8, 473 (1964).

3 D). Micha, Arkiv Fysik 30, 411, 425, 437 (1965).
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incident plus incoming wave, respectively. A wave may
be incident from s=—co or s=-w. Let ¥, be
incident from s=—o and ¥, incident from s=—
or +«, as indicated.

Integration by parts, using the configuration space
volume element ydxds, yield (Al):

(¥, | H— i | ¥,0)

2 fto -+ +eo
= w / <\I,a(+) 9 F,O* —F, (% ikl ) dx ,
2# L= 33 as g=—00
(A1)
the right side being the indicated difference of limits
at s=4 o and s=— o respectively.

Let ¢, be a vibrational eigenfunction of H or H at
s==o0. It is the same for the cited choices of H and A,
but its value at s=- o may differ from that at s=— .
The asymptotic behavior of ¥, is

U, ~ ¢, exp(ikis) + D _dyger™ exp(—ik?s) (A2)
800 ¥
~ 2 g™ exp(ik?s), (A3)
8->+

since at large |s| the eigenfunctions become plane
waves (linear combinations of). [x—0 (and so n—1)
in Eq. (2) in the regions of separated reactants
(s=—) and separated products (s=-+).] In (A2)
ke, k7, and g.,‘" should bear subscripts of —o to
indicate that they refer to their values at s=—c.
In (A3) they should bear subscripts 4. For brevity,
these symbols are omitted at first. The %’s are wave-
numbers (p,/7).

Two choices for ¥, are considered, permitting the
determination of ga™ at s=—c and at s=-4o,

respectively, (1) ¥, incident from s=— oo,
T~ D .8, exp(iks) (A4)
§>—0 vy

~ & exp(ik?s) + 2,8 exp(—ik7s) (AS)
8->+ ¥

4499
and (2) ¥, incident from s=-o,
Ty ~ ¢y exp(—ik?s) + 2,8 exp(ik’s)  (A6)
8»—0 v

~ 26,8 exp(—iks). (A7)

g>tw vy
On introducing (A2) to (A5) in (Al), (A8) is ob-
tained, while (A9) is obtained by introducing instead
(A2), (A3), (A6), and (AT):

@O | H—A | ¥,®)

=08 ® (®) =B *(—)], (A8)
(%o | -1 | v.F)
= — A1 ga™® (=) —1_ BT (=) ], (A9)

where gpt (£ ) is the value of gu+ at s=x» and
v=p,/u. v, for example, is the value of p,/u for a
system in State b and at s=—o0.

Choice of H=H yields

V28 () =10 gbar T *(— )
and

TGP (— ) =05 (— ),

where L indicates that ¥, is incident from the left
(i.e., from s=-— o) and R indicates its incidence from
s=4wx. Choice of H=Hy+H4* and H=H, yields
Egs. (27) and (28), when use is made of the results
just obtained and when one notes that k.3 is

Ve | gt () [P/ro%

In Egs. (27) to (30) the —« subscripts have been
replaced by 0’s to conform with previous notation.



