Reprinted from THE JourNAL oF CueEMICAL PHysics, Vol. 45, No. 7, 2630-2638, 1 October 1966
Printed in U. S. A.

On the Theory of Chemical-Reaction Cross Sections. I. A Statistical-Dynamical Model*
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A statistical-dynamical model is formulated for total chemical-reaction cross sections as a function of the
relative velocity and the vibrational and the rotational state of the reactants. It is derived for reactions for
which activated-complex configurations can be defined; reactions with or without steric and activation
barriers. A quasiequilibrium is postulated between reacting pairs and activated complexes of the same energy
and angular momentum. An integral equation is obtained which is solved for the reaction cross section by
introduction of a second postulate: The reaction probability is a function of the excess initial energy along
the reaction coordinate (in excess of potential energy barrier, centrifugal potential barrier, and vibrational
adiabatic requirements). A possible dynamical origin of the postulates is considered in later papers.

I. INTRODUCTION

ITH the advent of molecular-beam studies of
chemical reactions, increasing attention has been
focused on differential and total reaction cross sections.
At Jeast three theoretical approaches to such problems
can be envisaged, in decreasing order of rigor but in
increasing order of simplicity: (1) exact numerical
integration of the classical or -quantum-mechanical
equations of motion of the atoms in the reactive
collision, (2) approximate analytic integration of such
equations using approaches related to some employed
in the study of physical elastic and inelastic collisions,
and (3) introduction of statistical concepts, perhaps
akin to those employed in the activated-complex
theory of chemical reaction rates. The three approaches
are in fact complementary rather than mutually
exclusive.
Extensive and invaluable numerical integrations of
Type 1 have been performed for triatomic systems.-
They are almost entirely classical mechanical in nature,
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and serve as exact classical numerical experiments with
which more physical approaches of Types 2 and 3 may
be compared. In the present paper a theory of Type 3
is formulated for total reaction cross sections. The
reactions are quantum or classical and contain three
or more atoms. Detailed application to the H+4H;
reaction, for example, is made in a subsequent paper.

The present work utilizes the activated-complex
concept (this does not imply the existence of any
long-lived complex, of course), as well as a quasi-
equilibrium postulate for population of the activated
complex, and a dynamical postulate: (1) vibrational
adiabaticity, where appropriate, and (2) the assump-
tion that only the initial energy of the reaction co-
ordinate (the relative translational motion initially) and
of any coupled adiabatic mode can be used to over-
come the energy barrier. (The barrier arises from any
natural barrier, from the vibrational adiabatic effects,
and from any centrifugal contribution.) Thus, the
theory has both statistical and dynamical features.
They will be discussed in more detail in subsequent
publications.

The present study is intended to apply to reactions
even when they have steric and activation effects. It
differs in that respect from an approach of Light and
co-workers described in a recent series of papers.* The
latter considered cross sections of reactions having
centrifugal barriers and discussed the nature of and
the energy distribution of the reaction products.

Initially, the theory is presented for simplicity in a
form which neglects any diffraction effect along the

-reaction coordinate near the activated-complex region.

In a later section this effect is included. The principal
results of the present paper are embodied in Egs. (10),
(15), (25), (28), (30), and (37). Some particular
cases of these equations are given in (13), (19), (21),
(26), (29), (31), and (38).

4J. C. Light, J. Chem. Phys. 40, 3221 (1964); P. Pechu'kas.a.lzld
J. C. Light, ibid. 42, 3281 (1965); J. C. Light and J. Lin, ibid.
43, 3209 (1965); P. Pechukas, J. C. Light, and C. Rankin ¢bid.
44, 794 (1966). Compare W. B. Maier II, ibid. 41, 2174 (1964),
Appendix and references cited therein; C. F. Giese, Advan,
Chem, Phys. 10, 247 (1966), and references cited therein.
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In the concluding part of the paper several topics
are considered briefly, including reaction probabilities,
energy distribution of products, and vibrational non-
adiabaticity.

II. TERMINOLOGY

The following terminology is used below for coordi-
nates in the center-of-mass system. Reactants: (a)
three translations—one radial and two orbital, (b)
adiabatic vibrations or rotations, (c) all others, hence-
forth called active modes. Activated complex: (a)
reaction coordinate ¢;, (b) adiabatic vibrations (or
rotations) coupled only to ¢; throughout the motion,
(c) all others, henceforth called active. Adiabatic
modes are those which retain their quantum number
(or classical action) on formation of activated complex
from the reactants. In the H-+H, reaction, for example,
the mode which is an H, vibration in H, and a sym-
metric stretching in the activated complex H; is
approximately adiabatic®® at low to moderate relative
velocities.

A locally adiabatic approximation® is used below for
all coordinates other than ¢'. Adiabaticity in the large
is assumed only for the adiabatic group of coordinates.
The activated complex is defined as that ¢" (denoted
by ¢t) for which ex+(g"), the energy of the rotation—
vibration coordinates including potential energy of the
¢" motion, has a maximum as a function of ¢". The
value at the maximum is denoted by ex+. This defini-
tion of ¢+ can be shown to reduce to the usual ones in
the literature when the particular assumptions appro-
priate to the latter are introduced.

When the locally separable® or locally separable
adiabatic approximations® are used instead of the
locally adiabatic one, the form of the final equations
is found to be unaltered. Only the terminology differs.®-¢

III. NOTATION

q Reaction coordinate

gt Value of ¢ at the activated complex
It may vary with the quantum
state N+t

? Initial momentum of reactants in
the center-of-mass system

k Corresponding wavenumber( =p/#)

[ Reduced mass of the two reactants

E, Initial translational energy of re-
actants in the center-of-mass sys-
tem (=2*/2p)

N Initial quantum state of pairs of
reactants (exclusive of orbital angu-
lar momentum ! and of its com-
ponent), N denotes a pair of num-
bers v, 1

8 R. A. Marcus, } Chem. Phys. 45, 2138 (1966).
¢ R, A, Marcus, J. Chem. Phys. 43, 1598 (1965).
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Initial quantum state and energy of
adiabatic degrees of freedom of pair
of reactants, if any

Initial quantum state and energy of
active degrees of freedom of pair
of reactants

Reaction cross section for systems
in an initial state ¥

Reaction cross section for systems
in an initial state v, »

A summation operator involving
summation over all geometric and
optical isomeric reaction paths from
reactants to activated complexes
for the given process

Potential energy of most stable con-
figuration of activated complex
minus that for reactants

Quantum number of activated com-
plex in a given vibration-rotation
state Nt

Quantum number of active modes
of the activated complex

Minimum energy needed for classi-
cal mechanical passage through the
coordinate hypersurface, ¢ =g, in
state N*

Contribution of active modes to ex+
Contribution of adiabatic modes
and of potential energy of ¢" motion
to ex+

Average of ¢,* for the given E

For Cartesian ¢", energy of adiabatic
modes in the activated complex
(E;*+Vy=¢" for this Cartesian

approximation)
Total energy in the center-of-
mass system (=ZE,+E,+E,=

E.++e,++ kinetic energy of ¢
motion)

Centrifugal potential

ED+_Ev
Initial rotational angular momen-
tum quantum number. [If the
two reactants have individual j’s,
71 and js, then j lies in the interval
(| fr=galye -+, rtda) ]

Reaction probability of reacting
pair with total angular momentum
J, initial orbital angular momentum
{, and in state specified by », #, and p
Reaction probability of pair speci-
fied by /, v, n, and p

Number of states #» and #* per unit
energy (i.e., at fixed v) when the
energy of the active modes is E,
and when the activated complex
is in the state N+, respectively
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I'S(E-E,) (B*/m)aonp (outside of threshold)
I'S(E—E;—E;*) (k*/m)o.; (at threshold for an
atomic-diatomic molecule reaction)
Q(s) Partition function of active modes
of reactant pair when s=1/kT,
2 exp(—sE,)
A “partition function™ of an acti-
vated complex having a fixed o,
* exp(—sex+)
Constants in classical expressions
for Q(s) and Q*(s), as in Eq. (11)
Rotational factors in 4 and 4+
Number of vibrational states of
the active modes of the activated
complex when their energy does not
exceed x
Moments of inertia and symmetry
numbers for a diatomic molecule
and for a linear activated complex
in an atom-diatomic-molecule re-
action
x Transmission coefficient for the
given £ and N, or given E, v, and
ut

@*(s)

A, 4+

A roty A rot+
Nuw*(x)

I, I g, ot

IV. QUASIEQUILIBRIUM EQUATIONS
A quasiequilibrium hypothesis was used elsewhere®s
to derive (1) for a classical ¢" motion:

§<k2/w)m=r§1, (1)

where on,, is the reaction cross section for a pair of
reactants which are in an initial vibration-rotation
state V and which have an initial relative momentum ?.

~ and 2 n+ represent sums over all vibration-
rotation states of the pair of reactants and of the
activated complex, respectively, available to each pair
or complex whose total energy is E (e.g., the second
sum is over all N+ for which ey*<E). T, a second
summation operator, denotes a summation over all
optically and geometrically isomeric reaction paths
leading to activated complexes for the process.

The adiabatic degrees of freedom (usually vibra-
tional) remain in approximately the same quantum
state v during formation of the activated complex. If
n denotes the quantum number for the other rotation~

? This Q* may be regarded only as a “‘generalized partition func-
tion,” since ¢™ may vary with N+, i.e. since each e+ may occur
at a different value of ¢™*. It appears in the final expression for the
cross section, or for the rate constant, when the ¢’ motion is
treated classically.

® (a) Compare Eq. (3) of Ref. 5, plus the supplementary approx-
imation 2 there. (b) Compare Eq. (4) of Ref. 5, plus the supple-
mentary approximation 2 there. (c) For many reactions, as in
Sec. VILA, * is essentially independent of N*; then et=¢,*.
For some reactions, as in Sec. VIL.C, ¢t depends on N+ because
of the dependence of g™ on / and, thereby, of the potential energy
term in ¢;* on I. In Sec. VIL.D ¢,* depends not only on J but also
on the “bending mede” quantum number and through it on E.
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vibration degrees of freedom of the reactants and if 7+
denotes that for the other ones of the activated complex,
N and N* denote the sets (s, #) and (v, nt), respec-
tively. A sharper form of (1) was then obtained®®:

2 (B/7) Gomp= ij1. (2)

> and D represent sums over all active vibra-
tion-rotation states of reactant pair and activated
complex, respectively, available to each species whose
total energy is E and whose adaiabatic modes are in a
specified state ».

Quasiequilibrium equations were also given for sys-
tems having a given total angular momentum quantum
number J and given energy, with (or without) given v.5
We cite them later as needed. Classical forms of these
equations and of (1) and (2) were obtained by con-
verting the multiple sums to multiple integrals over a
quantum-number space and then over a classical-action
space. A test of (2) has been described elsewhere,®
utilizing computer results® on numerical integration of
the equation of motion. Good agreement was found
over the range for which data were available.

V. SOME DYNAMICAL AND STATISTICAL
CONSIDERATIONS :

The contribution of e+ to ey+ may depend on N+,
since ¢"* may depend on N+. For a given E, e+ has
some suitable average, &%+, over the states N+, the
nature of which seen from Eq. (10).% The following
considerations are introduced here and are discussed
in more detail in later papers.

A. Dynamical Condition for Reaction

The adiabatic modes and the ¢" motion are strongly
coupled, an increase in the energy of the one being
compensated by the loss in the other. Their initial
energy is E,- E,, since at large separation distances the
¢" motion is the relative translational motion. At
g"=¢"™, the energy residing in the adiabatic modes, in
the natural barrier, and in the centrifugal barrier is
&%+ V.. Consequently, for reaction to occur we assume
E,+E,>&*+V,, which can be rewritten as

E.‘PZ V; (3)
V= Vc+ Ve, (4)
V¢=€n+_Ev- (s)

An assumption related to (3) appears in simple
collision theory, in that only E, is assumed to be
assumed to be effective in overcoming a barrier.

As discussed at more length in Appendix I, V. out-
side of the threshold region is approximately independ-
ent of the initial rotational state §, and depends pri-
marily on the initial orbital angular-momentum
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quantum number . At threshold, it depends primarily
on j and is denoted by E;*.

B. Statistical Assumption for Reaction Probability

When the expression for ¢u.p in terms of reaction
probabilities wing’ [e.g., Eq. (A3) in Appendix IT] is
introduced into (1) and (2), one sees that a certain
sum over reaction probabilities equals a particular sum
over quantum states of the activated complex [e.g.,
Eq. (A6)]. The second sum is a function of E, and we
now make the statistical assumption that the contri-
bution of each reaction path (there may be more than
one) to a reaction probability 1.5’ is a function only
of the “excess,” E,—V.—V,, for that Jltnp and path.

Since (E*/w)ownp equals a weighted sum over / of
w’’s [Eq. (A3)], we obtain at once the following
results: Outside of threshold, where V. depends only
on I, the contribution of each path to (&%/7)dunp
becomes a function only of E,— V.. At threshold, where
V. was Ej*, the contribution to (k%/m)a.», becomes a
function only of E,—V.—L;*. An integral equation
covering both regions at once is set up (but not solved)
in Appendix II. In the body of the present paper we
consider separately the regions®® away from threshold
and at threshold.

In a collision which tends to excite an active mode of
the activated complex heavily, there will be less energy
in the reaction coordinate available for carrying the
system through the activated-complex region, and in
some cases the system will not even reach the latter,
therefore. The present assumption B takes cognizance
of such possibilities in a statistical way.

VI. OUTSIDE OF THE THRESHOLD REGION

According to the preceding argument we may write
the contribution of a reaction path to (k?/m)ounp as a
function of E—E, for a given v, since E,—V, equals
E—E,—&*. This function, denoted below by S(E~—
E,), vanishes when E—E, becomes less than &t To
obtain ., we then sum over all reaction paths. That is,

(B/7)0onp=TS(E—E,). (6)

We let w(Z,) and wt(ey*) denote the number of
active modes’ states per unit energy for reactants in state
N and for activated complexes in the state N+, re-
spectively. These w’s refer to fixed v and do not in-

9 (a) A system of given j and £ is said to be in the threshold
region or outside of threshold, roughly speaking, according as
J~j or J~1 for the weighted average of states contributing
to the left-hand sides of Eqgs. (1) and (2). (b) Since the integral
on the left-hand side of Eq. (7) has some contribution from the
threshold region (namely where /&,=FE) the S function should
be replaced by S(/£—JF.—FE;*) for those J,'s, as in Eq. (23)
later. However, we ignore the contribution from these L,'s when
I is Jarge, i.e., “outside of the threshold region.” By solving the
integral equation (A2) in Appendix II, this approximation could
be eliminated. We plan to explore the solution of (A2).
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clude degeneracy of the adiabatic modes. w*{(ex*) is
zero unless ey + exceeds .
Equation (2) now becomes *

E
/ S(E—E.)(En)dEn
Enp=0

E
= w+(€N*)JEN’EEI,

ex+=0 nt

(ev'<E), (7)

where the ey* integral is performed at fixed v. The o
and w* are sums of & functions if the active modes
are treated quantum mechanically. Otherwise, they are
continuous.

Equation (7) is an integral equation for § (E—-E.,)
and may be solved using Laplace transforms (8):

(s) = f " S(x) exp(—sx)dz, (8a)
0

Q) = [ w(a) exp(—sa)ds, (8b)
0

0+(5) = [ "t (ew ) exp(—san*)den = 3] exp( =)
0 at
(8c)

where the integration in Q* is performed at fixed v and
where the summation is over all quantum siates n*, the
v in N* being held fixed.

Multiplication of (7) by exp(—sE), integration of
E from 0 to =, use of the convolution theorem of
Laplace transforms and of the fact that the transform
of the right side of (7) is Q*(s)/s, yields

Q) 8(s) =Q*(s)/s- ©

Inversion yields S(y). One sees from (6) that y is

to be set equal to E—E, to find the contribution of
the path to guap for the given v, n, and p. We obtain

r D [rl“!'m Q+(s) (10)

= = — LAY E—E,) )ds
T = 12 i i SQ(5) expls )X

for E—En>&"*; 0unp is zero otherwise. In (10), ¢ is the
usual positive constant, chosen so that the poles of
the integrand lie to the left of s=¢ in the complex
plane.

VIL. APPLICATIONS OF EQS. (7) AND (10)

Several applications of (7) and (10) are given below.
In the first two, ¢ is taken to be independent of N*.
(There is frequently a pronounced potential-energy
saddle point, which with the aid of a normal mode
analysis characterizes a ¢ independent of N+.) The
third application is to a well-known situation where
only long-range attractive and centrifugal forces occur.
Here, ¢t depends appreciably on N+ and the usual
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expression for oyn, is obtained. In the fourth application
an intermediate situation is considered, where there are
not only the long-range effects in the third application
but also short-range forces and forces restricting the
rotational motion of the reactants in the first two.

Previous literature calculations of cross sections with
statistical methods have apparently been confined to
the third application above and to elementary (hard-
sphere) collision theory. [See also Ref. (3).]

A. Active Modes Treated as Classical Harmonic
Oscillators

When the active modes (energy E,, E,+) are treated
classically, when ¢+ is independent of N*, when
the vibrations are harmonic, and when rotation-
vibration interactions are neglected, the partition
functions Q and Q% are of the form (11) (since ¢* is
independent of N* in this case, &% becomes ¢,*):

Q(s)=A/sm,  Q*(s) =(A*/sm*) exp(—set). (11)
Equation (10) then yields
r TAt (E—E,—¢t)mt -m (12)

T R4 T(mt—mt1)
where I'(x) is the I' function of Argument x. A counting
of the active modes shows that m*—m equals 2: In
the center-of-mass system the pair of reactants has
three translations. The activated complex has one
internal translation along the reaction coordinate.
Since the pair of reactants and the activated complex
have the same number of adiabatic modes, it follows
that m*—m=2. Since E—E,—e¢* equals E,—V,, we
obtain

oump=(1/k?) (TAY/24) (E,—V,)%  (13)
B. Atom Plus Diatomic Molecule (Quantum or
Classical Vibrations)®

A particularly simple case of (7) or (10) arises when
when the reaction involves the formation of a linear
activated complex from an atom and a diatomic
molecule’® and when a particular vibration in this
collision is adiabatic. The latter vibration would be the
one which was originally a vibration in the diatomic
molecule and which becomes the symmetric stretching
vibration of the linear activated complex. We do not
treat the oscillators below as necessarily harmonic or
classical.

Equation (15) is first derived from (7). Equation
(15) is also appropriate for Case D below, when the
reaction treated there is this triatomic one. For this
reaction the quantum number # becomes j and its

*These equations also apply to other reactions, A+ BC—AB+C,
of the three center type when the internal motions in each center
A, B, and C, are neglected. Such an approximation is made in

current computer calculations in the literature, for example for
the K--CH;il reaction.!
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component m;, and w(E,) becomes Ao, which is 27 /o7
for a diatomic molecule. The quantum number n*+
denotes the totality of rotational and bending vibra-
tional quantum numbers in the activated complex.

A change of variable in (7) from E; to x(=E—E;)
followed by differentiation of both sides with respect
to E leads to

S(u) = (ah2/2) wt (1) (14)

for any u. (To represent S by a smooth function, wt
must denote a smoothed function.)

To calculate g,;,, S(%) is needed at u=E—E; and
(6) is applied. We thus obtain

ovip= (w/k?) (eh?/2I) Tw* (E—E;), (15)

where w*(%) is the total number of active states
per unit energy when the fofal energy of the activated
complex is #.

When rotation-vibration interaction and any de-
pendence of ¢ on Nt are neglected, &t equals e+
and w* (%) equals the convolution

w*(u) =_/u_ ' wott (4 — & —2)wein® (x)dx, (16)
)

where wo(y) and w.ip*(x) are the numbers of rota-
tional and bending vibrational states per unit energy
when the energies of these active modes of the acti-
vated complex are y and x, respectively. Since wyo*(y)
equals A..* for all y, i.e, equals 2I*/¢*%2, we then
obtain

wr(u) = (2 /e ) Nowt (u—et). (17)

Nyin*(y) is the number of bending vibrational states
having an energy less than or equal to y:

v
Nt (3) = [ wt ()ds. (18)
0
Thus, for these additional assumptions we find
oip=(/k?) (Lal*/o*) Nuis* (E,—V.), (19)

where we used the equality, E—E,—¢t=E,— V..

When Case A above is specialized to be this triatomic
reaction, and when the vibrations in (19) are classical
harmonic oscillators, Eqs. (13) and (19) coincide, as
they should.

C. Free Rotation in Activated Complex

When the rotations and vibrations of the reactants
are unhindered in passing through an activated-com-
plex configuration, as in some ion-molecule reactions,
we may proceed as follows: We may include all vibra-
tions and rotations of the reactants in Q+(s). Q*(s) now
becomes the product of Qi and Q;*, the former being
the partition function of the vibration-rotation modes
of the reactants and the latter being D exp(—slit),




2635
where E;* is the maximum of the function E;/*(r):

Eit(r) = (PRY/2ur") +U (1) ; (20)

Eit(r) is the sum of a centrifugal potential and of the
potential energy as a function of the separation distance
r. Now, ¢" is r and ¢** is the r which maximizes (20)
for the given . In (20) the difference between ! and
I4+1 was neglected. For a barrier such as (20), T is
typically unity.

In (10) Q is simply Qint, and so cancels the factor
Qine in Q*. Thus, in (10) the internal degrees of freedom
of the reactants cancel and we can simply ignore their
presence. While (10) can now be solved, it is more
convenient to solve (7). With this justified omission of
the internal degrees of freedom there are seen to be no
contributions to E,, so that w(E,) equals §(E,) and
the left-hand side of (7) becomes S(E). On the right
side of (7) only the orbital motion of the activated
complex contributes to #, and that side becomes
Ni*(E,), the number of orbital states for which
E*(rt) does not exceed E,. If I, is the maximum
value of ! for which Ei+<E,, Ni+(E,) equals [ 2ld,
i.e., In2

The impact parameter b equals l%i/p, i.e., I/k. We
thus obtain from (7) the well-known result! (21),
where b,, is the maximum-impact parameter leading
to reaction for the given p(bm=In/k).

Conp =T, (21)
D. Restricted Rotation in Activated Complex
Having a ¢"* (V)

In this section arguments are sketched which permit
one to generalize Cases A and B on one hand, and
Case C on the other. We use (7) or (10) as before.
In this intermediate case, where the bending vibrations
distort Case C and where the dependence of ¢™* on N*
distorts Cases A or B, the calculation of

3 exp(—sar)

in (10) becomes more involved. The rigorous procedure,
within the framework of the assumptions used to derive
(10), is to calculate each ey*(g"") by maximizing
ex+(g) with respect to ¢", and then to evaluate (10).

A simpler but less rigorous way to evaluate (10)
would be to calculate g,qp by first evaluating all ex+(g")
at the same ¢" and at the given v, then calculating
> a+ exp(—sex+), and finally finding the ¢" which
maximizes this sum at the given s. One then calculates
Ounp from (7) or (10).

11 F,r example, for ion-molecule reactions see G. Gioumousis
and D. P. Stevenson, J. Chem. Phys. 31, 1338 (1959), who use
an 1/r* long-range attractive potential. D. A. Kubose and W. H.
Hamill, J. Am. Chem, Soc. 85, 195 (1963) added a short-range
repulsive potential to U(r), and T. F. Moran and W. H. Hamill,
J. Chem. Phys. 39, 1413 (1963) added an oriented dipole term.

The possible influence of restricted rotation at short distances
apparently has not been treated until Application D below.
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This second, less rigorous procedure is reminiscent
of a method sometime assumed in qualitative discus-
sions in the literature of activated-complex theory:
one calculates a free energy of activation, notes that it
passes through a maximum as a function of ¢", and
defines ¢ as the ¢" at this maximum. This second
procedure is also intimately related to an ingenious one
which Bunker? has used successfully for unimolecular
reactions in obtaining good agreement between com-
puter-calculated rate constants and those obtained
from RRKM theory. He defines ¢** as that ¢" which
minimizes the number of quantum states available to
the activated complex at the given energy. The detailed
relation between these approaches will be discussed
elsewhere.

For an atom-diatomic molecule reaction having an
adiabatic vibration, Eq. (15) can be used instead of
(10), and w+(E—E;) is evaluated by counting all N+
(at the fixed v) for which ey+(¢*) <E—E;. Each
ev+(q"") is computed as in the first paragraph above.

VIII. APPROXIMATE THRESHOLD BEHAVIOR

In Appendix III an integral equation is set up for
the general reaction at threshold, but in this section
is considered the atom-diatomic-molecule reaction!®
described earlier in Case B.

As noted earlier, the contributions of any reaction to
(B*/7)oomp is taken to be a function of E,—V,.—E;*
and so of E—E,—E;* at the given v. This function is
denoted by S(E—E,—E;*), and we have

(/) 00jp=TS(E—En—E;*). (22)

Equation (2) leads again to (7), but now with
S(E—E,) replaced by S(E—E,—E;*). Since w(E,)
equaled A, for this reaction and # denoted (7, m;),
we find

B B
Aot S(E_Ej_Ej+)dEj=/ o)+(e1v+)d€,v*, (23)
Ej=0 eN+=0
where the integration on the right is at constant ».
(Since S vanishes when E;> E—é&,*—E;*, there was no
error in writing the upper limit of E; as E.)
Introduction of a change of variable from E; to
2(=E—E;—E;t), so that dx=—dE;(I*+1I)/I*, leads
to (24), where it was valid to replace the lower limit of
x=—IE/I* by x=0 since S is zero in the interval
(—IE/I+,0):
Al
It41
Differentiation of both sides with respect to E yields
an expression for S(#) for any u. Upon evaluating it

at u=E—E;—E;* and using (22) we obtain (25) as
the threshold counterpart of (15):

Goip= (/) [Tat(I++I) /21 T+ Jw* (E—E;— E;*). (25)

12D. L, Bunker (private communication).

B E
f S(x)dz= f wHew)den.  (24)
2= eN-+=0
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Upon neglect of rotation-vibration interaction and
dependence of ¢"* on Nt, (17) may be introduced into
(25), yielding

ovip=(7/k*) [To (I*+I) /ot I N e (E,—V,—E;*).
(26)

Because of the condition mentioned earlier,?* Eq.
(22) and, hence, (25) and (26) are appropriate only
when both E and E; are small.

Equation (26) may be compared with (19). Their dif-
ference outside of the threshold region (E,—V >>E;t)
is slight when I*>>1. A formula encompassing (25) and
(15) could be obtained by solving an integral equation
based on a stronger form of the quasiequilibrium
hypothesis,® one for systems with a given total angular
momentum, given in Appendix II. Tabulations of the
computer-calculated reaction probabilities #’ defined
there would be useful in analyzing relevant dynamical
postulates.

IX. QUANTUM-MECHANICAL ¢4 MOTION

Treatment of the motion along ¢" in a quantum-
mechanical and curvilinear manner led to Egs. (1)
and (2), but with the ) _1’s replaced by D «’s5 In
Eq. (1) this « is the transmission coefficient for the
given E and N+; in Eq. (2) it is that for the given E,
v, and #t,

Because of quantum-mechanical tunneling the con-
dition E,2V, can no longer be imposed. However, we
may still regard the contribution of each path to
(k*/7)aonp as a function of E—E,, but now we must
permit the occurrence of negative values of E—E,—é,*.

When the ¢" motion is treated as Cartesian,”® the
transmission coefficient ¥ can be written as a function
of the energy of the ¢" motion (E—E,+—E,*) minus
the potential-energy maximum V,. That is, x can be
written as a function of E—E,+—e¢*, ie., of E—ey+.
When the curvilinear nature of ¢ is not neglected, but
when only the coupling of the adiabatic coordinates
to ¢" is considered, « depends on E—ey+ and v, ie.,
we may write k(E—ey+, v).4 The dependence on v is
weak.

There is an upper limit to ey+, the exact value of
which is determined (in a locally adiabatic approxi-
mation) by the value which makes the kinetic energy
of the ¢" motion negative even outside the barrier
region. For practical purposes, however, since « de-
creases rapidly with decreasing energy of ¢ motion,
this upper limit for ey+ can normally be taken as .
When a more precise limit is needed it can be calcu-
lated in this locally adiabatic approximation.

We thus obtain (27) instead of (7), for a Cartesian
¢", while for curvilinear ¢" k(E—ey+) would be written

13 Compare Ref. 5, Supplementary Approximation 1.
4 Compare Ref. 5, Supplementary Approximation 5, and Ref. 6
for some discussion of the determination of z.
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as k(E—ex+, v):

f ES (E—E,)w(E,)dE,= f mw+ (evt) k(E—ex+)dex+.

(27)

[The classical result (7) follows from (27) when one
sets k(x) =1 for <0 and «(x) =0 for >0.] .

Equation (27) can be inverted, but the results be-
come complex, and we shall limit the following remarks
to the atom-diatomic-molecule reaction'® considered
earlier. Since now w(E,) equals 2I/c%? a change of
variable from E, to x=E—E, and differentiation with
respect to E leads to an expression for S(#) for any .
From (6) one then obtains

w oh? d (=
Toir=aop T [E;fo w+(6~*)K(J'—€N*)d€N+] , (28)
where y is E—E;. When rotation—vibration interaction
and the dependence of ¢g** on Nt are neglected (17)
may be used and (28) becomes

alolt[d [
Oyjp= .k—zo‘—""f [@/; Nvib+(eN+—e,+)K(y—eN")dEN"] ’
(29)
where y is E—E;.

In the threshold region Eq. (27) applies, but with
S(E—E,) replaced by S(E—E,—E;*). On utilizing
some remarks which led from (23) to (24), we obtain
(30) for the atom-diatomic-molecule reaction con-
sidered previously:

ol o (I+4-1) [i

v T T | 32 [ e o—ardaar

dyJy
(30)

where y is E—E;—E;*. When the rotation—vibration
interaction and the dependence of ¢* on N* are
neglected (30) yields

_ m To(I*+1)
otl

d )
X[—/ Nv:b*”(ezv*—ev*‘)K(y—en*)dew], (31)
dyJ,
where y is E—E;—E;*.

X. REACTION PROBABILITIES

Reaction probabilities win, for a given orbital angu-
lar momentum ! can be estimated as follows: Qutside
of the threshold region Eq. (32)% is to be solved using
the previously derived expressions for o.,, and an

18 The standard equation (32) is given, for example, in L. D.
Landau and E. M. Lifshitz, Quantum Mechanics (Addison-Wesley

Publ. Co., Inc., Reading, Mass., 1958), p. 437. Compare Appendix
I of Ref. S.
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assumption about w,,,:

Gunp= 2z D (2+1) Wianp. (32)
ko

The centrifugal potential V. in the activated-complex
region at energies outside of the threshold region is
denoted below by E;*, which equals I({+1)#2/2I*, since
J=2 here. As discussed earlier, for a given v, the con-
tribution of any path to (k2/w)ownp is taken to be a
function of E—E,, vanishing when E—E.<e*, and
the contribution to w;,,, is taken to be a function of
E—-E,—E;*, vanishing when E—E,—E;*<e*. This
contribution is written as w(E—E,—E;*). We have

Wimp=TwW(E—E,—E*). (33)

Equation (10), or a particular case of it, such as
Eq. (13), can be introduced into (32) for o.m, the
former leading to a complex expression. In the case of
an atom~diatomic-molecule reaction!® (15) can be intro-
duced into (32), yielding
ohi? Imax
— wr(E—E,) =/ w(E—E,—E*)2ldl, (34)

2I =0
where Imax is the ! for which E—E,—E;t=¢t. On
making a change of variable from / to x=E—E,—E;*
neglecting rotation—vibration interaction and differ-
entiating (34) with respect to E one obtains

w(u—et) = (B/214) (eh?/21)dwt (1) /du  (35)
for any . From (33) we then obtain
Wijp=(THY/2I*) (oh?/2I)dwt(y) /dy,  (36)

where y=E—E;—E*—¢*. With rotation-vibration
interaction and dependence of ¢** on N+ neglected, use
of (17) yields

Whjp= (Pdﬁz/ZIo"") [deib"'(E—E,'—Ef"—-eu"') /dEJ
(37)

It should be emphasized that Eq. (36) implies (15)
but not conversely: The starting point of (15) could
be a postulate that (k2/w)oysp is a function of E—E,,
without motivating this postulate (as we did earlier)
by postulating that .,y is a function of E—E,—E;+.
Because winp, represents a finer-grained description
than ounp, Eq. (36) may be less accurate than (15).

XI. ENERGY DISTRIBUTION OF PRODUCTS

The energy distribution of reaction products has been
subjected to extensive investigation, both in experi-
ments and in computer studies.'* The results are of
particular interest in strongly exothermic reactions,
because of the large amounts of energy available for
distribution.

For such exothermic reactions with little activation
energy the activated complex normally occurs long
before the system reaches the strongly curved part of
the reaction path in a space of mass-weighted coordi-
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nates. In a statistical-dynamical treatment, the calcu-
lation of energy distribution of reaction products can
then be decomposed in two parts: (1) calculation of
the reaction probabilities winp’ OF Wiwnp, as in the
preceding section, and (2) calculation of the subse-
quent energy redistribution for each initial Jlvnp or
lunp state. This second step involves additional statis-
tical or dynamical postulates. They are explored in a
subsequent paper.

XiI. VIBRATIONAL NONADIABATICITY

When the ¢" motion is sufficiently slow in a2 dynami-
cally critical region, the vibration discussed earlier in
the A4BC reaction is expected to be adiabatic. A
dynamically critical region is one where either the
frequency of this vibration is changing appreciably or
where the ¢" coordinate curve becomes significantly
curved, so that coupling of the ¢" motion with the
vibration may become appreciable in either case. This
curvilinear effect is probably a principal source of
nonadiabaticity for this particular vibration.

At very high ¢ velocities this vibration will no
longer remain in the same state: the collision dynamics
at a curved part of the reaction path show that ¢
kinetic energy will usually be converted into vibra-
tional. The preceding formulas might still be used as a
first approximation, perhaps, provided ey + now denotes
the fixed energy (adiabatic or otherwise), i.e., the
energy not available for distribution among other
modes. A calculation of this quantity and of the veloci-
ties for which such nonadiabatic effects become im-
portant will be described in a later paper.
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APPENDIX I: THE CENTRIFUGAL POTENTIAL, V,

Bimolecular gas-phase reactions of particular interest
in applications of activated-complex theory have
usually been of the three center type, A+BC—AB--C,
where A is H, CH,, Cl, etc., B is an H, a halide, etc.,
and R is any of these.

Often, two moments of inertia of the activated
complex are much larger than the third and are approxi-
mately equal. (Linear activated complexes are auto-
matically included, thereby.) The two rotations
involving these two moments of inertia (I*) arise
partly from the relative orbital motion of the two
reactants.

At large distances, the centrifugal barrier is

1041)52/2u,
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where r is the distance of separation. At smaller
distances it goes over into (P*?+4Py*?)/2I*, where
Py+ and Py* are angular-momentum components about
the two axes mentioned above for the activated
complex. Since (P4 P;*?) equals the square of the
angular momentum, J(J41)%? minus the square of
its third component along the figure axis of the “sym-
metric top” K242, the centrifugal barrier V. is

[J(J+1) —K*]p2/2I*

and denoted by V./. When the vibrational angular
momentum is neglected in the case of a linear activated
complex, this V./ becomes J (J+1)#2/2I*.

When the barrier is only centrifugal, the activated
complex normally occurs at large 7. (Otherwise, other
forces enter at small 7, and the barrier would not be
entirely centrifugal.) In this case the activated com-
plex is the hypersurface r=r,, a constant, where ro
depends on p. The value of I'* is ur®, and that of V. is
I1(141)%2/2I*, which we designate as V..

Thus, V. for the activated complex is V. ! if the
complex occurs at large r and V.7 if it occurs at small r.
In between, it has intermediate values, less well defined
perhaps, which depend on extent of rotation-orbital
coupling at those r’s.

Qutside of the threshold region ! is typically much
greater than j, the rotational quantum number of the
reactants. j will add to or substract from / so that, on
the average J=2I. In the threshold region the system
just has barely enough energy to react, so that states
for which V, is small will be favored. These states are
those with =20, and in this case J no longer averages
about ! but rather, at threshold, is expected to approxi-
mate j.

Even for reactions which have only a centrifugal
barrier at typical p’s, the decrease of p shifts the
position of the activated complex to lower r’s, and
eventually to #’s so small that torques and coupling with
rotations occur and, ultimately, therefore, the cen-
trifugal part of the barrier becomes V' with /=0
and J=j.

APPENDIX II: AN INTEGRAL EQUATION FOR
ENTIRE RANGE

For reacting pairs having a given energy and a given
total angular-momentum quantum number

J(T=1j—1]toj+)

the quasiequilibrium hypothesis yielded (A1).5 Equa-
tion (Al) is a stronger form of this hypothesis than
(2) and includes it:

ry ¥

nt J =T

w;.no;pJ=PZ;1, (Al)

where n* denotes the quantum numbers in 7, exclusive
of j and m;, and where n** denotes those in 1, exclusive
of J and its component M. w;,,*;,’ is the probability
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of a reaction of a system having a given lon*jp and, by
suitable combination of m;’s, m.’s and Clebsch-Gordan
coefficients, is prepared in a state of given J and M. w’
is independent of M. In (A1) j lies in |ji—7z]| to
(1)

If it is assumed that the contribution of a path to w’
is a function of the “energy excess” E,—V,—V., where
V. is given in Appendix I, and call it w(E—Ens—V,)
for the given v, we have w’ equal to Tw(E—E,+—V.)
and obtain (A2) from (Al):

Jai
IDIDD

n* 5 I=ld=bl

7vlvn"ij(E—En‘ - Vc) = El (AZ)
a¥+

This integral equation is to be solved for the w’’s.
The cross section .., averaged over all m; for this
j1, ju, and j, is then obtained from (A3)* (m; is the
component of j along some axis) :

™ J+5
Gwp= =T (2T+1) D Wimeis?.  (A3)
B 1= I=}J—j|

Presentation of the computer data in the form of ’’s
would provide information on the assumption that they
depend primarily on E,—V,~V.. We do not attempt
to solve (A2) here, but numerical solutions would be
of interest for comparison with computer data on w'’s.

APPENDIX III: AN INTEGRAL EQUATION AT
THRESHOLD

Equation (23) is a particular case of Eq. (A6)
below.

When the two reactants have rotational angular-
momentum quantum numbers 7, and js, j lies in the
range | fi—7z |, * * *,j1+ 72, and has an a priori probability
of occurrence of (2j41)/(271+1) (2j.+1). For a given
n, and thereby for a given j; and j,, the number j cannot
exceed 71+7,. Nor can it exceed 7*, the highest value
of 7 satisfying (A4):

Ef<E—FE,—e™ . (A4)
Thus, if fmin denotes the lesser of these two quantities,
(A5)

the above arguments now lead from (2) to (A6), where
the last integral is at fixed v.

/B [ w(En)
En=o L(21+1) (272+1)

Jmin= minimum of ( j1-+7s, %),

Jmia B
x 31 (2j+1)S(E—E,.—E,—+)]dE,,= / ot (w)du,

=] h—7al =0
(A6)
where % is ey + and where S(E—E,—E;*) is the contri-
bution of the path to (£%/7)gunp.

16 This equation lollows from Eq. (4.12) of J. M. Blait and
L. C. Bicdenharn [Rev. Mod. Phys. 24, 258 (1952)7, when
appropriate identification of the symbols is made.




