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Theory of Electron-Transfer Reaction Rates of Solvated Electrons*

R. A. Marcus
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A theory of electron-transfer reactions of solvated electrons is described. Using an electron-transfer
theory formulated elsewhere and using polaron theory the rate constant is related to the standard reduction
potentials of the two reactants, spectral and other data for the solvated electron, and rate data on ordinary
chemical or electrochemical electron-transfer reactions of the second reactant. This calculated rate constant
appears in a boundary condition in a diffusion-reaction differential equation. When that constant is high
the reaction becomes diffusion controlled, but when the constant is low it becomes the observed rate con-
stant itself. Some comparison is made with existing data. Conditions for possible but as yet unobserved
chemiluminescence are also considered. Solvent-electron polarization in the vicinity of a solvated electron
is also examined, by application of polaron theory for a high lattice frequency continuum.

INTRODUCTION

N the present paper a reaction-rate theory is formu-

lated for electron-transfer reactions of solvated

electrons. Consideration is restricted to “pure” electron

" transfers, i.e., to reactions for which chemical bond

rupture does not occur or occurs subsequent to electron
transfer as in (1) and (2).

¢(aq) 4+ 0Ox—Red, (¢))

fast

Red—>products. (2)

An expression for the reaction rate is obtained in terms
of standard reduction potentials of the two reactants,
spectral data for the solvated electron, and reorganiza-
tion parameters found from rate data on chemical or
electrochemical electron transfers when available. When
the calculated rate constant is very high it is not used
directly but appears, instead, in a boundary condition
in a differential equation for mutual diffusion of the
two reactants. For very high rate constants the reaction
becomes diffusion controlled.

A major purpose of the present paper is to relate
rate constants of solvated-electron reactions to other
rate constants and to quite different properties. Many
rate constants for reactions of solvated electrons have
now been measured in water and in alcoholic solvents.!?
More precisely, rate constants have been measured for
reaction with some species which, measurements of salt
effects in the diffusion-controlled region suggest, has a
unit negative charge’ and which has an absorption

* This research was supported by a grant from the National
Science Foundation.

1 For review see E. J. Hart, J. K. Thomas, and S. Gordon,
Radiation Res. Suppl. 4, 24 (1964).

* For review see L. M. Dorfman and M. S. Matheson, Progr.
Reaction Kinetics (to be published).

3G. Czapski and H. A. Schwarz, J. Phys. Chem. 66, 471
(1962) ; E. Collinson, F. S. Dainton, D. R. Smith, and S. Tazuke,
?roli:.dClzxem. Soc. 1962, 140 and more recent references described
in Ref. 2.

spectrum in water and alcoholic solvents shifted to the
blue from that in liquid ammonia.!?

At present, tests of the theoretical rate expression
derived in the present paper are somewhat limited by
the fact that many of the common redox reactants,
for which conventional electron-transfer rates are
known, are reduced very quickly by the solvated elec-
tron because of the latter’s extremely high reduction
potential. Thus, many of those reactions of the solvated
electron are diffusion controlled, so that only lower
bounds for the corresponding activation-controlled rate
constants are available from the data. For many re-
actants whose rates of reaction with the solvated elec-
tron are not diffusion controlled, the corresponding
redox reactions, chemical or electrochemical, are slow.
Nevertheless, by suitable choice of solvents, reactants,
and techniques, one may anticipate, this sparsity of
comparable data will be reduced. ’

POTENTIAL-ENERGY SURFACES AND
REACTION MECHANISM

The concepts of electron-transfer theory presented
elsewhere! remain applicable here when the overlap
of the electronic orbital of the solvated electron and
that of the second reactant is weak: One may draw a
potential-energy surface as before, the electronic struc-
ture of the reacting species being that of the reactants
and the surface being plotted as a function of the posi-
tion of all the atoms in the system. Similarly, a second
potential-energy surface in this many-dimensional con-
figuration space may be drawn, the electronic structure
of the reacting species being that of the products. When
there is zero electronic interaction of the redox orbitals

¢R. A. Marcus, Ann. Rev. Phys. Chem. 15, 155 (1964).

5 (a) R. A. Marcus, J. Chem. Phys. 24, 966 (1956); (b) Dis-
cussions Faraday Soc. 29, 21 (1960); (c) J. Chem. Phys. 43, 679
(1965); (d) J. Phys. Chem. 67, 853 (1963); (e) the assumptions
of this electron-transfer theory and of the additional ones used
in the present investigation are summarized by the author in
Advan. Chem. Ser. 50, 138 (1965).

3477

kC



3478

of the two reacting species these two potential-energy
surfaces intersect.

In the absence of an interaction of the redox orbitals
a fluctuation of coordinates from ones describing stable
spatial configurations of the atoms in the initial system
to those characterizing the intersection region and
finally to those describing stable spatial configurations
of products cannot lead to reaction. It merely represents
a fluctuation of coordinates, fluctuations which occur
continually. The presence of some electronic interaction
between the redox orbitals splits the surfaces at each
point of intersection in the usual quantum-mechanical
manner. If the “redox interaction” is appreciable so is
the splitting. A fluctuation of the above type then
causes electron transfer to occur as the system passes
through the region of configuration space characterizing
the intersection region. The process occurs adiabatically
if the splitting is sufficiently large, and nonadiabatically
if it is not.4:$

The coordinates in this many-dimensional configura-
tion space include ones describing the vibrations of each
molecule present, its translations, and its orientations.
Fluctuations leading to reaction include those of the
separation distance of the reactants, reorientation of
the dielectrically polarized solvent molecules, and vibra-
tions in the second reactant. In fact, any favorable
changes in a coordinate which has a somewhat different
equilibrium distribution in the initial and final states,
or which permits the reactants to come close together,
helps facilitate reaction, i.e., in the present case permits
the system to reach and pass through the intersection
region in a place where the redox interaction is appreci-
able. To be sure, related remarks apply to all chemical
reactions, but in the usual chemical reactions one con-
centrates mainly on the chemical bonds that are broken
and those that are formed. The present step (1) involves
no such bonds for the reaction being considered.

The electronic wavefunction of the solvated electron
is very sensitive to fluctuations of the solvent molecules,
unlike the electronic wavefunction of a conventional
reactant. This circumstance leads to one principal
quantitative difference between the present treatment
of its reactions and that given earlier*® for more con-
ventional electron-transfer reactions. A second differ-
ence lies in the fact that the number of particles changes
in the simple electron-transfer step (1), while in those
considered previously there was no such change.
Normally in reactions the number of particles changes
only because of formation or rupture or new chemical
bonds. In the present situation, however, it occurs by
absorption of the electron into the second reactant
and deorientation of the solvent molecules formerly
oriented about it.

For purposes of simplicity in the present paper we
formulate the theory using dielectric-continuum theory
for the solvent polarization. Any vibrational changes in
the other reactant are treated in molecular terms,
however. The functional form of the resulting rate

R. A. MARCUS

equation suggests a functional form for a statistical
mechanically derived expression, much as it did in the
formulation of an electron-transfer theory: A continuum
treatment was given first™ and was followed by a
statistical-mechanical treatment.®*° Both had a rate
expression of the same functional form. :

A qualitative summary of the assumptions and of the
principal results of the present paper have been given
in a recent monograph.® A glossary of the principal
symbols employed is given in Appendix ITI.

THEORY

Since the orientation polarization has a much lower
characteristic frequency than the frequency of motion®
of the solvated electrons, the orientation polarization
“sees” a smeared-out charge distribution of the electron.
When the environment is in thermal equilibrium with
the solvated electron the polarization function and
wavefunction are found by minimizing a certain func-
tional, the sum of the kinetic energy of the electron
and the free energy of the polarized system.” No con-
straint is imposed in the minimization (other than that
of normalization of the wavefunction).

The activated complex for a weak-overlap electron-
transfer reaction is a species having the set of spatial
configurations that occur at the intersection of the two
potential-energy surfaces described earlier. It has the
potential energy of the intersection for each point of
the set and has an equilibrium distribution of coordinates
within this set.t The properties of the activated complex
have been related elsewhere to those of two other con-
strained systemstS: One of these two systems has the
electronic structure of the reactants and the other has
that of the products. Each system is simpler than the
activated complex in that each is constrained to be
centered on the intersection region rather than confined
to it. Each has the same thermodynamic energy (the
same as that of the activated complex) and the same
Boltzmann distribution of configurations. Since the
two systems have the same distribution of coordinates
in configuration space they also have the same entropy
and, thereby, the same free energy. They have different
electronic structures, and the condition that they have
the same free energy at all temperatures constitutes
an equation of constraint.

Let AF* be the free energy of formation, from reac-
tants fixed in position far apart, of a system in which
the system is centered in the above intersection region,
as described earlier, and in which the reactants are
fixed in position a distance R apart. Then, it has been
shown, the bimolecular rate constant is given by*®

k=2Zxp exp(—AF*/kT), 3
¢ The frequency of motion of the electron », is approximatel
AE/k where AE, the transition energy in water, is about 1.7 eV.

Thus, », is about 4X10% sec™.
1S. I Pekar, Untersuchungen ber dic Elckironentheorie der
Kristalle (Akademie Verlag, Berlin, 1954).
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where Z is a collision frequency (8#xkT/m*){R? calcu-
lated for the most probable separation distance R
between the centers of the reactants in the activated
complex. Typically, R is the sum of the radii of the
reactants, any uncertainty in R leading to a minor
uncertainty in k; m* is approximately the reduced mass
for the reaction coordinate; « is unity for an adiabatic
reaction (as we usually assume it to be) and less than
unity for a nonadiabatic one; p is a factor usually close
to unity it is the ratio of the root-mean-square fluctua-
tion of R in the activated complex to that of s, the
displacement normal to the “intersection hypersurface”
in the centered distribution.5

We let F*"(R) denote the free energy of a system of
reactants, fixed in position, a distance R apart and
having the constrained equilibrium distribution of con-
figurations described above; let F*?(R) denote that
for the product in a system with the same constrained
distribution, and let Fr( «) denote the free energy of an
unconstrained system of the reactants when they are
fixed in position but far apart. We have

AF*=F*(R)—F( «). (4)

The value of AF* is determined as the solution of
the variational problem (5) and (6)

8F*(R) =0, (8
F*(R)=F*(R). (6)

subject to (6),

The variation in (5) is to be performed with respect
to parameters describing the configurational distribu-
tion of the system: The orientation polarization is
characterized by a continuous parameter, a polarization
function, and the distribution of vibrational coordinates
of the second reactant is characterized by several pa-
rameters, g4* the most probable value of each vibra-
tional coordinate ¢* in the centered distribution.

The vibrational contribution to AF* is then given by®

AF*y =%Zkij(9t"— o) (gx’— g, (7

\ 3

where ¢,f and g,' denote the most probable (uncon-
strained) values of ¢* for the reactant and product,
respectively; &;; is a symmetrical function,

2kiiki®/ (kif ki),

8 This result utilizes the experience of the derivation in Ref.
5(c), where it was found that the vibrational coordinates in the
centered distribution have a Boltzmann distribution charac-
terized by parameters g,." and that the expression can be con-
siderably simplified with little error by introduction of the %;;’s.

Instead, one can include in F*(R) the vibrational free energy,
foi(h"+kT np;)dr;, where p;, kif, and 7; are the vibrational
phase space density, sum of vibrational kinetic and potential
energy, and vibrational phase space volume element. The cor-
responding vibrational term with A replaced by A can be in-
cluded in F*#(R). One then solves the constrained variational
problem (5) and (6), the variations being 8p and &P, and even-
tually introduces methods such as those employed in Ref, 5(c),
to obtain (7), with ¢, given by (17), thus achieving the same
result as before.
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of the corresponding force constants, ;7 and %7, of
the reactant and product. The vibrational contribution
to the free energy of formation of the activated complex
from the separated products is the same as (7) but
with ¢,* replaced by g¢,°.

Another term in F*(R) is the kinetic energy of the
excess electron, (—#2/2x) f[y*V4dr. On integration by
parts it becomes #2f| Vy [2dry/2u, where 1, and u
denote the position and the effective mass of the elec-
tron.” Hence, another contribution to AF* is the change
in this kinetic energy arising from a change in .

A final contribution to F*(R) is the free energy of
polarization of the system. It has been suggested® that
cavity formation does not occur in strongly hydrogen-
bonding solvents such as water and alcohols, unlike
liquid ammonia. In the present paper we assume cavities
to be absent—and so perhaps restrict attention to the
strongly hydrogen-bonding solvents. Use of a more
elaborate expression for the free energy of polarization
would permit the inclusion of cavities.

The usual polaron-type theory”®! is employed to
describe the polarization free energy of the system.
However, we do not wish to tie the present reaction-
rate formalism too closely to any particular model for
the solvated electron. A simple approximate analysis
of the effect of using alternative models is described in
a later section, therefore.

For each value of r; the free energy of polarization
of the system is shown in Appendix I to be (8), where
P(r) is a function of the orientation polarization at r:

Foa(ry) =—fP-Ddr

€162

2% 622 1
il -1 —,
+ (4 Pzdr Eﬂ( Dop)+Dop l 1'1- I'z l

where ¢ is given by (9), D is the field due to the perma-
nent charges and is given by (10), and the radius g,
for the second reactant is that of a sphere which in-
cludes any inner coordination shell. (One can weaken
the spherical assumption, however; then, the final rate
expression contains an orientational factor.) Changes
in values of the coordinates in that shell contribute to
AF* .

®

C"_"Dop-l_ D§_1) (9)
D=Dy+D,, (10)
(11)

Di=—vV(e/|r—n1]), D=—V(e/|1—12]).

9 J. Jortner, Radiation Res. Suppl. 4, 24 (1964); Mol. Phys.
5 257 (1962).

1R, A. Marcus, J. Chem. Phys. 24, 979 (1956); 38, 1858
(1963); 39 1734 (1963). See the appendix of the present paper
for a notational change.

11 A recent survey of polaron theory is given in Polarons and
Excilons, edited by C. G. Kuper and G. D. Whitfield (Oliver and
Boyd, Ltd., Edinburgh, 1963?.
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In (11) e, is the charge of the second reactant, which
is centered at T, Do, and D, denote the optical and
static dielectric constant of the medium.

The total free energy of polarization is obtained by
multiplying (8) by | ¢ [*ér; and integrating over 1.

If we denote by &, the sum of the electron kinetic
energy and the free energy of polarization of the un-
constrained system of reactants when they are far
apart then AF* becomes

2
AF*=AF*,n,+2h—F / | vy [2dr+ f Foor'(1y) | ¥ %0 —5,
(12)

with AF*,; and Fpor given by (7) and (8) with D,
&1, and e all bearing 7 superscripts to denote properties
of reactants.

We consider next the corresponding free energy of
formation of the constrained state with the electronic
structure of the product, from an unconstrained state,
AF*», Because of the manner in which F*?(R) and
F*(R) were defined (‘“‘reacting species fixed in posi-
tion”) there is no translational contribution to this

F*(R)— F?( ).
By arguments analogous to those used to derive (12)
we obtain
AF** =} kif(g+—g5") (g+'—25)

L)

o (1)
+cfP2dr fP Drar—7(1-3-). (19

The expression is somewhat simpler than (12): The
charge e;” vanishes. The electron kinetic energy term
is missing, since the electron now resides in the second
reactant, where its kinetic energy is insensitive to
solvent fluctuations and does not contribute to AF*?,
therefore.

For any given R we then minimize AF* with respect
to the quantities P and g+¢, subject to the constraint
imposed by (6). When P is varied ¢ in (12) also
varies. However, since y is determined as that quantity
which minimizes the sum of the kinetic energy and
[Fpo1 | ¢ |2dr, (and hence, which minimizes AF*) for
any given P, the variation of AF* with ¢ at fixed P
is zero. In minimizing AF* with respect to P, therefore,
¥ can be regarded as constant and, in the final step,
is set equal to the ¢ appropriate to the given P. We
find (14) for the variation at fixed ¢:

5(AF*) ,=0= f (4—:5P— f [y I’D'dr,)-anr

+ qu(q "-— q:".) 59 ‘f) ( 14)
§(F*—F*?)y=0= [ (D’— / Iy PDfdrl)- 8Pdr
(15)

+ ?_i:ku( ' —gr') 8g .
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On multiplying the second equation by a Lagrangian
multiplier , adding to the first equation and setting
the coefficients of 6P and 5¢+7 equal to zero the properties
of the constrained state, the “centered distribution,”
are obtained

P=[(m+1) f ly |=Drdr,—mDr]c/41r, (16)

(17)
On introducing these results into (12) we obtain (18):

goi= (mt1)g = mg.

n? m?c c
* 2 — r— 2dp —— 2
AF 5 | vy |2+ ™ f (®Dr—D7)%r Swffb dr,

ezrz r ‘ w |2dr1

1 eer
-— {—— __f 2 i—Fo"
20, Dop) Do, ——+l — m\i—FS, (18)
where —e is the charge on the electron and
N=12 ki(go— ) (27— 2, (19)
.7
o= [Drly i (20)

Analogously, AF*» is found to be given by (21):

_(mt D% f oo _L
AF* =T / (Dr—D#)%dr &JD»zdr

o9 1 »
—2_02(1_D°,)+ (m+ 1)\ —Fo. (21)

To determine the parameter = in terms of known
quantities we next express F*—F*? in terms of the
“standard” free energy of reaction.

The “standard” free energy of reaction for the ele-
mentary electron-transfer step (1) at the prevailing
pressure, temperature, and reaction medium is denoted
by AF®, to distinguish it from the standard one AF°®
at 25°C, 1 atm, and unit activities. Let the standard-
state translational free energy of the solvated electron
in Step (1) be F°ua. If we subtract from AF® this
translational contribution, — F°ans1, and note that the
rotational contribution of Ox is the same as that of
Red, we obtain the internal contribution, AF®a¢. The
latter is the free energy of formation of products from
reactants when all reacting particles are fixed in
position:

AFO’lnt=AF°'+F°trml- (22)

(We note parenthetically that, in contrast to AF¥,
AF®, is independent of the choice of concentration
units in the standard state.)

With AF%;, one may now rewrite (6). The free-
energy change AF® iy on going from reactants fixed in
position to a product also fixed in position can be
regarded as the sum of three terms: formation of con-
strained state of the reactants in activated complex,
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AF*; the change due to a change of electronic structure
in the constrained state, F*?(R)—F*(R), i.., zero
because of (6); formation of product from the con-
strained state of the product —AF*», Thus, we obtain

AF® i =AF*— AF*, (23)

where AF®;, is given by (22).

For any given , the function ¢ is determined as the
¥ which minimizes AF*. To determine the parameter
m, Egs. (18) and (21) are then introduced into (23).

For completeness, we note that %_,, the unimolecular
rate constant for the reverse step of Reaction (1), can
be obtained from (21) and from the equilibrium con-
stant for Reaction (1). One finds:

k_y=Zxp exp(— F°uanst/kT) exp(—AF*?/kT),
where Z is about 101 cc-mole sec™.

CALCULATION FOR LARGE R

In solving (18), (21), and (23) we consider first the
form AF* would take if the separation distance R were
large in the activated complex. (The case of any R is
considered in a later section.) In this situation the
“polaron” is isolated and one may make use of known
solutions of the polaron problem to evaluate the various
integrals.

Where R is large each of the integrals in (18) becomes
the sum of two parts, one describing the polaron and
the other describing the second reactant. For sufficiently
large R, products such as D;-D; vanish but terms such
D, and D;? do not. Further, . equals D," since the
latter is independent of r;, We then find:

(24)

72 m’c ¢
ap+=2 [1 vy vt B2 [ -y~ [Durar

2,
hia: f (Dy—Dy)dr+mt—5,7, (25)
8

where ,," is the contribution of the isolated polaron to
F,r and where we have used the fact that &,,", the contri-
bution of the isolated second reactant, is

—ex?/2a[1—(1/D,)].

The latter term canceled two of the other terms, when
integration over r in one of them was performed. In
(21) D,® vanishes since “product” 1 now has zero
charge.

The expression for F,,” is readily obtained from the
sum of the other polaron terms on the right-hand side
of (25) by setting m=0 in them (for that would corre-
spond to a condition of no constraint, as in the initial
state of the polaron). If the properties of the isolated
unconstrained polaron are denoted by a subscript o we
find:

2
fFo.fE Ho = i l V‘I’o |2dl'1— _C'fmol 2dr, ( 26)
2u 8.
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The wavefunction y, is determined by minimizing H,.1?

Since ¢ is determined by minimizing AF* at a given
m, it is also obtained by minimizing that part of AF*
which depends on ¢ at this m, namely H:

ﬁ2 1._. 2
B= 1wy lzdrl—% f Dutdr.  (27)

Since D" and Dy” equal [ | ¢, |'Dy7dr; and [ | ¢ |"Divdny,
respectively, comparison of (26) and (27) shows that
H is obtained from the well-known values of H, in
the literature merely by replacing ¢ in the formula for
H, by c(1—m?).
Finally, we note that (25) becomes
AF*=H— H,+m\,>, (28)
where A, is the sum of A; and A=, \,® being the value
of ¢/8n[(Dyr—Dy?)%dr, i.e., — (e"—e:?)%/2a,.
Similarly the expression for AF*? is found to be (29),
upon noting that . equals —[1—(1/D,) ]fD,#%dr/8x.

(m+1)%
&r

AF*r= ‘szdr+(m+1)2)\2°°. (29)

A useful virial theorem can be derived for the solution
of the nonlinear wave equation for ,, 6H,=0, using a
scale-factor technique® similar to the one! used to
establish the virial theorem for the usual (linear)
Schrodinger equation. One finds, thereby,?

2 .
- / | V. [2dry=—H,, (30)

_8i1r f D dr =24, (31)

Similarly, the first term of (27) is —H and the second
is 2. One can always assure satisfaction of this virial
theorem by introduction of a scale factor as one of the
variational parameters, as one may see from the above
proofs'3:" of the theorem.

On applying these results to Eq. (29) and noting
that the integral [®,r?dr appears in both (27) and (29),
one obtains

AF*?=[2(m+1)/(m—1)JH+ (m+1)20>. (32)

The explicit dependence of H on m can be obtained
as follows: Since D.,? contains a factor ¢? one can show
from (26) that H,/ce* depends only on #2/uce®. The
only dimensionless variable composed of these two
quantities is H/Ai2/uefc®. Thus, any solution of (26),

1t We note, incidentally, that this H, is also the same as that
used for the isolated, unconstrained polaron by Pekar in Ref. 7
and by Jortner in Ref. 9. (However, Jortner assumed D, =1
for‘tll;e‘ground-s;latc ca;csulntion.()j Eqs. (8.10) . 0

13 Reference 7, pp. 38-41 an s. (8.10) and (8.11). Our
Ihs of Eq. (31) is E.ips v/

WE.g., W. Kauzmann, Quantum Chemisiry (Academic Press
Inc., New York, 1957), pp. 229-232.
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approximate or exact, can be written as (33), where
A is a dimensionless constant.
H,=— Ape‘c*/R2. (33)

On comparing (26) and (27) we see that H is given by

=—Apett(1—m?) /it = (1—m?)*H,. (34)

We then obtain
AF*=—m2(2—m?) H,4m*\", (335)
AF*=—2(m+1)2(1—m2) H,+ (m+1)\>, (36)

and m is a solution of (37).
— (2m+1) (—2H,4N=) —m*(m*+-4m—+2) Ho=AF sy
(37

As (30) and (34) show, H, and H in (30) to (37) are
always negative.

Under typical conditions where these reactions are
very fast, one sees from (35) that m? is small, a conclu-
sion verified in more detail later for typical values of
Ay, H,, and AF®. One then finds that »*<1, so that
(35) to (37) become

AF*=m*(—2H,+\>), (38)
AF* = (m+1)*(—2H+N"), (39)

and m is the solution of (40):
— (2m=+1) (—2HA+N") =AF%n. (40)

These equations now have the same functional form
as those derived for more conventional electron-transfer
reactions. (In those cases, however, AF*i, equaled
AF®.)

EVALUATION OF H,

Variational functions of the type (41) have been
used by Pekar to evaluate H,.

Yo=B(1+ar+pr)e, (41)

the best result for 4 in Eq. (41) being —0.0544.7
Jortner has used instead a 1s wavefunction, B exp(—vr),
which vields a slightly worse result: 4=—0.0488.°1
Quantitative calculations show that the 8r* is hardly
necessary in (41) but that the ar term is useful, since
the effective potential for the polaron is found to be
of a harmonic-oscillator nature near the origin rather
than Coulombic.” Results of other variational calcula-
tions have also been summarized by Allcock.!® They
include the use of a harmonic-oscillator wavefunction
by Pekar ef al. (1948, 1954) and by Feynman (1955),
which yields 4=—0.053, and the use of a 1s wave-
function by Frohlich (1954), which yields 4 =—0.0488.

1 This particular result is unaffected by the fact that Jortner
assumes ¢=1—(1/D,) for the ground state.
18 G, R. Allcock, Advan. Phys. 5, 412 (1956), p. 450.
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On using a 2p wavefunction for the excited state
Pekar” found the transition energy to be 0.0697uetc?/72,
ie., —1.28H,.

Since this transition energy is about 1.7 eV when
the solvent is water, H, is about —1.3 eV in that
solvent. This particular result is independent of the
value used for ¢, as long as the same ¢ is used in the
ground and 2p state. Nevertheless, such an evaluation
of H, is open to some question: one should subtract
from 1.3 eV an amount A®/1.28 where AQ@ is some
difference in “electron affinity” (i.e., in short-range
interactions) of the solvent molecules for the solvated
electron in its ground and excited states. Perhaps, then,
this magnitude of 1.3 eV is too high:

A comparison in Appendix II of spectral and solva-
tion data permits one to eliminate the unknown ‘“elec-
tron affinity”’ of the ground state, @, When that of the
excited state can be neglected, the values of —H, and
of @, are estimated to be roughly about 0.7 and 0.8
eV, respectively, but they are quite uncertain since they
depend on a small difference (~5) between fairly large
quantities (~35 kcal mole~'). The actual value of —H,
is larger, and that of @, smaller, if the neglected electron
affinity of the excited state is positive.

A direct calculation of H, made by assuming u=
electron mass and Dop= (1.33)%, yields 0.45 eV for
—H,. To explain a particular rate constant we later
take —H, to be some compromise—about 0.65 eV—
though the value must be regarded as highly tentative
pending accumulation of more data.

The above results suggest that part of the large
spectral difference of the solvated electron in ammonia
and in water may be due to a difference in @,, if the
affinity is greater for water.

CASE OF FINITE R
On introducing (11) into (18) we find
2 2—1
AF"'=%/| vy I’dr1+-(£—)c-[$1'2dr
2 8w

ee (| 120 mice

D, |1'1—'l'=z|l 20,

2
mice’ [ | Py +m?\;— H,,
1 Ir1—r; I
(42)
where H, is given by (33).

The first term involving | r;—r; [~! and, when m? is
small, the second | r;—r; |~ term also are small in
comparison with the electronic energy of the polaron.”
The distortion of ¢ from the form it has when these
terms are absent is assumed small, therefore. In this

17 For example, when m? is small Eqgs. (27), (31), and (34)
show that the second term in (42) is approximately 2H,, i.e.,
about —2.6 eV according to the value derived earlier for H,.
The third term in (42) is about —ees”/D,R, i.e., about —0.03 eV
in water when R=6 4 and e;”=e¢. The fifth term in (42) is about
—micel/R, i.e., about —0.15 eV when m?® has a typical value of
about 0.1 (or less) in these very fast reactions.
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case ¢ is seen from (42) to satisfy the same variational
equation, for any given m, as the ¢ in the previous
section, i.e., as the y for the isolated but constrained
polaron, for only the first two terms in (42) now depend
on y. Thus, the first two terms on the rhs of (42)
equal —H and 2H as before, H being given by (34).

The overlap of the polaron wavefunction and the
charge of the second reactant was assumed earlier to
be small. In this case the term [ |y |%dry/| ri—rl
becomes R~ because of the spherical nature of |y [2
in this nondistorted ground state.

We let »" denote the reversible work required to
bring the reactants together. It is the free energy of
formation of an unconstrained state at the above R
from an unconstrained state at R= e, This term is
obtained from (42) by setting m=0, as one may see
by recalling the origin of m as a Lagrangian multiplier.
(When m vanishes, so does the equation of constraint.)

AF*=w —m*(2—m?) H,

+m{hitec[(1/202) — (1/R) T}, (43)
where H, is given by (33) and ‘
w'=—e¢ey’/D,yR. (44)
Similarly one finds
AF*=—=2(m+1)*(1—m?)H,
+(mF DAL (1/20)— (/R (43)
and sz is then the solution of (23).
If m is small we again may set m?<1 and write:
AF*=w+m?\, (46)
AF*?=(m+1)2\, (47)
where m is given by (48) and X by (49).
—(2m+1)A=AF%jn—w", (48)
A=—=2H+N\+e[(262)7'— R (Do~ Ds™).  (49)

If we define A\, by (50) and call it the X for the polaron
and write Az as in (51), Eq. (52) follows:

)\e =- ZH¢_ (82/2R) (Dop_l_ Dl_l) ] (SO)
Ae=Ai+3¢(Dop'—Ds™") (a'—RY),  (51)
A=A As (52)

This X, appears as a characteristic parameter for the

second reactant in ordinary chemical and electrochem-

ical transfers. The R may vary somewhat from reaction

to reaction but correction can be made for this variation.
A value for AF®y,, is given in the next section.
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STANDARD POTENTIAL AND AF;,*

From an estimate of the forward and reverse rate
constants of Reaction (53), Baxendale estimated the
latter’s equilibrium constant.!®s

e(aq) +H.,O=H-+OH-. (53)
This constant was then combined with the autoprotoly-
sis constant of water and with the equilibrium constant
for 2H=H, to yield a AF°® of —61.5 kcal mole—! for
Reaction (54) and, hence, an E° of +-2.7V

e(aq) +H*(aq)=3H.. (54)
A review of the argument employed reveals two errors,®
On making corrections for them and on using very
recent data for the equilibrium constant of (53) the
AF°® for (54) is found to be —62.7 kcal mole~! and the
new E° tobe +2.7 V.

To calculate F°uaq0 for the electron in Reaction (1)
we may proceed as follows:

On the right-side of the equilibrium, the excess elec-
tron resides in the reduced reactant and its motion is
correspondingly restricted, while on the left-hand side
this electron has three translational degrees of freedom.
On recalling the definition of AF®},, and denoting the
translational partition function of the solvated electron
by (Pf) trans1, the equilibrium constant of Reaction (1),
K, is given by (S5) (we have canceled the translational
partition functions of Red and Ox).

K= exp(—AF%ine/kT) (D) teanai™. (55)

Any volume change is supposed to be included in
AF® . through electrostriction. That is, AF %, is a
“Gibbs free-energy” change.

The energy of the polaron, H(v), calculated by
solving the Schraodinger equation for a dynamical
polaron moving with velocity », is assumed to have
the form?’

H(v) =H,+}mz*, (56)

where m, is the reduced mass for the polaron and H,
is the energy (or really, in part, free energy) of the
stationary polaron.

We now obtain

(Pf) trenst = (2rm ke T) WV /13, (57)

18 (a) J. H. Baxendale, Rad. Research Suppl. 4, 139 (1964);
(b) The value used for the equilibrium constant of water should
be (1074/55) M instead of 10~“M?, since 55M is the molarity of
water. [Alternatively, in a water medium a pseudo first-order
rate constant for the forward step in (53) can be used and the
ordinary autoprotolysis constant employed.] Secondly, to obtain
proper cancellation of units the AF® used for H-=4H; should be
that for a standard state of H atoms of 1M rather than of 1 atm.
(c) M. S. Matheson, Advan. Chem. Ser. 50, 45 (1965) : These
latest values of the rate constants of forward and reverse reac-
tions in (53) are 1641 M~1-sec™! and 1.840.6X 107 M~1-sec™),
respectively.
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where ¥V is 1 cc when the units of X are molecules per
cubic centimeter. On recalling the definition of F°anst
by Eq. (22) we obtain

exp(—Fotmml/kT) = (pf>trans1-

At present the value for m, is somewhat uncertain.
It does not seem quite appropriate to use a value com-
puted for a solid-state system.” On the other hand, the
estimated diffusion constant® of ~10X10¢ cm? sec™?
for the polaron is substantially higher than that of a
water molecule (2.45X10* cm? sec™), indicating a con-
siderable freedom of motion. Perhaps a value for m,
of the order of 1 to 10 molecular weight units would be
appropriate. :

On using (57) and (58) we obtain —5.3 kcal mole™
for F°,enst When m,~3 and the standard state in (58)
and for K is 1 mole/liter.

It is convenient to define an effective E®y, E%,
for the solvated electron by means of (59), since
AF% o (and, hence, E%oy— E°';) describes the effective
driving force of the reaction, according to (46) to (48).

AF°'15g= bl eF(Eo'eff— Emz) ’ (59)

where E%, is the “standard” reduction potential of the
second reactant. Using the above value for F°uans1 and
(22) we find

(58)

E%g=4+29V.

ACTIVATION AND DIFFUSION CONTROL

The observed rate constant of a reaction can be
expressed in terms of D, the sum of the diffusion coeffi-
cients of the reactants, and in terms of the activation-
controlled rate constant k.. as in (60).2

Eobs ™ =Raot - Raser ™,

(60)
where
© dr
kdi"=41rD/f e“’”"'—— o (61)
R r
The activation-controlled constant %, is the one calcu-
lated by Eq. (3). When kaoKRairs, kobs €quals ke, and
when Eqi<&FEsot, Eobs €quals kais. The diffusion-con-
trolled constants for the solvated-electron reactions are
quite high, a result which is attributed to a high diffu-
sion coefficient (~10—* cm? sec™!) for the solvated
electron,® comparable to that of HsO*. These rate
constants ranged from 13X10*M~!.sec™! for reaction

1 The mass mp for the solid-state system equals 0.020 of,
where « equals e*c(u/20h?)t. (Compare Ref. 7 or survey by
G. R. Allcock.)® The value of , depends, therefore, on the
magnitude of the angular frequency of t e-“lattice polarization”,
w. If /2x were 108 sec™! and v equalled the ratio of u to the
electron mass, « for such a model would equal 18 ¢+!. 1f one chose
a value of ¢y} of 0.65 (to fit the H, of Appendix II) then myp
would be about one quarter of a molecular weight unit, and
would be larger if the appropriate frequency for the liquid motion
were less.

20 H. A. Schwarz, Radiation Res. Suppl. 4, 89 (1964).

n R, A. Marcus, Discussions Faraday Soc. 29, 129 (1960).
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with a large, positively charged cation [Cr(en)s*],
where en is ethylene diamine, through 2.0X10% for a
neutral species (Op) to 0.3X10% for reaction with a
negative species [Fe(CN)¢].2

CALCULATIONS OF kgt

For water as solvent at room temperature ce?/2R is
90/R kcal mole~!, with R in angstroms. Thus, if R is
about 6 A, this contribution to A, in (50) is about 15
kcal mole~!. [Such a choice of R is a possible one since
the radius for e(aq), it has been suggested,? is about
2.5 to 3.0 &, while the radius of a small hydrated cation
is typically about 3.5 &.] However, the value for H,
itself is presently uncertain, as we saw earlier, and the
value for ), is tentatively taken as 15 kcal mole™ to
explain the Sm?* data described later. [This A, corre-
sponds to an H, of — 15 kcal mole™?, according to (50).]
A lower bound to A, appears to be about 6 kcal mole™!.#b
Calculations based on a A. of 45 kcal mole™ are also
given for comparison,

The values of A\, may be estimated from electro-
chemical or chemical electron transfer rates, though in
some cases the magnitude of the correction of the rate
for a work term is somewhat uncertain. According to a
recent tabulation?® we find A, to be about 35, 40, and
60 kcal mole™! for a single ion in the Fe?t2+, TP+
and Co(NH;)e+ 3+ systems, for example. (A, values
for many other ions are available.) On recalling that
the E°’s for these reactants are —0.77, ~+0.34, and
~—0.1 V one then finds from (48) that the calculated
AF*s are small, regardless of whether )\, is taken to
be 15-20 or 45 kcal mole™: For a A, of 15 kcal mole™!
the calculated AF*s are about 1, —2, and —1.5 kcal
mole~!, respectively, and for a A\, of 45 kcal mole™!
they are about —2, —1, and +2.5 kcal mole~!. The
Co(NH;) ¢+ reaction has been investigated and is
diffusion controlled.

2 (a) Reference 9. In Ref. 7, pp. 35-38, Pekar estimates a
different radius on the basis of a different criterion, which leads
to a radius of 8 A when ¢=0.65! and p=electron mass; (b) N.
Sutin, in Symposium on Exchange Reactions (International Atomic
Energy Agency, Brookhaven, New York, June 1965) calculated
this value of A, by assuming that the diffusion of the solvated
electron in water occurs as a site-to-site electron transfer (jump
distance of 2 4) and by using an expression for AF* for a2 uni-
molecular electron-transfer reaction. The value is an upper
bound, since the mean jump distance / may be shorter than ZPA
for then the solvent reorganization barrier would be smaller.
Indeed, if the diffusion constant depends on ! roughly as I? elég
[—AF*()/RT], the most probable value of I is that whi
maximizes this expression.

28 Reference 5(d). The value of A; equals A/2 in Eq. (2) there,
when Eq. (2) refers to a chemical electron exchange reaction,
and to A when it refers to electrochemical exchange. (A is the
 per ion and there are two reactants in the chemical and one in
the electrochemical exchange.) Values of \ are estimated from
the data in Table I there, with the aid of this Eq. (2). (Both
the A2 and the E,° for the TI*+2* are somewhat uncertain since
there are known to be two consecutive one-electron transfers in
the electrochemical reaction TI3*:+; The value given is obtained
from a geometric mean of the rate constants. The latter %’s are
close together, and therefore we have assumed for simplicity
that the £®'s for the two reactions probably are also.)
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We consider next a hydrated cation with a A, of
about 40 kcal mole™! and inquire as to how positive its
standard reduction potential E,° should be in order
that the reaction no longer be diffusion controlled.
When its E;° is about 2.0 V m\ is estimated to be
about 6 or 12 kcal mole™! according as ), is 15-20 or
45 kcal mole™, neglecting »". Even with a favorable
w" of several kilocalories per mole, this reaction should
be activation controlled. Similar remarks applyto an E,°
or 1.5, except that the reaction should be partially in
the diffusion-controlled region if the lower ), is used.
Interesting from this point of view is a recent study
of reactions with rare earths.? E®s (M?#*2+) for Eu¥t,
Yb*, and Sm#* are known. They are about +4-0.43,
+41.15, and +1.55 V, respectively.? The corresponding
E®s for the others are not known but are probably
higher since these other rare earths do not form stable
divalent states. Reactions for the first two and perhaps
for the third appear to be diffusion controlled (£=6.1,
4.3, and 2.5X101M—1.sec™!, respectively). The rate
constants of the other rare earths are definitely activa-
tion controlled, the rate constant for Tm¥" being
3X10°M~*-sec™?, for example.

Judging from an electrochemical rate constant the
value of A, for Eu2*#+ is about 40 kcal mole~1.2 In the
cases of Eut? and Yb* the theoretical rate is so high
that the reaction is predicted to be diffusion controlled
for a A, of 15-20 kcal mole~!. (For Yb*2 AF* is 4 kcal
mole™? if A, is 45 kcal mole~’.) In the case of Sm?®+,
AF* is estimated to be about 1, 1.5, or 7 kcal mole™?
according as A, is taken to be 15, 20, or 45 kcal mole.,
(For " a Coulombic term, —3¢?/D,R, is assumed.) If
kaire in Eq. (60) is taken to be 6.1X 101°M~1sec™! (the
value for Eu**) then the experimental £, is estimated
to be 4X10°Mf~2-sec™! for Sm?**, which corresponds to
a AF* of about 0.5 kcal mole™. Thus, a value for A
of around 15 kcal mole™ seems slightly favored at this
time, but the various uncertainties in the A’s and in
the E%; for the solvated electron must be borne in
mind in such comparisons with the data. In turn,
further kinetic and equilibrium data involving the
solvated electron and further kinetic data on ordinary
chemical and electrochemical exchanges should provide
more precise Es, Ay, and Ao’s. An important region
for such investigations would be one with E°’s in the
vicinity of 1.5 to 2.0 V.,

These calculations are further discusszd in Ref. Se.

POSSIBILITY OF CHEMILUMINESCENCE

With a strong reducing agent such as the solvated
electron, AF® 5, can be extremely negative. For ex-

# J. K. Thomas, S. Gordon, and E. J. Hart, J. Phys. Chem.
68, 1524 (1964); compare J. H. Baxendale e al. Nature 201,
468 (1964).

% These values are those listed in Ref. 24 and may be compared
with polarographic half-wave potentials (0.43, 0.93, and 1.56,
respectively) given by I. M. Kolthoff and J. J. Lingane, Polar-
ogrggxy (Interscience Publishers, Inc., New York, 1952), Vol. 2,

p.
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ample, when E,* is as negative as —1.9 V, AF®;,,
is —110 kcal mole™!. In such cases there is a possibility
of formation of the product in an excited state, and
then chemiluminescence becomes possible. The possi-
bility of forming an excited state is enhanced when
reaction leading to the ground state of the product is
made less favorable. In principle such a circumstance
can arise when the reorganization parameter \ is made
sufficiently small by suitable choice of reactant: When
| AF®i04/A | is large (somewhat greater than unity)
the conventional type of crossing of the two potential
surfaces becomes difficult. The surfaces no longer cross
at configurations which are compromises between
reactants and products, and then the value of the
reorganizational barrier m?\ actually increases as AF® i,
becomes more negative,®

For example, when A, is 20 or 40 kcal mole™® and
AF® ;i is —110 kcal mole™, m2\ is about 35 or 15 kcal
mole~?, respectively, if A, is 15 kcal mole~. It is still
large even if A, is 45 kcal mole™?, if A, is 20, Then,
m?\ equals 8 kcal mole™. If there is a readily accessible
excited state of the product available the product might
then be formed in the excited state and, under favorable
conditions, fluoresce. The rate of Reaction (1) to form
the product in an excited state, Ox* is again given by
Eq. (3), but AF® i, is now the associated free energy
change for the reaction leading to Ox*. Other things
being equal, low A.’s are favored by ligands such as
o-phenanthroline and bipyridyl or by having an aromatic
molecule as one of the reactants. For example, A, for
an iron o-phenanthroline ion appears to be about 15-20
kcal mole™!, or less,?

USE OF ALTERNATIVE MODELS FOR THE
POLARON

Comparison of Eqgs. (38) and (46) for the values of
AF* at R= o« and at finite R reveals one feature
identical with that in the equations derived earlier® for
conventional electron-transfer reactions: The expression
for AF* has the form of m? times an intrinsic term (the
value of A at R= ) plus m? times a term e%c/R. As
the derivation for the conventional transfers reveals,
this particular ¢ is a property of the medium outside
of the region occupied by the two reactants, regardless
of what value one may eventually use for ¢ appearing
in the expressions for H, and for A at R= oo,

Accordingly, use of some other model for the polaron
is expected to lead to Egs. (46) and (49) for AF*, but
with a somewhat different expression for part of A,
namely the —2H, term. That is, we have (50) and (51)
as before but with a value of H, which may differ some-
what from (33).

Further analysis of the dynamical polaron may well
again Jead to an expression of the type (56) in the

8 There is some uncertainty as the exact value of w* when two
organiclike ions react or when an organiclike ion reacts with an
inorganic one. Compare data of G. Dulz and N. Sutin, Inorg.
Chem. 2, 917 (1963).
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first approximation but with a value for the effective
mass of the polaron derived from the behavior of
polarons in polar liquids. The exact value for m, can
also affect somewhat the pre-exponential factor p in
Eq. (3). This factor is a ratio of the root-mean-square
fluctuation of R to that of the perpendicular displace-
ment s from the intersection region in the centered
distribution, it is recalled. A small value of m, may
lead to a somewhat larger [ (8R)2]}, although this could
be partially offset by a larger [(8s)2]%. The exact value
of p depends on the nature of the typical motion along
the reaction coordinate.%

FURTHER DISCUSSION

In the derivation of expression (7) for AF*.y the
vibrations of the reactant were treated as harmonic
oscillators. In these strongly negative AF%i,, systems
the activated complex resembles the reactants much
more than the products, so that the second reactant
may have a vibrational configuration considerable
strained from that which it will later have as a product.
In such cases the harmonic-oscillator approximation
may be less accurate than it normally is. One can
readily avoid the approximation, though the resulting
expressions become more complex, as in Ref. 5(b).
Alternatively, some estimate of the error can be made
a posteriori by comparing a harmonic term,

%Zk-‘J‘p(Q*'-— 2,9 (g ‘i_v Qr’) ’

with the corresponding change of vibrational potential
energy for the actual product molecule when the ¢* are
stretched from g¢,° to g4°.

The factor Z exp(— F°uanst/kT) appearing in the
unimolecular rate constant (24) is of some interest, If,
for the sake of simplicity, the reaction coordinate is
assumed to be one purely of relative motion of the
polaron and the second reactant, then because m,
is small Z becomes effectively (8xkT/m,)3R* and
Zp exp(— F°uane/kT) becomes (kT/k)(8x*ITkT/h*)p,
where I equals m,R? and p is unity. This factor in
the unimolecular rate constant becomes the usual 10
sec™! factor multiplied by a rotational partition func-
tion. To be sure, if m,R? were small this rotational
partition function would be replaced by its quantum
value and a corresponding correction would be made
in Eq. (24): the latter would be multiplied by

$5(2+1) exp(—T8)8,
F=0

where 8=7#2/21kT. However, R? is very large.

Finally, it may be noted, the value of R in Eq. (49)
for A is by no means established and, in the case of
solvated-electron reactions, might depend on the reac-
tion. When —AF*;,,/A or, more precisely, when
—(AF® ine—w") /X becomes more positive than 1, AF*
actually increases as —AF®'y,, increases [Eqs. (46)
and (48)]. This situation occurs only at very negative
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AF® s In such a case, the most favorable R might
be that which makes X a little larger, namely by being
larger itself (Eq. 49) and hence makes | AF®in /A | 2
little smaller. However, too large an R would make «
too small in Eq. (3). Again, it should be emphasized, we
have considered only weak-overlap electron transfers.
We have not permitted the solvated electron wave-
function to overlap the orbital of the second reactant
appreciably, partly because the resulting desolvation
might not be economical and partly because the theo-
retical calculations become more involved. The present
work is intended to be a first approximation for com-
paring with and interpreting the experimental data,

An alternative atom-transfer mechanism for some
reactions is discussed in Ref. Se.

ELECTRON POLARIZATION OF THE SOLVENT

An aspect of the theory of the unconstrained polaron
of particular interest involves the extent of electron
polarization of the solvent. Purely from the viewpoint
of the frequency of motion of the solvated electron
alone (about 410" sec™)® there would appear to be
on the surface no difficulty in the solvent electrons
following the motion of the solvated electron: When
the frequency of a light wave is 1.5, 3, 4, 3, and 13X 101
sec™! the refractive index of water at 25°C is quite
high?: n=1.30, 1.32, 1.33, 1.33, and 1.38;, respectively.
(Dop=2). In fact, refractive-index dispersion data for
typical solvents can be interpreted® by regarding the
valence and inner electrons of the solvent as having
a mean frequency of about 3X 10" sec™!, which is much
larger than that of the solvated electron. Their corre-
sponding angular frequency w is 27 times this value.

However, an exclusion of solvent-electron polarization
nevertheless must occur in the immediate vicinity of
the solvated electron. This particular exclusion has not
explicitly been discussed in the literature from the
viewpoint of continuum theory, but can be treated by
applying to the electron polarization analogous argu-
ments® made in the literature for high-frequency lattice
polarization. We consider first a system free of solvent
orientation and vibrational polarization and consider
the qualitative behavior and then in (62) the quantita-
tive result.

Electrons of the solvent which are too close to the
solvated electron cannot respond instantaneously to its
motion no matter how high their natural frequency w,
namely electrons within a distance®® d=~s/w, where v is

% H, H. Landolt and R. Bornstein, Zaklenwerte und Func-
tioner, edited by K.-H, Hellwege and A. M., Hellwege (Springer-
Verlag, Berlin, 1962), 6th ed., Vol. 2, Part 8, pp. 5-562 to 5-566.

3 Reference 14, p. 692.

% H, Frohlich, in Ref. 11, pp. 6-7.

% The solvent electrons outside of a sphere of radius d, centered
at the solvated electron, will see the solvated electron as a static
charge if the fractional change of field D is small in the time re-
quired w™! for appreciable cﬁa.uge of electron polarization. This
change in D at a point on this sphere is small if in time w™ the
path%ength of the moving solvated electron subtends only a small
angle at that point, i.e., if (v/d)o™3<1.
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the velocity of the solvated electron. This d is small
when v is small. Yet, » cannot be very small and at
the same time the electron be localized with a distance
d less than ~#/uv according to the uncertainty principle.
Thus, we can at best have v/w=fi/uv as a condition
defining a distance outside of which the solvent electrons
are polarized by the solvated electron. That is, v=
(fus/p)} and, hence d=2(#i/wu)?. The energy of polariza-
tion is then of the order of —(e%/2d)(1—1/Dyp)
(Born formula).

A quantitative solution of the Schrédinger equation
for the motion of the solvated electron and of a polar-
izable continuum of angular frequency w leads in fact
to Eq. (62) for the energy in this high-frequency limit:

&=—e*/2d[1— (1/Dop) ], (62)

where

d= (f/2pw)}.

This result can be derived from that given by Allcock!®-3
by noting that in the present case of zero-orientation
polarization and a frequency w for motion of the solvent
electrons, the formalism for the problem is identical with
the one given there in the high-frequency approximation
but that the D, and D,, appearing there should now
be replaced by D, and unity, respectively.

When w/27 has the value cited earlier of 3X 10 sec™,
d equals 0.55 A. Related remarks concerning an exclu-
sion sphere of solvent-electron polarization should apply
in systems containing orientation and vibrational
polarization. The size of this exclusion sphere in either
case is relatively small: The radius of the 1s polaron
orbit®® is about 1.80 A (16%%/5ce®) so that the circum-
ference of the orbit is about 11 A or about 10 times
the diameter of the exclusion sphere. Thus, one is
inclined to suspect that this exclusion sphere, which
occurs both in orientation free and the orientation
polarization systems, has relatively little effect on H,,
which is the free energy of formation of the orientation
polarization system from the orientation-free one.

With the framework of this continuum approxima-
tion this problem could of course be investigated pre-
cisely: A Schrodinger equation could be set up for this
dynamical motion of the solvent electrons, the solvated
electron, and the lattice polarization. The lattice polar-
ization would be treated in the low-frequency approxi-
mation and the electron polarization in the high-
frequency approximation. The foregoing arguments
suggest, however, that the net change from the simple

(63)

polaron theory calculation of H, is small, although a

molecular treatment of the electron polarization might
yield a somewhat different conclusion. Since d is smaller

3 This result, together with higher-order terms which are small
in our case (a there is about 0.5 for electron polarization) has
been obtained for Jattice polarization by S, W, Tiablikov (1952,
1954) T. D. Lee, F. E. Low, and D. Pines (1953), M. Guari
(1953), G. Hohler (1955), and R. P. Feynman (1955). The
results are summarized largely in Ref. 16 and, in part, in 11.
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than the “lattice” distance, the above continuum esti-
mate cannot be an accurate one.

APPENDIX I. DERIVATION OF EQ. (8) FOR
F pol(rl)

It is convenient to decompose the total polarization
at r, Pyoy(r), into the sum of two parts®;

P (r) =Pa+Pu, (A1)
where

Po(r) = (Dop—1) E(r) /4m, (A2)

and E(r) is the electric field at r. If the orientation
polarization is held fixed and a charge is changed, the
change in polarization is in fact (Dep—1) /47 times the
change in E(r). Thus, the change in P.(r) describes
the response at fixed orientation polarization. Therefore,
P.(r) is some function of the orientation polarization:
It is automatically held fixed when the latter is held
fixed, since the change in P is fully accounted for by
that in P,.

If one neglects dielectric image effects it can be shown
that E(r) depends on the field directly due to the
charges, D(r), and on P,(r)according to (A3):

E=(D—4xP.)/Dop. (A3)

In this case the reversible work required to charge
the system to any given nonequilibrium state described
by functions D(r) and P,(r) ist?

W o= —é(p Dl.,',,) f Dedr— f P-Ddr+2rc f Pr,
Tl L= (/‘- ,"_D),Waj (A4.)

where P denotes P,,/Do,,dpand ii again fixed once the
orientation polarization is specified. The term Fpoi(ry)
is obtained by subtracting from (A4) its value,
Wev( 0, eq), when the reactants are far apart and when
the orientation polarization vanishes. Thus Wy ( 0, eq)
equals —1/8x[1—(1/D,,) 1/D%r calculated at R= o,
In this manner one obtains Eq. (8) for Fp,. We again
neglect dielectric image effects in evaluating integrals,
They are small.%

—-——

APPENDIX II. ESTIMATE OF H, AND ELECTRON
AFFINITY FROM SOLVATION AND
SPECTRAL DATA

A rough estimate of these quantities can be attempted
from spectral and solvation data as follows.

Noyes® has suggested a value of 103.8 kcal mole—!
for the AF® of the following hypothetical process.

$H,(g)—H*(aq) +[e](aq), (AS)

2 R. M. Noyes, J. Am. Chem. Soc. 86, 971 (1964). I am in-
debted to the reviewer for calling this reference to my attention
3.nd for suggesting that some comparison be made with solvation

ata.
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where [¢-](aq) denotes a hypothetical electron at the
bulk electrostatic potential of the solvent, and having
zero entropy and zero energy. For a standard state of
1M for H,, this AF°® becomes 102.9 kcal mole™.
Subtraction of this value from that for the actual
_process (54) yields a value of 40.2 kcal mole™ for the
free energy of a solvated electron. If the translational
free energy of this solvated electron is about —35.3
kcal mole~?, as discussed earlier, the solvation portion
is —34.9 kcal mole. The difference of this value and
the spectral transition energy (1.72 eV) is about 4.7
kcal mole~!. It is independent of the electron affinity of
the electron in the ground state and equals 0.28 &,
when the electron affinity of the excited state can be
neglected. In that case, H, would be about 0.7 eV,
which is close to the value estimated from rate data in
the text, and the electron affinity of the ground state
would be about 0.8 eV. However, the considerable
uncertainties in these values should be emphasized.

APPENDIX III. GLOSSARY OF PRINCIPAL
SYMBOLS
F*(R) Free energy of system when reactants are
fixed in position a distance R apart and
are in the distribution centered on the
intersection region

F*(R) Corresponding term for product fixed in
position and in the above distribution
centered on intersection region

Fr( =) Free energy of system when reactants are
fixed in position far apart and are other-
wise unconstrained

Fr( ) Free energy of system when product is
fixed in position and is otherwise uncon-

strained
F*(R)—Fr( )
F**(R)—Fy( =)

AF*
AF*»

wr Work required to bring reactants together,
a contribution to AF*

VA Collision frequency calculated for the
above R and for uncharged and otherwise
noninteracting species (charge effects,
etc., are included in ")

gt ith vibrational coordinate of reactants
(and products), whose equilibrium value
in reactant is ¢, in product is g%, and
whose most probable value in the centered
distribution is gs*

AF*.p Vibrational contribution to AF*
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kt’)’: kt‘i’

¥ Yo

Fpol(r!)
P(r)
a2

€, €2

Dopy Dl

Dy, D,

ol

Fo"

H,=5,"
Fo®?

u, mp

AF, K

o
F transly

(Pf) transl

AFO'int

Force constant of #j cross term in vibra-
tional potential energy of reactant and of
product, respectively [reduced force con-
stant k; is 2k7ki?/ (ki +ki?)]

Wavefunction of electron when the reac-
tants are in the centered distribution and
when they are unconstrained plus far
apart, respectively

Polarization free energy as a function of
the electron position 1,

A particular function of the orientation
polarization of the medium

Radius of second reactant, including any
inner coordination shell

Charge of electron and of second reacting
species, respectively (superscript  indi-
cates reactants; p, products; hence,
=0, "= —e)

Optical and static dielectric constants of
the medium, respectively

(Du_Dop) /DsDop

Field due directly to the electron at r; and
to the second reactant at I, respectively
[Eq. (11)] D=Dy+D,

Value of D, averaged over |y |* [Eq.
(20)] D =Dy +Dy

Sum of electron kinetic energy and of
polarization free energy of system of
separated reactants

%,r minus contribution of second reactant

Polarization free energy of system con-
taining the product

Effective mass of electron and of polaron,
respectively

A Lagrangian multiplier, determined by
Eq. (23)

“Standard” free energy of Reaction (1)
at prevailing temperature and for pre-
vailing medium, K being the correspond-
ing equilibrium constant

Translational free energy and translational
partition function of the solvated electron,
calculated for a state of unit concentra-
tion

The internal contribution to AF® [Eq.
(22)]
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A factor in AF‘vib, AF* p=m2\;

An intrinsic orientation polarization re-
organization term for second reactant
when the reactants are far apart [Eq.
(28)£.]

At

The kinetic energy of the electron plus
the contribution of the electron and its
environment to the polarization free
energy in the centered distribution when
the reactants are far apart

An intrinsic reorganization term [Eq.

(46)]

)\t; x 2
E20I
E® oy

kaige

“Contribution” of the electron and of the
second reactant to A [Eq. (49) ff.]

“Standard” reduction potential of second
reactant

Effective standard reduction potential of
solvated electron (~2.9 V)

Diffusion controlled rate constant, Eq.
(61)

Activated controlled rate constant, Eq.
(3)
Observed rate constant, Eq. (60)

Classical angular frequency of solvated
electron in its orbit.



