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The steric and pressure effects associated with the recombination of free radicals both depend on the
nature of the activated complex, and are therefore intimately related. From a consideration of the reverse

process of unimolecular dissociation, some equations are derived for these properties using an extension of
earlier transition state and quasi-unimolecular theories. The present formalism differs from previous formu-
lations of the latter in a number of ways, particularly in the expression used for the density of quantum
states of the high energy molecules. Subsequent applications of the theory tentatively suggest that essentially
all vibrational degrees of freedom of these molecules can contribute their energy to the vibrationally excited
molecules. Consequently, vibrational anharmonicity would appear to be an important factor in intra-
molecular energy transfer. The present paper is an extension of a previously developed theory for the

recombination of methyl radicals and iodine atoms.

INTRODUCTION

ECENTLY,! a correlation of the steric effects and
pressure dependence of reactions involving the
recombination of free radicals was suggested. Such
processes are naturally the reverse of those unimolecular
dissociations which produce free radicals, and the
general theoretical approach was an elaboration of
earlier quasi-unimolecular and transition state theories.
The unimolecular reaction rate constant falls off with
decreasing pressure when the lifetime of the decom-
posing (so-called “active’) molecules becomes com-
parable to the time between successive deactivating
collisions, The lifetime of these active molecules is a
function of the extent of intramolecular energy transfer
and also of the nature of the activated complex. Since
the steric effects associated with the reverse process of
radical recombination are solely dependent on the
properties of the same activated complex, there is a
close relation between these two effects.

Equations correlating these properties were developed
specifically for the decomposition of methyl iodide. The
approach was such that several specific assumptions
were introduced in the early stages of the derivation,
thus necessitating an individual treatment for each
different type of molecule and for each specific assump-
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tion. A much more general derivation is given in the
present paper. Application of the final equations to the
available experimental data will be reserved for a later
paper. }

As before, the unimolecular dissociation is considered
initially and then the bimolecular rate constant is
estimated with the aid of a calculated equilibrium con-
stant. However, the expressions for the unimolecular
rate constant are quite general and could therefore be
applied to other unimolecular processes.

UNIMOLECULAR RATE CONSTANT

We consider the following reaction sequence,

k
A+MSA* M, ()
ky
kq
A*=4t, )
ks
A*=products. 3

A* and A* denote the active molecule and activated
complex respectively, while M is any third body capable
of deactivating A*, Steady-state treatment for 4* and
A* leads to a relation between the unimolecular rate
constant, kuni, and the pressure, .

buni=ka(ko/ k) (1 kol Rsp). @)

These k’s, which are functions of the energy of the
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initial 4* molecule, are first evaluated for a small energy
range. kun; is then obtained by integration over all
possible energies so that (4) is replaced by

/b
-[=== ®)

uni— 1+ kﬂ/sz .

In Eq. (5) d(ki/ky) is the fraction of active molecules
having energy in a given energy range. Evaluation of
the integrand of (5) will involve a calculation of the
number of ways of distributing energy among the vari-
ous degrees of freedom of the active molecule and of the
activated complex. However, the vibrational zero-point
energy of A* and A%, and also the potential energy of
the newly broken bond of the activated complex cannot
be so distributed. The remaining energy, which we shall
term “nonfixed energy,” of the active molecule and of
its corresponding activated complex will be denoted by
E* and E*, respectively. We set E*— E+= E, where the
constant E, is approximately equal to the bond strength
of the breaking bond.

The degrees of freedom of the active molecule may
be classified with respect to their role in intramolecular
energy transfer as “active,” “adiabatic,” or “inactive.”
The “active” degrees of freedom are defined as those
which can contribute their energy to the breaking bond
without restrictions. On the other hand the “adiabatic”
ones are assumed to remain in the same quantum state
during the course of decomposition of the molecule, and
so contribute relatively little energy to the breaking
bond. The transfer of energy between the “inactive”
* degrees of freedom and this bond is assumed to occur
with sufficient rapidity only when the molecule has
become essentially an activated complex. Since the
energy of the latter degrees of freedom is therefore not
available to the breaking bond, 4* in Eq. (1) has a
nonfixed energy E* such that E*> E,+ E;, where E; is
the nonfixed energy of the “inactive” degrees of
freedom.

Translation of the molecule as a whole makes no
contribution to the reaction rate and will not be in-
cluded in the following. Conservation of angular mo-
mentum, which presents some barrier to intramolecular
molecular energy transfer, will be treated approximately
as follows: The initial molecule may generally be re-
garded as roughly ellipsoidal in shape and the formation
of the corresponding activated complex will frequently
correspond to a stretching of the ellipsoid along its
major axis (e.g., the rupture of a C—C bond in ethane).
On the average, the largest contribution of the angular
momentum will come from those two rotational degrees
of freedom possessing the larger moments of inertia.
This statement applies both to the active molecule and
to its activated complex. Conservation of angular mo-
mentum thus insures that throughout the course of
decomposition the molecule will remain in approxi-
mately the same quantum state with respect to these
degrees of freedom. Thus these two rotations contribute
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only the centrifugal energy J(J+1)4*/8n%ur? to the
breaking bond, with J approximately constant. When
averaged® over all J’s the net contribution of these
rotations to the reaction rate is a factor Py+/P;, the
ratio of the partition functions of these rotations for the
activated complex and active molecule, respectively.
When, because of additional restrictions, other degrees
of freedom (e.g., the remaining rotation) also remain in
essentially the same quantum state during the course of
reaction, then P;*/P; becomes the product ratio of the
partition functions of all these “adiabatic” degrees of
freedom.

In the following, E*, E*, and E; will include neither
the energy of translation of the molecule as a whole nor
the energy of those degrees of freedom involved in
Py+/P). The results will then be corrected by this factor.

d(k1/k,) is equal to the fraction of molecules having
energy in the range E*, E*+dE* where E*> E,+E;.
Let N*(E*—E;) denote the number of energy states per
unit energy of the “active” degrees of freedom, and
D(E;), the degeneracy of the inactive ones when they
contain the energies (E*— E;) and E;, respectively. We
then have ’

d(ky/ks)

E*-E,
Y. N*(E*—E:)D(E;) exp(— E*/kT)dE*

E¢=0

5 " DEINHE —E) exp(— E*/AT)AE*
Ei=0 JE*=F; ©)

More exactly N*(E*—E,) should be the number of
possible energy states of an active molecule whose
energy is (E*— E;) and correspondingly the integral in
(6) should be a sum. The present treatment antici-
pates a subsequent semiclassical approximation for
N*(E*— E;). Introduction of a new variable x= (E*— E;)
into the denominator factors the latter into a product
which is readily seen to be the product of the partition
functions of the active and inactive parts and which will
be denoted by the symbol Ps.

ks may be estimated in the following way: The
expressions for dA*/di=0=dA*/di at complete equi-
librium show that the ratio of the equilibrium concen-
trations of A+ and 4* is equal to 2k./k;s if the rate con-
stant for (3) is assumed? equal to that for the reverse
of (2). The ratio of the equilibrium concentrations of
A* and A* molecules of the same energy equals the
relative number of quantum states per unit energy of

( ;3Se)e 0. K. Rice and H. Gershinowitz, J. Chem. Phys. 2, 853
1934).

# This assumption is consistent with the usual assumption of
Eyring that motion along the reaction coordinate is a simple
translation, so that in our model the velocity is equal in magnitude
for the above reactions. We note further that our 4% refers to
those activated complexes which form radicals, rather than the
sum of these plus those proceeding in the opposite direction along
the reaction coordinate (see reference 1). .
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A* and A%, respectively. The total number of quantum
states per unit energy available to active molecules
whose nonfixed energy is E*, is* N, *(E*), where

™

E*—E,
No*(E*) = Z N*(E*—E;)D(E.‘).

Ei=0

One of the degrees of freedom of A+ is assumed to be a
simple translational motion along the reaction coordi-
nate. Let Ny(x) and No(E*—x) denote the number of
quantum states per unit energy of this translational
motion and of the remaining degrees of freedom of A+,
respectively, when their respective energies are x and
(E*—x). Then the number of quantum states per unit
energy of an activated complex which contains a non-
fixed energy E¥ is

EQ’
N*H(EY) = f Ny(E*—2)N1(x)ds. ®)

Finally, 2k,/ks=N*(E*)/N,*(E*), where k3 corre-
sponds to the average value of x. However, the value of
ks corresponding to a given value of x is equal to
(2x/m)}/b where m is the reduced mass and b, the ex-
tension of the activated complex in coordinate space.
Consequently, we may write for &,

2k N *(E*)= : Ny(Et—x)Ny(x)[(2x/m)¥/b]dx. (9)

=0

From the usual expression for the energy levels of a
particle in a box, x=n2h?/8b*m, we have N,(x)(=dn/dx)
=2b/h(2xz/m)}. On introducing a new variable
y=(E*—z) into (9), the value of k., when corrected by
the factor P;+/P,, becomes

E* +
ko=P* Nz(y)dy/Plh EEZO N*(E*—E.)D(E.,) (10)

From (5), (6), and (10) we find after some cancellation,
Pyt exp(—E./kT)
unt P1P2h

Et

Na(y)dy exp(— E*/kT)dE*

X f d , (1)
E*=0 1+ka/k2P

where &, is given by (10).5

4 The upper limit of the summation arises from the condition
that an active molecule has E*—E,> E;.

& We note that at high pressures, the second term in the de-
nominator of (11) is negligible and (11) may be readily integrated
by reversing the order of integration so that the limits for é*‘ and
ybecome y to « and 0 to =, respectively. Integration with respect
to Et then yields T /o™ Ni(y) exp(—y/kT)dy= kT P;* say, which
is simply 2T multiplied by the partition function of those degrees
of freedom of A* not involved in P;* and also excluding the
internal translation along the reaction co-ordinate. Thus at high
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We next derive an expression for N(y), the number
of quantum states per unit energy of the degrees of
freedom of A* (not involved in P;* and excluding the
translational motion along the reaction co-ordinate)
when their energy is y. These degrees of freedom will be
vibrational and rotational in nature. We shall assume
that the rotations can be treated as independent of each
other and of those rotations involved in Pt so that their

»
energy is approximately equal to Y J2k%/8#2I; where
i=1
¢ is the number of rotations while J; and I; are the
quantum number and moment of inertia of the #'th
degree of freedom, respectively. The number of quan-
tum states of the ¢’th rotation is 2 or 2J; according as it °
is singly or doubly degenerate. In the former case the
factor of two arises since rotation in a plane may occur
in 2 (opposite) directions. We shall therefore write this
number as 2(J,)%1, where d, is the degeneracy of the
i’th rotation (d;=1, 2).

Of the energy y consider first those quantum states
of A* for which the vibrational energy is E, and let the
degeneracy of the vibrational states be P(E,). The num-
ber of rotational states per unit energy is equal to
@y)y1S - - ST1:2(J,)%'dJ; where the integration is
over that region of J; space where }.; J2k*/8#%I; lies
between (y—FE,) and (y+dy—E,). The number of
rotational-vibrational quantum states per unit energy
is simply this multiplied by P(E,). To obtain N(y) we
must sum over all vibrational energy levels, E,, such
that E,<y. That is,

Na)= 5 P(E)(dy)~ f f [I2U)4dT:. (12)

E, <y

Integration of (12) with respect to all J, leads to

No(y)=X P(E,)[T(r/2)]!

X (87 h?) 7 (y— E,) [ 4T (di/2), (13)

where

d
r=Z d.-

f=1

and T is the gamma-function. That is, r is the total
number of these rotational degrees of freedom, regard-
ing a d;fold degenerate rotation as d; rotational degrees
of freedom.

The product of the partition functions of these de-

pressures, Runi=(kT/k) exp(— Eo/kT)Py*Py*/P Py, an expression
derived by Eyring (J. Chem. Phys. 3, 107 (1935)) and Rice and
Gershinowitz. (See reference 2.) However, their approach cannot
be used as such for the derivation of the pressure effect.

¢ We observe that it is possible to have several doubly degener-
ate rotations in an activated complex, although just one in a
stable molecule. If, for example, the methyl radicals rotate freely
in the activated complex corresponding to the dissociation of
ethane, there are three doubly degenerate rotations, onme per
methyl radical and one for the rotation of the complex as a whole.
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grees of freedom is given by’
Prr=]I; f 2(J )4 exp(—J 2/ 8w kT)d T ;
0

= (8w 2T /R [ 1(d:/ 2)I 4it2, - (14)
Therefore (13) becomes,
y—Ev r/2—1
o= T PENT) P TIO/. (19)
E.<y kT

To calculate foZ* N,(y)dy from (15), the order of
summation and integration is interchanged so that the
limits for E, and for y become <E* and E, to Et,
respectively. Integration over y then leads to

IE‘N')(J’)= = P(&).(B_E”)rn

E,<E* kT
XPgt/T(1+7/2). (16)
From (10) and (16) we then obtain:

E+_Eu /2
PitPpt 3 ( ) P(E,)

E.<E* kT

ko= , .
P\r(14+1/2) ¥ hN*(E,+Et—E,)D(E)

E(sE*
From (11) and (16) we also find:
P+Pgt exp(— E,/kT)
T PP AT(147/2)

an

E+—E\"?
2 P(Eu)(T) exp(—E+/kT)dE+

® E,<E*
Xf 14+-E,/k ’
0 a 2P (18)

where k, is given by (17)

Equation (18) may be further simplified by two
approximations. In most of our applications of (18), the
vibrational frequencies of A+ will be assumed to be
rather high so that the majority of such activated
complexes are produced in their ground vibrational
states. Since E, is the nonfixed vibrational energy,
E,=0 and P(E,)=1 for such states. Thus the sum

> (EY*—E,)*P(E,) is approximately equal to its
E.SE*
first term, (E*)™/2, At very low pressures this approxi-

7 We note here that the present treatment of the rotational de-
grees of freedom of a molecule leads to the usual classical expres-
sion for the partition function of a symmetric top molecule having
(or not having) free internal rotation. This provides some justifi-
cation for our using a very simple expression for the rotational
energy levels of a molecule. In the case of an asymmetric top,
Eq. (14) leads to the correct classical expression for the partition
function if the rotations associated with two moments of inertia,
I, and I, are treated as one doubly degenerate rotation possessing
a moment of inertia equal to (/,/;)}.
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mation results in no error, for unity may be neglected
in the denominator of (18) so that this sum cancels out.
The error would seem to be largest at p= . On inte-
gration at p= o, it is found that k., is in error by a
factor equal to the vibrational partition function of A+,
Pt say. Although P,* generally will be closely equal to
unity, the foregoing sum will be replaced by (Et)r2P,*
as a better approximation.

In thesummation over E;in Eq. (17) N*(E,+ E+—E,)
=N*(E,) to a good approximation; for E,, which is
essentially the bond strength, is of the order of 50 to
100 kcal mole™, while (Et+—E,) is less than several
kcal mole™! on the average.

Introducing these approximations into (17) and (18),
and multiplying (18) by Pyt/Pr, the ratio of the parti-
tion functions for the three external translational de-
grees of freedom (Pr*=Pr), the following expression

- for kuns is obtained,

(19)

kT Pt exp(—E./kT) f‘” wri2evdw
Uk P TO41/2) dumo 14aw?’
where we have set E¥/kT=w. Pt(=PtPgtP,tPrt) is
the partition function for all degrees of freedom of A+
(excluding the internal translational motion along the
reaction coordinate) and P(=P,P;Pr), the partition
function for A. These are calculated by conventional
methods. ¢ is given by (20). -

wkT

al= Plhksz‘(l-i-r/Z)N*(Eu) Z D(E;)/Pa+, (20)
Ei=0

where Pgt=P;+*PgtP,+. The sum in (20) is naturally
replaced. by integration for those inactive degrees of
freedom which can be treated classically. k; is simply
the kinetic theory collision frequency which, if deactiva-
tion does not occur at every collision, should be multi-
plied by some inefficiency factor.

To complete the derivation, an.expression for N*(E,)
in (20) is needed. N*(«) is the number of quantum
states per unit energy of the “‘active’ part of the active
molecule when the energy of that part is #. The ma-
jority of these degrees of freedom are vibrational in
nature and should therefore, in general, be treated as
quantized. A classical treatment of such degrees of
freedom is much simpler than the exceedingly laborious
quantum treatments but generally gives a gross over-
estimate of N*(x). For such quantized vibrations we
have found that a good approximation to the average
number of vibrational quantum states per unit energy,
N,*(u) say, is given by the following semiclassical
expression' when % is large (which it is, for active
molecules).

N*0)= @+ BT v, (1)
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where

s
E.= Z }W.'/Z,
i=1

v; is the #’th vibrational frequency of 4 and s is the
number of “‘active” vibrational modes. '

If some rotational degrees of freedom (other than
those involved in P,) are active and if their number of
quantum states per unit energy is Nz*(x) when their
energy is x, then N*(u) is given by (22). Otherwise
N*(u) is equal to N, *(u).

N*(w)= f " Nu—Netmdn (22)

=m0

The derivation of an expression for Ng*(x) is similar
to that employed in the treatment of the rotational
degrees of freedom involved in (15). Examination of this
equation shows that

Np*(x)=Po(x/kT)H2-1/kTT(t/2), (23)

where P, is the partition function for the ¢ active rota-
tions of the active molecule.

The rotational degrees of freedom associated with
N.(y) and N z*(x) have been assumed to be unhindered.
If some of these are in fact hindered, then the above
treatment will be assumed to provide a reasonable
approximation. However, for such degrees of freedom,
the correct hindered rotational partition functions will
be introduced into Pz* and P,. We have found this
procedure to provide a good approximation to some
more complicated calculations for the dissociation of
ethane to methyl radicals.

BIMOLECULAR RATE CONSTANT

The equilibrium constant for A=radicals is given
by (24).
kuni/kri=exp(— AH/ET)(Pea/P)g, (24)

where AH is the heat of reaction, P4, the partition
function for radicals, P, that for the molecule, 4, and
g is the electron spin-orbital degeneracy of the radicals.
We have omitted the corresponding factor for 4 (and
A*) since these are generally in a singlet 3~ electronic
state. From (19) and (24) we find for ks,

B kT P+ exp[(AH—E,)/kTJ(a) )

h Pmdg

where
w2 dw

J(a)= .
(@) T'(1+4r/2) f.,,,,o 14aw?

At sufficiently high pressures, a=0 and J(a)=1.
Since there is presumably no potential energy barrier
along the reaction co-ordinate, one might argue that the
activation energy for the recombination process,
AH— E,, should be zero. If there are no orientative re-
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strictions on recombination so that the radicals rotate
freely in the activated complex then (assuming no
potential energy barrier) AH=E,. If, however, some
orientation is necessary so that the activated complex
has, in addition to the vibrational frequencies of the
isolated radicals, several “bending frequencies,” then
the activation energy becomes equal to the sum of the
zero point energies of these new vibrational modes,
when they can be regarded as quantized. When the
lifetime, ¢, of the activated complex is small, the energy
levels become appreciably broadened by an amount
~h/t, so that the activation energy is correspond-
ingly less.

The relation between (25) and the simple collision
theory expression for ks may readily be seen from the
following approximate considerations. It is assumed that
P+ may be factored into (872Lkt/ ch2) Prost Poitt Preans™,
where the first factor is the rotational partition func-
tion associated with the two larger moments of inertia,
I, of the approximately ellipsoidal activated complex
and Pt is the partition function for the remaining
rotations of the complex. The symmetry number, o,
equals 2 or 1 according as the radicals are, or are not, -
identical. We shall also factor Prea into ProtPyibPirans.
If the masses of the radicals are m, and m; then the
translational partition functions per unit volume are:

Prraast = [ 20 (mat-mo)kT T/ 12,
4 ,
o Prrans=[2m(mams) kT T/ hE.

In addition, I'=poqs?, where p is mams/(ms+ms) and
oas is the distance between the centers of gravity of the
radicals in the activated complex. With these expres-
sions Eq. (25) becomes,

kyi=(Z/8) (Prot*/ Prot) (Puiv*/ Pyi)J (a)
Xexp[(AH—E,)/kT], (26)

where Z is the kinetic theory collision number.

872k T\ { 04p2
[() )
» g

If the complex consists of freely rotating radicals then
Prott=Prot, Pyis*=Pyi and consequently the steric
factor is equal to (1/g). If, however, a high degree of
mutual orientation of the free radicals is necessary for
the formation of an activated complex, then one might
assume that the vibrational frequencies of the complex
are the same as those of the molecule, 4 (except that a
stretching vibration of 4 becomes an internal transla-
tion of A+). With this assumption it still follows that
(Pyiv*/Pyip)=21 for most reactions. Also, some of the
partition functions in (Prett/Prot) will approximately
cancel and the ratio reduces to a product of the partition
functions, fo, say, of those rotational degrees of freedom
which are present in the isolated radicals but are
“frozen out” when the activated complex is formed.
The steric factor then becomes (gfo:)™! (see reference 2).
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These extreme types of activated complexes were
termed! “Ioose” and “rigid,” respectively. The latter is
also associated with a high pressure frequency factor
of 108 sec! for the corresponding unimolecular dis-
sociation, since in Eq. (19) we have Pt==P (and
ET/h=210" sec™) for this case. The corresponding factor
for the loose complex is 22X 101 sec™.

While the true state of the complex would be ex-
pected to be intermediate between “loose” and “rigid,”
it should prove very mterestmg to see which of the
above approximations gives a better explanation of the
data. Although one could make some a priori calcula-
tions, based on potential energy curves, concerning the
nature of the activated complex, such calculations
should be regarded as highly tentative.

Another important problem is the role of the vibra-
tional degrees of freedom in intramolecular energy
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transfer. From some applications of the present formal-
ism to the experimental data, it seems quite possible
that essentially all the vibrational modes of the mole-
cule, 4, are “active” degrees of freedom. Thus the
variable, s, in Eq. (21) becomes equal to the number of
such modes. It would appear from this that vibrational
anharmonicity plays an important role in intramolecu-
lar energy transfer, and would have to be taken into
account in more fundamental approaches to this
problem.

ACKNOWLEDGMENT

I should like to express my appreciation to Professor
0. K. Rice for stimulating discussions and suggestions
about the many problems associated with these
reactions.



