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The equations of Part I for the specific and over-all unimolecular reaction-rate constants are extended
slightly by including centrifugal effects in a more detailed way and by making explicit allowance for possible

reaction-path degeneracy (optically or geometrically isomeric paths). The expression for reaction-path
degeneracy can be applied to other types of reactions in discussions of statistical factors in reaction rates.

SOMERIZATIONS or other reactions in which
bonds are formed as well as broken are usually
expected to involve rigid activated complexes. Reac-
tions involving only a dissocation for which the reverse
reaction of recombination requires no activation energy
are expected to involve loose activated complexes.! In
a loose activated complex the dissociated particles are
assumed to rotate relatively freely, being held only by
loose bonds. By contrast, a rigid complex normally has
no new rotations, and indeed has about the same
extension in space.

The present paper extends Parts I2 and II! slightly
in two respects: (1) Centrifugal effects are treated in
a more detailed way. (2) “Optically isomeric” and
“geometrically isomeric” reaction paths sometimes occur
and are included explicitly . The centrifugal effect
yields a result which differs slightly from that given
earlier! for loose activated complexes (a numerical
factor of 2 or so). The effect is essentially negligible
for rigid complexes. We employ the notation given in
Appendix 1.

Because of the increased separation distance the
centrifugal potential facilitates reaction in any given
rotational state of the molecule A. We ignore Coriolis
effects and denote by J the totality of quantum numbers
that are approximately conserved on forming A* from
A*, (This J is the quantum number of the ““adiabatic”
degrees of freedom?® which, in applications, have usually
been taken to be the external rotations of the molecule.)
The energy for these degrees of freedom changes from
Ey to E;*. When the J refers only to rotations, the
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The kuni for formation of a particular product by a
articular path g is obtained from (5) by deleting the
%}, in (5) but not that in (3).
These equations can be simplified for typical condi-
tions as follows. Q*(E) equals W*(E)/e. In turn,
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difference E;— E;* represents the change in centrifugal

potential. We have the following energy balance
(Fig. 1):

EA-Et+Ejt=E+Ey, (1)

Et= E¢++ E.t, (2)

The principal assumptions of the theory have been
summarized previously.! One finds that kg, the specific
dissociation-rate constant of molecules of energy E is
given by (3) (Appendix II):

ker=2 o Qt(EY) /hO*(E 3
Y %E”éw (Edt)/hQ*(E), (3)
where the summation in (3) is over all E,*’s and over
all geometrically isomeric paths? g.

The equilibrium probability of finding an A* with
an energy of the active modes in the energy range E,
E+4dE, and with adiabatic modes in the state J is
¢e’dES However, if w denotes the specific collisional
deactivation rate (time™), the usual steady-state argu-
ments for A* show that the concentration of each A*
is a fraction, kgs/(w+kes), of the equilibrium con-
centration.® Thus, the unimolecular reaction-rate con-
stant kyni, obtained by summing

kesprid E/[ 1+ (kgs/w)]

over all E and J, is

kyni= f i kesprs®/[ 14 (kgs/w) JdE. (4)
E I=0

On using Eq. (1) and expressions for pgs° and kz; one
obtains

W+(E.*) {exp——(EJr:TEﬁ)} / 1+%]%+. (5)

W*(E) equals W*(E*+ E;t— E;) in virtue of Eq. (1)
and the definition of E*(=E*++E,). Since W*(x) is

¢R. A. Marcus, J. Chem. Phys. 43, 1598 (1965) contains a
discussion of reaction-path degeneracy: There may be one or more
reaction paths which are “geometric isomers” of each other. For
each such path there may be a further degeneracy: a path may
have an optical isomer. Optically isomeric reaction paths can be
detected by drawing a picture of the chemical migration of the
atoms and seeing if the resulting figure has an optical isomer. In
Part II o was less accurately called the number of isomers of At.
That definition is misleading or wrong when two optically isomeric
paths intersect in configuration space at A* to yield an optically
inactive A+,

b prs%= P Q*(E) exp[— (E+E;) /T

® This result is obtained in the usual way by assuming a steady-
state concentration for A* and assuming in addition a strong
collision mechanism for deactivation of A*.
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proportional to (x4ef,)®~!, where a is a quantity
which depends weakly on x and approaches unity as x
becomes large” and where s is an equivalent number of
active modes? we have

W*(E*-Est—E;) /[W*(E*) ]
=[14 (Ejt— E;) /E*+aE,J"-'. (6)

For rigid activated complexes, Ly and I,* are
normally about equal, and the ratio of W™*s in (6) is
very close to unity. For loose activated complexes
leading to a dissociation, E;* and E; differ primarily
for two rotations in which the two resulting fragments
are treated as the “atoms” of a diatomic molecule: The
mean value of Ejt— Ey can be shown to be pressure
insensitive and to equal (I+—1TI)IRT/2I, where [ is the
number of adiabatic rotations and I*/7 is the ratio of
the moments of inertia for these rotations.® The value
of kg is relatively insensitive to fluctuations of £;+— I,
about this mean, and the corresponding value of kgs
obtained by making this replacement for £, —I; is
denoted by k., for the given value of £*:

k=2 (ao/a)L 20 WHEMYWWH(EYE, (1)
where i
F=W*(E*+IRT[I+—I]/2I)/W*(E*). (8)

In Part II k, was used to denote (7) with F replaced
by unity (F was neglected) and with ), absent.
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7 (a) In the semiclassical approximation for W*(x) a is unity
(cf. Ref. 2). (b) A more accurate value for W* has been obtained
by making a slightly less than unity in such a way as to fit the
exact numerical value of W* [B. S. Rabinovitch and R. W,
Diesen, J. Chem. Phys. 30, 735 (1959).] A very useful approxima-
tion for W*(x) has been given also by G. Z. Whitten and B. §.
Rabinovitch, ibid. 38, 2466 (1963). Compare Pearson and
Rabinovitch, Ref. 2.

8 The quantity s’ equals s+3%¢, where s and ¢ are the number of
active vibrations and active rotations, respectively. (Compare
Parts I and I1.)

¢ Let the energy of the rotations that contribute appreciably to
Eff*—Ej; be ey and e;* for A and A*. The average value of
eyt —e;s is computed using the integrand of (9) as a weighting
factor. The part of the weighting factor that depends on J is
found to be exp(—es*/kT) at very high pressures (high w) and
to be W*(E*te;t—es) exp(—es7/kT) at very low pressures.
However, W* depends on J much less than does exp(—es*/kT),
so that the weighting factor is essentially exp(—e;*/£T) in both
cases and, indeed, over the entire range of pressures (i.e., of w’s).
For these two rotations one then finds that (es), the value of €
averaged with the weighting factor exp(—e;7/kT), equals
(I*/I) (es+). Since {e;*)=IRT/2 the value cited in the text is
obtained.
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Upon introducing (7) into (5) and integrating over
J one finds

ku“i___@zzosl’ﬁ exp(— E./kT)
h P Py Paoy*
o 2, WH(E.*) exp(—EY/RT) gp+
* En*<E* .
5Y=0 14 (Fa/w) kT

In (9) the properties of At (e.g., o, E,, Pi*, Ex*, and
o;F) may depend on the path g.

The high-pressure value of kyni, given by (10), is
obtained from (9) by setting w= o interchanging order
of summation and integration (Ef=ZLE,* to o, and
E,;t=0to =), integrating and summing:

. ET —aPt E,
(high pressure) kyun; P zﬂ: P exp( kT)' (10)

Equations (7) (with F=1 and >, removed) and
(9) can be shown to be equivalent to Egs. (1) and
(2) in Part IL.Y For recombination of methyl radicals
and for recombination of NOy and NO; to form N0,
F is about 0.8 and 0.4, respectively, at E¥*=E,, and
is relatively insensitive to E*!' Excellent approxima-
tions for W*(E*) have been given in the literature
[cf. Ref. (7b)].

In the case of an isomerization to form B from A,
it may happen that the B* reforms A* before being
deactivated. Equation (9) can easily be corrected to
allow for such situations, by multiplying the numerator
by 1—f and the k,/w in the denominator by 1—f,
where f=k,'/(k’+w). The term k' is the k. for
isomerization of B* to form an A* and the derivation
of this result is based on a steady-state approximation
for both A* and B*. When £,'/w is small, f is negligible.

Parenthetically, we note that the analog of (10) can
be derived for reactions in general* thereby general-
izing the usual activated-complex expression in the

10 The following data are used: For the two reactions, I'/I is
about 4, I=2, while E,+al, is about 130 and 40 kcal mole™,
respectively (taking e=~1) and s'—1 is about 19 and 16, respec-
tively. [See Part II and R. A. Marcus, J. Chem. Phys. 20, 364
(1952).]

LA term

(a2*) 2 p]

En+<E+

Wt (EY)

contributing to (7) and (9) can be factored into terms correspond-
ing to partitioning of E* among the active rotations and vibra-
tions of A™*:

(e2*)™ T WHEY)=[Pr*/(in!]
Ent<E+
Z [(E*—EM)/RT]"”P(LY),
+SE+

By

where the symbols have been defined in Part II. We do not derive
this equation since the derivation is similar to that employed in
Part I for this phase of the problem. A quantity contributing to
Eq. (7) is W*(E*) /s, which represents the number of states per
unit energy of the active modes. It was written as N*(L,+ ET+
Ey) in Part II. Upon making this substitution and that given by
this equation, Eqs. (1) and (2) of Part II are obtained.
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literature and yielding (11):
k=(kT/k) 2 a(P*/P) exp(—AE}/ET), (11)
g

where AE,! is the energy of activation for path g at
0°K. This expression can be used to discuss statistical
factors in reaction rates.!? Equation (11) remains valid
when quantum-rotational partition functions must be
used. Alternative purely statistical expressions in the
literature would of course become invalid then, since
they are of classical origin. However, in cases of current
interest the rotations are classical.

APPENDIX I. NOTATION

The following notation is employed, the energies
being illustrated in Fig. 1.

A, A* At Reactant, active molecule (an A with

enough energy to react), and the acti-
vated complex

E, Energy of At in its lowest vibrational,

4 rotational, and translational state minus

that of A in its lowest state (hence,

E, also equals the activation energy at

0°K)

E, E+ Energy of the “active” modes® of A*
and of A* in excess of their zero-point
energy, respectively

Ly, Egt Energy of adiabatic modes? of A* and
of A*, respectively

q, 9 Reaction coordinate and its conjugate
momentum

Egt Internal translational energy of At;
Eg+ = Pz/ 2m

E,, E;t Zero-point energy of A, A+

Ez+ Energy of the active vibrations and
rotations of an A+ in Quantum State »

e, ot Symmetry numbers of A and A+

o1, ot Symmetry numbers for adiabatic rota-
tions of A, At

a2, ogt Symmetry numbers of the other rota-
tions

a Number of optically isomeric reaction

pathst for each geometrically different
path leading from the initial A molecule
(or A isomer if there is more than one)
through A* to the given product
Label for a geometrically isomeric path
Number of states of active modes of A+
formed by a given path and the number
of states of A* (per unit energy in the
case of A*), when the energy of the
active modes is x and y, respectively,
Q*=W*/o, Gt =W+/o+

 An alternative group theoretic description of the statistical
effect has been given by E. W. Schlag, J. Chem. Phys. 38, 2480

(1963); E. W. Schilag and G. L. Haller, ibid. 42, 584 (1965). See
D. M. Bishop and K. J. Laidler, #bid. p. 1688.

§
& (x), 2*(y)
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W+(=), W*(fy) Number of such states of A+ and A*
when symmetry numbers are ignored

P, pt+ Partition function of rotational and
vibrational modes of A and A+, respec-
tively, P= P, P, P+=P+pP,+

Py, Pt Partition functions of the adiabatic
modes of A and of A+

P, Pyt Partition functions of the active modes
of A and of A+

E* E -+ Et

2 Number of deactivating collisions which

an A* undergoes per unit time
APPENDIX II. DERIVATION OF EQ. (3)

Consider an energetic molecule A* whose energy of
the active modes is in an interval (E, E4dE) and
whose adiabatic modes are in a state J. The statistical
equilibrium probability of finding such a molecule as
an activated complex A+ having an internal transla-
tional momentum in the range (p, p+dp), being in a
state » of the active modes and in an interval (g, g+dyg)
and formed by a given path, is given by the ratio of
quantum states of this A* and of A*, namely by (Al),
since dgdp/k is the number of internal translational
quantum states in dgdp:

(dgdp/h) {@F (Eq*) /[Q*(E)dE]}.

The corresponding probability per unit interval along
¢ is obtained by dividing by dg. The contribution of
these states of A* to the specific unimolecular reaction-
rate constant kgs is obtained by multiplying the re-
sulting ratios by the velocity ¢. The coordinate qis
taken to be Cartesian, so that ¢ equals p/m where m
is an effective mass. Since d(?/2m) equals dE, and
since kgs equals the above rate expression summed
over all accessible # (i.e., over E,+< E*+), we obtain

b= 3 ONEN/DRYE)]  (A2)

n'S

(A1)

[In (A1) and (A2) the g motion is treated classically
in the activated-complex neighborhood. A quantum
treatment of this motion would introduce in (A2)
a multiplicative factor «, the quantum-mechanical
transmission coefficient. See, for example, Ref. 4]
Equation (A2) is the contribution for a given reaction
path. One must multiply it by the number of optical
isomers of the path and then sum over the geometrical
isomers of the path. Paths which are geometrically
isomeric usually have different A+’s, so in Eq. (3) we
have summed over rather than multiplied by the num-
ber of such paths.

The @+(E,*) and Q*(E) can be factored as follows:
Because of symmetry restrictions some rotational states

13 In purely equilibrium calculations the path is of no concern.

llgi?eii)c calculations are based on some mechanistic path (e.g., see
ef. 4).
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may be absent in A*, or in At or in both. The coupling
of vibrational and rotational angular momenta facili-

1 The total angular momentum, which is constant, has vibra-
tional and rotational terms. [See E. B. Wilson, J. C. Decius, and
P. C. Cross, Molecular Vibrations (McGraw-Hill Book Company,
Inc., New York, 1955), p. 277]. The coupling of these two contri-
butions in the kinetic-energy expression permits some interchange,
the equations of motion show.

VIBRATIONALLY EXCITED SPECIES.

III

tates the slight change of rotational state needed to
satisfy such restrictions when A+t is formed from A* or
vice versa. On making the usual approximation em-
ployed in a classical description of rotational partition
functions the absence of certain rotational states in A*
or At is accounted for by letting one factor in @* be 1/¢
and one in Q* be 1/6t.




