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Generalization of Activated-Complex Theory. III. Vibrational Adiabaticity,
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In Part I, activated-complex theory was extended by including the possibility of a curvilinear reaction
coordinate. A separation-of-variables approxzimation was made in the neighborhood of the activated-complex
region of configuration space. In the present paper a more general yet simpler derivation of the final equation
is given. It permits subsequent introduction of analytical mechanics in the above neighborhood in a variety
of ways such as separation of variables, vibrational adiabaticity, or a method combining certain features
of both, the separable-adiabatic approximation. The relationship of these methods is discussed.

Some numerical quantum- and classical-mechanical results obtained for transmission coefficients of
nonrotating atom-transfer reactions (linear complexes), using computers, are interpreted in terms of an
adiabatic approximation with reasonable agreement. Attention is also called to a modified WBK expression
for the transmission coefficient, which generalizes the usual WBK formula in a simple way.

INTRODUCTION

N earlier papers of this series, activated-complex

theory was extended so as to include a curvilinear
reaction coordinate, using quantum mechanics (Part I)!
and classical mechanics (Part II).2 In the former!
the reaction coordinate was assumed to be separable
from the other coordinates in a region of configuration
space surrounding configurations constituting the acti-
vated complex. An internal centrifugal effect on motion
along the reaction coordinate was found: When the
system could surmount the barrier, the centrifugal
effect had a simple classical counterpart. When the
system had to tunnel through the barrier, the cen-
trifugal effect was a nonclassical one, negative in
nature.!

* Supported by a grant from the National Science Foundation,
!R. A. Marcus, J. Chem. Phys. 41, 2614 21964).
3R. A. Marcus, J. Chem. Phys. 41, 2624 (1964).

An extended?® Stickel-Robertson formalism was in-
troduced to make the separation of variables. One of
the several mathematically equivalent final expressions
deduced for the rate constant contained no “Stickel
coefficients.” It was perhaps the most useful one and
is derived here without assuming separation of vari-
ables. In applications to actual rate problems one is
then free to introduce a separation-of-variables assump-
tion or, instead, an assumption that all motions except
the one along the reaction coordinate are *“‘adiabatic.”
Two ways of introducing an adiabatic assumption of
this nature are described. One of these, based on
the above work on the extended Stickel-Robertson
formalism,? includes separation of variables as a special
case and has a certain useful physical interpretation.

3 R. A. Marcus, J. Chem. Phys. 41, 603 (1964). There is a typo-
graphical error in Eq. (25), where the xy! in the denominator
should be replaced by xat.
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A major aim of the present paper and that of Part I
is to introduce analytical mechanics for motion in the
activated-complex neighborhood of configuration space.
The connection between this work and two or three
recent numerical computations made with electronic
computers is described.

In another section of the paper transmission coefh-
cients are discussed for curvilinear coordinate systems.3®
Attention is called to a recent approximate phase-
integral expression for transmission coefficients,* which
has apparently not yet been applied to problems in
chemical physics. It generalizes the usual WBK ex-
pression in a simple way.

REACTION RATE CONSTANT

The Schrédinger equation in curvilinear coordinates
¢' to ¢" has the well-known form (1), where 1/g is the
determinant of the g#’s, as in Part I, and U is the
potential-energy function:

Hy=Ey, (1)
with
& 19, .9
= —— —_— —glpti . U 1 ... ") 2
2 A g agSt aq,.+ (¢ == qn)- (2)

We assume that there is a hypersurface in the »-
dimensional space such that passage across it leads to
reaction. The set of points in configuration space de-
fining this hypersurface is the activated complex. When
the dynamically appropriate coordinates are Cartesian
the position of this hypersurface does not depend on
the approximate or exact constants of the motion. It
can depend on them when the appropriate coordinates
are curvilinear.!

Coriolis effects will be neglected [i.e., cross terms
between vibrational and rotational angular momenta
in (2) are neglected]. The internal motion of the
system then occurs in a potential field which contains
centrifugal effects. The latter affect the position of
the hypersurface.

It will be supposed that some distance from this
hypersurface, closer to the “reactants’ region” of con-
figuration space, in a small interval the motion along
the reaction coordinate can be described classically
and the probability of finding a system moving in
that interval in the forward direction (i.e., towards
products) has approximately the equilibrium value.
Diffraction effects for motion along the reaction co-
ordinate are presumed to occur principally in the
immediate activated complex neighborhood. There,
the wavelength for forward motion is longer and, in
addition, tunneling may occur. The reaction coordinate,
denoted by ¢" in Parts I and II, is denoted by ¢' here.

3 Note added in proof: Interesting calculations of transmission
coefficients have been discribed by J. O. Hirschfelder and co-
workers for certain potential-energy surfaces having infinitely
steep walls encompassing channels in which the potential energy
is constant [J. Chem. Phys. 11, 276 (1943); 30, 1032 (1959) 1.

‘J. Heading, An Introduction to Phase Integral Methods
(Methuen and Company Ltd., London, 1961), Chap. 3.

ACTIVATED-COMPLEX

THEORY. III
The reaction coordinate leading from the cited interval,
through activated complex, to products is to be chosen
in a way which facilitates solution of the dynamical
equations approximately or exactly in the neighborhood
of the activated complex.

Any g'-coordinate hypersurface in the above classical
¢' interval is singled out and denoted by S. In this
region the wavefunction ¢ is written as

y=exp(iSy/h) ¥y, (3)

where S; depends only on ¢! and where ¥, is either
independent of ¢! or depends only weakly on it there.
Introduction of (3) into (1), neglect of the appropriate
powers of 7 and of the derivatives of ¥, with respect
to ¢' yields, for classical ¢! region only,

(_?lz P 1 igigiji+U)g, =(E—3g"pD)¥,, (4)

2 i gt og” " agf ’
where ;, which equals d5)/dg!, is the classical momen-
tum conjugate to g'. ¥, was denoted by ¢’ in Part I
and was assumed there to be independent of ¢* (separa-
tion-of-variables approximation).

For convenience of counting quantum states, the
entire system is enclosed in a finite volume so that ¥,
has discrete eigenvalues, characterized by a quantum
number \. Because of the equilibrium postulate, the
probability Pdp, ] [idg® of finding a_system simul-
taneously in a range of coordinates | |.dg* near the
hypersurface .S, in momentum range p1, p1+dp1(120),
and in a quantum state ), has the equilibrium value (5),
as in Part I®:

Pd?]qu‘

= ¢ BIT |, ]zgi(I;qui) th1/ (hQ/| 2 |2g§qui):

11
©)

where E is the energy appearing in (4) and Q is the
partition function of the reactants.

The simultaneous chance of finding the system in
the volume element g!][.d¢’, in the state A and in
an energy interval dE is now obtained by replacing
dpy by (84:/9E)\dE. The corresponding probability
term per unit interval of ¢! is obtained by dividing by
dg'. The contribution of these states to the system’s
crossing of the hypersurface S equals this expression
multiplied by ¢!. The transmission coefficient for this
value of A and of E, i.e., the probability that a system
crossing the hypersurface S in the forward direction
yields products, is denoted by «(A, E). The reaction

& The equilibrium probability of finding the system in a par-
ticular state A and in the small-phase space volume element
ApAgt is exp(—E/kT)ApAgi/hQ, since there are ApAgt/h
quantum states in this volume element. In any one of these states
the probability of finding the system in the configuration space
volume element of gillidg’ is | [2g3idg’/[ | ¥a | 3gilidg?, the
integration over ¢’ being only over the very small interval Ag'.
Multiplication of these two probabilities and replacing A’s by
d’s yields (5).
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rate constant is then obtained by multiplying the previous expression by « and integrating, as in

kT aps dE
- Al o—E{kT 248 £ - 2 25812 ) |—
Buie= ;L“O" E)/.,zq [" I P (aE)xdq / (Q/ | Pla )]kT’

where we have used an abbreviation,

dq?=]]d¢'.

7l

(7

We now suppose that the coordinate system is an
orthogonal one. The value of ¢' is then g'p;. The
derivative (0p1/0E), is obtained by calculating the
variation §p, arising from a 8E at fixed A and ¢'. Any
corresponding variation in ¥, is subject to

(8)

The differential operator in (4) will be denoted by 7.
On performing the variation we obtain

(T'+U) 8¥,= (SE—g'p10p1) V2

f | ¥, |2g'dq2= constant.

9

subject to

Re f Wy *5¥,g'dq2 =0, (10)

where Re denotes “real part of.”
The following relation is immediately verified upon
integration by parts.

f (0, *T'0,) gldq?= f (LT %Y gdqe. (1)

Multiplication of (9) by ¥,*gldq? integration, taking
the real part of the resulting equation, and use of (10)
and (11) yields

(at fixed A and ¢*)

where ( ) is defined as

()= 1w e /(f19ppaa).  9)

Equation (14) then follows:

kT dE
D BIkT__
2 [, Byema.

mw=w

It is convenient to measure U relative to its value

SE=prdpy (g"), (12)

k (14)

U, at some point on or near the activated-complex

hypersurface (for example, the point can be the saddle
point if there is one) and to measure E relative to
that Uy, rather than measuring both relative to the
potential energy of the stablest configuration of the
reactants, Uyt If E is now measured relative to Uy
we obtain from (14) an equation identical with Eq. (22)
in Part I:

kT dE
b= L5 [0, By s
" thx: Ex( e € 2T

where AU denotes Uy— Ugreeet,

(15)

(6)

If the ¢* motion were treated classically at the
activated-complex hypersurface, (A, E) would have
a very simple form: It vanishes for E less than some
quantity e, and equals unity for E’s in excess of e.
This e, equals the value of E below which the momen-
tum p, has an imaginary value somewhere in the
activated-complex neighborhood. One obtains

krate= (kT/h) (Q:/Q) exp(—AU/kT),
(16)

(classical ¢)

where
Q¢=; exp(—e/kT). 17

We consider several calculations for (A, E) and e
in later sections.

An equation related to (15) may be derived in other
ways, with different approximations. For example,
one such assumption is that the motion of the totality
of coordinates g? is adiabatic throughout the region
from reactants to products and not merely in the
activated complex neighborhood.® It then suffices to
assume that the distribution of the reactants’ con-
figurations is an equilibrium one. Such assumptions
may be compared with those used here.

The assumption of equilibrium for the configurational
distribution of the reactants plus the assumption of
adiabaticity for q? motion throughout imply that the
distribution of systems at S moving in a forward di-
rection is indeed an equilibrium one. i.e., they would
justify an assumption used here. However, the latter
equilibrium condition can be achieved under a milder
assumption (adiabatlicity from reactants’ region to
hypersurface S), and can be achieved approximately
under still milder assumptions.

REACTION-PATH DEGENERACY

In the derivation of Eq. (16), we tacitly considered
the formation of the activated complex by way of
some distinguishable reaction path from any given
isomer of the reactants. There may be one or more
such distinguishable paths from the given isomer.
The sequence of intermediate structures in each of
these paths is either a ‘‘geometrical isomer” or an
“optical isomer” of the sequence in any other path
proceeding from the same isomer. (These remarks
apply even if the reactants themselves have no isomers.)

Let there be v optically isomeric reaction paths for a
particular geometrically isomeric path from the given
isomer of the reactants. Each optically isomeric path

¢ In a very interesting paper in Z. Naturforsch. 18a, 607 (1963)
L. Hofacker has derived an equation related to (14) by making

this assumption. He also presents a formalism for including
nonadiabatic corrections, at least when these corrections are small.
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makes an equal contribution to the rate, so the con-
tribution of these v paths to the rate is ¥ multiplied
by (16). The total rate constant is then obtained by
summation over all geometrically isomeric paths from
the given isomer of reactants:

Brasetotol = Z
geometrically
isomeric
paths

(Yhrato) - (17"

The value of k... differs for paths that are “geometrical
isomers” of each other.

These results can be applied to a discussion of sta-
tistical factors in reaction rates.

SEPARATION OF VARIABLES APPROXIMATION
FOR DETERMINATION OF « AND e,

It has been shown’ that in the immediate vicinity
of a saddle point of a potential-energy surface, curvi-
linear coordinates may be introduced which permit
separation of variables. The region of validity is larger
than that for the standard harmonic expansion of the
potential-energy function near a saddle point, and the
analysis has provided some dynamical insight. How-
ever, numerical investigations are needed to determine
whether the region of validity is large enough for
present usage. A more general formulation (separable-
adiabatic) is described in a later section.

To calculate x and ¢, we first recall the conditions in
the extended Stéckel-Robertson formalism for a separa-
tion of variables into  sets. To express these conditions
we re-enumerate the variables, letting the number in
the pth set be A, and designating them as g¢* with
1=1 to h,. Here, m can equal 2 (¢' in one set and the
remaining ¢”s in a second set) or m can exceed 2 if
one wishes.

Conditions on the Kinetic-Energy Operator

It is stipulated that there exist functions ¢y, of the
pth set of coordinates, with determinant ¢ and with
conjugate quantities ¢*”,

Zd’“ "un= 0",

(18)

p=]
such that the following three conditions are fulfilled:
g=¢I1 /. (19)

e

(etngun o= g, (20)

§,j=1
griri=frivigh/f,, (21)

where f*#f and f, are functions of the uth set of co-
ordinates only, and where it follows from (20) and
(21) that f, equals

(dethufuini) ks,

§,j=1

7R. A. Marcus, J. Chem. Phys. 41, 610 (1964).

ACTIVATED-COMPLEX THEORY.

III

Condition on the Potential Energy

U= ¢"X,, (22)
#=1

where X, is a function of the coordinates of the uth

set only.

In this formalism the equation for #; is given by
Eq. (A4) of Part I:

$gip=Dasu—Xu, (23)
where ay=ZF and the remaining o, are separation
constants.

Equation (4) for ¥, (freed from ¢' as described
below) is solved for ¥;. One obtains thereby a de-
pendence of the a, on E for the given A. The right-
hand side of (23) now depends only on ¢!, A, and E.
For E less than some quantity e, p; given by (23)
is imaginary for some ¢' in the activated complex region
of configuration space. Thereby, the e in (17) can be
determined.

The wavefunction in this separation-of-variables ap-
proximation is given by

v=v¥1(¢")¥:(q?), (24)

where

Vy= H\bm
-2
¥, being the wavefunction for the uth set of coordinates.
To obtain x(\, E) it is necessary to first solve the
¥, equation, (4). Introduction of the conditions per-
mitting separation of variables converts Eq. (4) to
the following equations®:

pu=2,cc.m (Tn+X#)'PM= i:,av‘l’m'hn (25)
where
Ty=— (/2 ,) 2.(8/¢")f*#i(3/3¢).  (26)

Solution of Egs. (25) yields the o, as a function of
E for the given A. This result is then introduced into

80n using Egs. (19) to (21), glgriri can be rewritten as
dppifeinill .z f,. Since ¢¢#! is the cofactor of ¢ in the determinant
of the ¢,,'s, it does not contain the uth row, and so is independent
of the coordinates in the uth set. I,«,f, is also independent of
these coordinates. Both factors can be extracted from the dif-
ferential operator in (4). Use of Eq. (19) again then converts
this first term in (4) to Z,;4¢#1T,. Use of Eq. (22) then leads
from (4) to

Z ¢m (7a+X,) =ay,
=1
where 7= $,2/2 and 7,= T}, otherwise. On using (18) one then finds
m m
ZI‘V‘ YrutXu— Elaﬂﬁm) =0.
= =
Equation (25) is consistent with this result. However, Eq. (25)

may be derived from it by using the linear-vector-space arguments
used to derive Eq. (14) of Ref. 3 from Eq. (11) there.
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the equation for ;. In this formalism?® the ¢, equation
is given by

(T1H+X0)¥=D o, (27)
re=l
where
144 o
= a—qlf‘a_ql' (28)

Equation (27) is the quantum counterpart of (23).
Solution of Eq. (27) yields a value for the transmission
coefficient « as a function of E and A1

The Cartesian approximation to these equations is
described in Part I. It yields the usual activated-com-
plex-theory formula in a straightforward manner. Ap-
plication of (25) and (27) to several curvilinear co-
ordinate systems was also discussed in Part I.

ADIABATIC-q> APPROXIMATION FOR
DETERMINATION OF « AND ¢,

It is possible that the motion along some coordinate
¢' leading from reactants to products is not separable
over a sufficiently large region in the activated-complex
vicinity. In this case the assumption of separability
might be replaced by one in which the g2 motion is
adiabatic during the motion along ¢' in this vicinity.
The wavefunction y then becomes

¥=v1(¢")¥:(q", q?), (29)

where ¥, now depends weakly on ¢'. In both the
separable and adiabatic approximations ¥, remains
in the same quantum state A throughout the motion
in this activated-complex neighborhood.

The function ¥, is determined by solving the following
equation, where 7" is the differential operator in (4),

(T'+ U)W =¥, (30)

thereby determining ) for each value of ¢! of interest.
The function ¢, is then determined by introducing
(29) into (4), neglecting the derivatives of ¥, with
respect to ¢!, multiplying by ¥,*gldq? integrating over
q? and obtaining

— 372 ((1/g") (9/3¢") g (8/8¢") Wrtmyr=Ey, (31)

where ( ) is given by (13). This equation is solved
for « for any given E and .

When the ¢' motion is treated classically by setting
¥1=exp(iSy/A) and neglecting appropriate powers of #,
(31) becomes

3" ) +m=E, (32)

which permits one to determine e, the value of E
below which $,? can be negative.

When the kinetic-energy operator satisfies the
separability conditions (19) to (21), Eq. (31) can be
simplified. It becomes

— & (" )i (9/89)/1(8/8¢") ¥at-myr= By (33)
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SEPARABLE-ADIABATIC APPROXIMATION
FOR DETERMINATION OF «x AND e,

The approach just presented has a dynamical limita-
tion discussed later. We can avoid it for systems of
coordinates in which the kinetic-energy operator satis-
fies the separability conditions (19) to (21). We call
the new approach a separable-adiabatic approxima-
tion to emphasize the above difference. When these
conditions (19) to (21) are satisfied, the Schrédinger
equation (1) can be written as

(LTt Upy=a, (34)
p=
where T, is given by (28) and (26).
We now suppose that U can be written as
U=¢iX,+ D ¢n¥,, (35)
_ o

where X depends on ¢! alone and Y, depends strongly
on the coordinates in Set x but weakly on ¢'. For any
given ¢' the following equations are solved for each y,
and a, as a function of ¢; and A:

(p,= 2 to ﬂt) (Ty+ Yp) ¢y= ilard’nv\bp‘ (36)

These o,’s now depend weakly on ¢!, in contrast to the
separation-of-variables equation (25) where the o,’s
were constants.

The wavefunction (29) is now introduced into (34),
and the derivatives of ¥, with respect to ¢! are neg-
lected. Manipulation based on (18) then yields the
same result as (26):

m

(T X)= Zlav¢1v'l’1~ (37)
Since each o, is already known as a function of ¢! for
any given E and A, from the solution of (36), Eq. (37)
can then be solved for ¥, and for «()\, E). e can be
determined from the classical counterpart of (37),
namely (23), in the same way as before, remembering
that a, is now a function of g'.

In the special case that ¥, equals X, these results
reduce to those obtained earlier by the séparation-of-
variables approximation.

The weak dependence of a, on ¢!, in contrast to the
separation-of-variables approximation where a, was a
constant, can have an immediate physical interpreta-
tion: Suppose, for example, one considers a nonrotating
linear-collision complex in a three-center reaction with
an activation-energy reaction, A+BC—AB+4C, and
introduces two coordinates rap and rpc, making the
usual contour diagram of the potential energy, with
the kinetic energy in diagonal form. (Skewed axes are
used for the two above coordinates, therefore.) The
@* motion becomes a single vibrational motion, since
we ignore for purposes of the following remarks the
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external translations, the rotations, and the bending
vibrations. Polar coordinates satisfy the separability
conditions (19) to (21). When they are used over a
limited ¢! interval, such that the vibrational motion is
radial and the motion along ¢' is along the arc of a
circle, oz becomes an internal angular momentum ex-
cept for a multiplicative constant. When the potential
energy is constant along the arc and depends only on ¢%,
it can be shown to satisfy the separability condition
(22), and so ey is indeed a constant. In the actual
reacting system the potential energy is not constant
along this arc, and so e, varies with ¢, as in the separa-
ble-adiabatic approximation.

RELATION OF SEPARATION-OF-VARIABLES
AND ADIABATIC APPROXIMATIONS

We have already seen that the first of these approxi-
mations is a special case of the separable-adiabatic
one. It is not a special case of the ordinary adiabatic
one, a result established as follows.

If the separation-of-variables approximation were a
special case of the ordinary adiabatic one, the former
could be obtained from the latter by introducing condi-
tions (19) to (22). Introduction of these conditions
for m=2 leads to the following deductions from (30)
and (33):

¢* (To+X 2)¥y= (77)\— 1 X1) ¥, (38)
(@) Ti+m)=agh. (39)

Comparison of these equations with the separated ones
(25) and (27) for m=2 shows the latter to be special
cases of the former if

2
m=¢“Xl+¢2‘Z;a.¢» (40)
and if
2
m= (¢ )Xi— (@)D byt (41)
=l

Elimination of 7, then yields .
2
(¢11— ($11)) X1— (61— (¢")) 21“"""=° (42)

upon using (18). Since X; and the ¢,,’s are independent,
Eq. (42) shows that now (¢'')=¢", and thereby that
¢! depends only on ¢'. Equation (41) yields no new
‘restrictions on the ¢,’s since it is readily satisfied:
All quantities on the right depend only on ¢' as does 7.
Equation (40) yields no new restriction since it is
functionally dependent on (41) and (42).

Thus, the separable approximation is a special case
of the ordinary adiabatic one only if ¢ depends on
¢* alone. This restriction, however, is severe. Since
¢! equals g!, the restriction means that the per-
pendicular distance between successive g'-coordinate
hypersurfaces is independent of position on the hyper-

ACTIVATED-COMPLEX THEORY.

III

surface (Ref. 3, p. 609). Since the ¢' coordinate is
orthogonal to the others, diagrams suggest and exact
calculations show® that a ¢' coordinate for which
g=0 for i>1 and g"'=independent of q; (and hence
for which g;=0 and gu=independent of q;) is a
straight line. The usual reaction paths are curved,
so such a ¢! coordinate is not dynamically suitable to
describe approximately separable or adiabatic motion
in these systems.

TRANSMISSION COEFFICIENTS IN
CURVILINEAR COORDINATE SYSTEMS

To make use of a WKB-type formula on transmission
coefficients it is convenient to rewrite the earlier equa-
tions for ¢1 by making a change of variable y1={1/fit.
One obtains _

(@%1/dq”) +x81=0, (43)
where [Egs. (27), (37)] )
2 & 1/d Infi\? 14d%]
x1=ﬁ(zl:a¢¢1»—X1) _i(—d;_{}) ~3 ’d—;éf‘l (44)
and [Eq. (33)]
2 (E—m) 1(d mf1)2_1 elofi 4
. x‘—-hz <gu> 4\ dg' 2 dq‘2 .

Y1 has an asymptotic behavior

exp(i [ ixﬁdq‘) / xi¥fid.

The boundary conditions and the expression for the
transmission coefficient have been given previously.?

Transmission coefficients based on a WKB-type
solution can be obtained for (43). We do not use the
usual WKB expression, which is derived for tunneling
only and which also assumes the classical turning
points to be far apart. As a result of the latter assump-
tion this usual expression is in error by a factor of 2
when the system just has enough energy to surmount
the barrier.

Instead, we use a recent phase-integral expression
which takes cognizance of possible close proximity of
the turning points and which applies to energies suffi-
cient for surmounting the barrier also.* The classical
turning points occur when tunneling occurs. They

 We utilize equations in A. J. McConnell, Applications of
Tensor Analysis (Dover Publications, Inc., New York, 1957):
We first remark that if gi¥=0 for i1, it can be shown from the
relation Z;g¥ig;n=8" that gn=1/g" and g;=0 for i71. The
equations of a straight line are given in terms of intrinsic deriva-
tives in Eq. 13, p. 161 of McConnell’s text. On recalling that along
a ¢! coordinate curve only the value of ¢! is <:ha.ng,iugl and hence

only dx'/ds on p. 161 differs from zero and it equals 1/(gn)¥] and
on evaluating the Christoffel symbols of the type

ol

for the above ga's one verifies that this g!-coordinate curve is
indeed straight.
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represent the real zeros of the function x;. In this
case x; was represented as in (46) in the cited reference,

x(g") = (¢"—a?)B(g"), (46)

where 8(q') is a real, positive function of ¢' along the
real axis with no zeros in this neighborhood, and where
the origin of ¢! is chosen so that the zeros of x; occur
at +a.

When the system can surmount the barrier the two
zeros of x; in the neighborhood of the maximum of the
barrier are no longer real. x; was then written as in
(47), with a suitable (new) choice of the origin of g¢'.
(An expression was also given in Ref. 4 for the case
where the two zeros are not pure imaginary.)

x(g) = (¢*+8) T (g). (47)

I is real and positive on the real axis, with no real or
complex zeros in the neighborhood. The following equa-
tions were obtained for the transmission coefficient!:

k=1/(14A4%) (tunneling), (48)
k=1/(14B?) (surmounting), (49)
where
A=exp[ ] (—xx)*dq‘], (50)
b
B= eXP[— f_ bxl*(iy) dy]‘ (51)

In Eq. (51) ¢' in xi(¢') has been replaced by iy.

Equations (48) and (49) were derived by studying
the behavior of asymptotic expansions across Stokes
and anti-Stokes lines emerging from the two real or
complex zeros, under the assumption that the other
zeros have only a minor influence on the relevant
asymptotic behavior. The equations reduce to their
expected limiting values: When the transition points
are sufficiently far apart, we have 42>1 in (48) and
the usual WKB tunneling formula is obtained. When
the barrier is parabolic (i.e., when B, I'=constant)
the above equations reduce to the exact value! known
for Cartesian coordinates.

Several years ago Bell derived, on intuitive grounds
for a parabolic barrier, an expression for the trans-
mission coefficient'? which has found subsequent use
in the literature. He made an excellent intuitive guess
for «, basing his arguments on the known limiting be-
havior of « at high energies (xk=1), at very low energies
(xk=simple WKB formula, 4—2),.and at an energy
just sufficient to surmount the barrier (k=¢} according

10 The equation for surmounting the barrier, in the form given
here [Eq. (49)], presumes that the imaginary part of B can be
neglected (Ref. 4, p. 101). The imaginary part vanishes, of course,
when T is an even function of g'.

11 The exact solution for parabolic barriers may be found in H.
Jefireys and B. Jefireys, Methods of Mathematical Physics (Cam-
bridge University Press, New York, 1962), p. 703, in Ref. 4, and
in D. L. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).

2R, P, Bell, Trans. Farday Soc. 55, 1 (1959).
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to the value found for the Eckart potential). His
formula proves in fact to be identical with the exact
result for a parabolic barrier in Cartesian coordinates.

TRANSMISSION COEFFICIENTS IN
ROTATION-FREE SYSTEMS

We - consider first two numerical computations of
nonrotating collision complexes for the reaction H+-
H-H—H-H+H, made with the aid of electronic
computers. A quantum-mechanical calculation of the
probability that reactants in some initial state will
form products on collision has been made by Mortensen
and Pitzer.”® They made calculations for two internal
coordinates as well as for several such coordinates
taking into account bending vibrations of the collision
complex in the latter case. When the Hj is in its lowest

_vibrational state numerical values of « can be largely

explained by making a vibrationally adiabatic approxi-
mation: The observed «’s agree reasonably well with
one-dimensional Cartesian-coordinate «’s calculated by
assuming that for all values of the reaction coordinate
the vibrational motion can be described by a ground-
state wavefunction. (Compare calculated and observed
«’s in Table I, Ref. 7.) Some nonadiabaticity occurred,
however, at least at higher translational energies.
(Compare Table I, Ref. 13, E=20, I=1.) It would be
useful to repeat the one-dimensional calculations taking
into account the internal centrifugal effects.!

A classical-mechanical numerical calculation was
made earlier by Wall, Hiller, and Mazur' for the same
system (two coordinates) but with a different potential-
energy surface. These authors found a surprising result:
although their calculation was classical an initial vi-
brational energy of reactants equal to their zero-point
energy lowered the initial translational energy needed
for reaction by an amount equal to the difference of
zero-point energies of the activated complex and the
reactants. When the initial vibrational energy was
three times the zero-point energy, the initial transla-
tional energy needed for reaction to occur was lowered
by an amount which was three times this difference of
zero-point energies.

In the writer’s opinion a simple explanation of these
results can be given by assuming that the motion was
vibrationally adiabatic. For an adiabatic motion of a
vibration whose frequency » varies with position along
some coordinate ¢' the action J for the vibration is
independent of ¢' ¢

J= 3( pdg,

BE, M. Mortensen and K. S. Pitzer, Chem. Soc. (London)
Spec. Publ. 16, 57 (1962).

HF. T, Wall, L. A, Hiller, Jr., and J. Mazur, J. Chem. Phys.
29, 255 (1958).

16 This theorem is the classical adiabatic theorem, e.g., D. Ter
Haar, Elements of Hamillonian Mechanics (North-Holland Pub-
lishing Company, Amsterdam, 1961), p. 139 fI.
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where ¢? is the vibrational coordinate, p, its conjugate
momentum, and integration at the given g'-coordinate
hypersurface is over a vibrational period. The vibra-
tional energy equals Jv, so that for a vibrationally
adiabatic motion a portion of this energy, J(v*—wn),
must go into translational energy along ¢!, where »*
is the value of vibration frequency at the saddle point
and », is that for the reactants. In the two calculations
of Wall et al., cited above, J equaled 3k and %4,
respectively.16®

1t is possible, with the aid of analytical mechanics,
to make a calculation of this tendency of A (quantum

15 Note added in proof: Further numerical calculations of tra-
jectories in this system (with a different potential-energy surface)
support this vibrational adiabaticity suggestion, not only for the
rotation-free system but also, in contrast with earlier work, for

the rotation-present one [M. Karplus, R. N. Porter, and R. D.
Sharma (private communication) J.

ACTIVATED-COMPLEX THEORY.
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mechanics) or J (classical mechanics) to be constant
for the vibrational motion. Some calculations of this
nature are now in progress.!®

Wall, Hiller, and Mazur have also made numerical
calculations on classical-mechanical transmission co-
efficients for the case of rotating systems.” In this
case the simple results described above for conversion
of vibrational energy to energy useful for overcoming
the barrier were apparently not obtained [see, how-
ever, Ref. 15(a) ]. It may be noted that in the activated-
complex expression given by Eq. (15) vibrational adi-
abaticity was assumed only in the immediate vicinity
of the activated complex, and not for all values of ¢!
from region of reactants to that of products.

18 R. A. Marcus (unpublished results).
1 F, T. Wall, L. A. Hiller, Jr., and J. Mazur, J. Chem. Phys.
35, 1284 (1961).



