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Theorefical Study of Electron Transfer
Reactions of Solvated Electrons

R. A. MARCUS

Noyes Chemical Laboratory, University of Illinois, Urbana, 1ll. 61803

The assumptions, equations and several ap-
plications of a recently formulated theory of
electron transfer reactions of solvated elec-
trons are outlined. The relationship of the
reorganization terms to those of ordinary elec-
tron exchange and electrochemical reactions is
described, together with the role played by an
effective standard free energy of reaction. Ap-
plications include prediction of conditions
under which chemiluminescence might be
found and description of conditions under
which reactions might not be diffusion-
controlled.

or purposes of this monograph we summarize the concepts and prin-

cipal assumptions of an electron transfer theory (5), together with the
additional ones used to formulate a treatment of electron transfer reac-
tions of solvated electrons (8). The final equations and several applica-
tions are also described, but the detailed mathematical derivation is
given elsewhere (8).

Electron Transfer Mechanism

The theory stems from the writer’s work on simple electron transfer
reactions of conventional reactants (5). A simple electron transfer
reaction is defined as one in which no bonds are broken or formed during
the redox step; such a reaction might be preceded or followed by bond-
breaking or bond-forming steps in a several-step reaction mechanism.
Other chemical reactions involve rupture or formation of one or several
chemical bonds, and only a few coordinates suffice to establish their es-
sential features. In simple electron transfers in solution, on the other
hand, numerous coordinates play a role. One cannot then use the usual
two-coordinate potential energy contour diagram (4) to visualize the
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11. MARCUS Electron Transfer Reactions 139

course of the reaction, but must resort to some other pictorial method
such as the use of profiles of a potential energy surface.

In the postulated mechanism of simple electron transfer reactions, a
weak coupling of the “redox orbitals” of the two reactants is assumed (5),
and fluctuations of translational, rotational, and vibrational coordinates
leading from those characterizing stable configurations of reactants to
those describing stable configurations of products is described in terms of
potential energy surfaces. A surface for the reactants, ‘plotted vs. the
many relevant coordinates of the system, intersects one for the products,
and a profile of these surfaces is given in Figure 1. The intersection is
split in the usual quantum mechanical manner by a coupling of the redox
orbitals (5).

POTENTIAL ENERGY

| | I
NUCLEAR CONFIGURATION

Figure 1. Profileof potential energy surface of reactants (R)
and that of products (P) plotied vs. configuration of all the
atoms in the system. The dotted lines referto a system having
zero electronic interaction of thereacting species. Each adi-
abatic surface is indicated by a solid line.

Accordingly, reaction can occur if the system reaches the intersection
.region during a fluctuation, and if the electronic coupling is large enough
to cause the system to remain on the lowest surface during the crossing
of the intersection. The configurations occurring at the intersection
constitute the ‘‘activated complex’ for the reaction. They define a
hypersurface in this many-dimensional configuration space. The theo-
retical problem of calculating the reaction rate is largely that of cal-
culating the chance of crossing this hypersurface in unit time. The co-
ordinates undergoing some or appreciable change during the simple elec-
tron transfer include the separation distance of the reactants, bond dis-
tances in a reactant (those in an inner coordination shell for example), and
orientations of solvent molecules. All of these coordinates contribute to
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the “reaction coordinate’ leading from reactants through activated com-
plex to products.

Special Features for Solvated Electron Reactions

In addition to the above features which electron transfer reactions of
solvated electrons and ordinary electron transfers have in common, those
of the solvated electron possess several novel aspects:

(1) The electronic wave function of a solvated electron, spread over
several solvent molecules, should be very sensitive to orientation fluct-
uations of these molecules, unlike that of an ordinary reactant.

(2) The solvated electron ‘“‘disappears” into the other reactant so that
there is a change in number of reacting particles.

(3) Unlike many of the conventional electron transfers, many reactions
of the solvated electron are diffusion controlled.

Because of (1) the mean kinetic energy of the solvated electron
changes appreciably during the orientation fluctuations required for the
system to reach the intersection hypersurface. Such changes are in-
cluded in Figure 1, which represents a plot of the total electronic energy
of the system as a function of the atomic coordinates.

Item (2) contributes to the calculated free energy of formation of
the product from a system coming from the intersection.

Because of (3), the observed rate constant %, is given by

1 1 1
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where k4 and k&, are diffusion-controlled and activation-controlled rate
constants. According as Rair >> Rt OF kot >> Rairr, kobs €quals &, OF
kair, respectively (7).

Assumptions

The mathematical derivation of the theoretical expression for k..
for solvated electron transfers has been given elsewhere (8). The fol-
lowing assumptions were the principal ones made, of which (a) to (c) are
standard in activated complex theory:

(a) The adiabatic (Born-Oppenheimer) approximation is used to treat
the electronic-nuclear motion. (In the vicinity of the intersection
hypersurface, nonadiabatic effects arise only if the splitting is very
small. The factor « in Equation 2 is then less than unity and is
calculated by various nonadiabatic methods. Normally, the reaction is
assumed to be adiabatic (x ~ 1).) '

(b) Classical equilibrium statistical mechanics is used to calculate the
probability of reaching the intersection hypersurface. Any vibrational
quantum effects which occur are treated approximately in the usual way
for activated complex theory.

(c) The rate is given by the number of “first passages’” of a system
across the intersection surface per unit time.
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(d) Highly specific interactions of the two reactants (—e.g., steric
effects) are assumed to contribute primarily to the work w required
to bring the reactants together.

(e) The solvent polarization (outside any inner coordination shell)
caused by the two reactants is treated by dielectric continuum theory.
(Statistical mechanics was used for conventional electron transfers and
can be used to replace the continuum theory when this refinement be-
comes appropriate.)

(f) In the hydrogen-bonded solvents of present interest the electron is
assumed to bein a cavity-free medium. Arguments were given to
suggest that when a solvent cavity for the electron occurs it will pri-
marily affect the numerical value of A\.” in Equation 3 rather than the
functional form of those final equations (8).

In addition, two approximations were introduced (5) which sim-
plified the equations considerably. They are easily avoided as described
later. The equations then become more complex.

(g) The vibrations of the second reactant are treated as harmonic
oscillators.

(h) A symmetrized vibrational potential energy function is used for
reactants and products. The minor error introduced thereby has been
estimated elsewhere (5).

A solvated electron in a polar solvent has a high classical frequency of
motion in its ‘“‘orbit.”” Accordingly, the rotating or librating solvent
molecules of the system see it primarily as some diffuse charge distribu-
tion. The molecules orient themselves toward this diffuse charge in a
way consistent with their thermal motion and with their bonding to other
molecules. The valence and inner electrons of these molecules are
polarized by the instantaneous field of the solvated electron when they are
some distance from the electron. If they are too close to it they cannot
follow the motion of the instantaneous field, as uncertainty principle
arguments show (8). A quantum mechanical continuum estimate of the
radius of this dynamical sphere of exclusion of electron polarization and
of the contribution to the interaction energy was made (8). When the
radius is small relative to the circumference of the ‘‘orbit” of the electron
the radius does not influence the numerical value of A\, in Equation 3.
More refined models for the solvated electron would also recognize any
vibronic effects, since the estimated frequency of electronic motion (8)
is not far from that of polar OH vibrations of the medium.

Calculation of k..

The rate constant k.. is given by Equation 2, on the basis of as-
sumptions (a) to (c) and the introduction of certain comparatively minor
approximations (5, A). (In the present paper a reference labelled by a
letter refers to a comment in the Appendix.)

Boot = Zxpe —8F*/T (2)

where AF* is the free energy of formation from reactants of a system
centered on the intersection hypersurface and Z is a collision frequency
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between uncharged species. (Zis about 101! liters/mole/sec. The charge
effects on collision frequency are included in AF*.) AF* is computed for
the most probable separation distance contributing to reaction. pis a
ratio of certain root mean square displacements and is taken to be about
unity (5, A).

Statistical mechanics was used to calculate the probability of oc-
currence of the necessary fluctuations in vibrational coordinates. Con-
tinuum theory was used to calculate the free energy of formation of any
nonequilibrium state of polarization of the medium in the presence of the
electron, and quantum mechanics to calculate changes in the kinetic
energy and solvation free energy of the electron owing to changes in
solvent polarization (8). In this way the free energy was calculated for a
system having the electronic charge distribution of the reactant and hav-
ing Boltzmann-type polarization and vibrational distribution functions.
Similarly, for the same distribution of coordinates the free energy was
‘calculated for a system having the electronic configuration of the product.
However, as Figure 1 illustrates, these two free energies are equal when
each system is constrained to be centered on the intersection hypersurface:
the potential energy, averaged over the given distribution, is the same,
because of the intersection, and the entropy of a system is determined
only by the configurational distribution and so must also be the same for
two systems having the same such distribution. The kinetic energy of
any nucleus is also the same in the two systems.

Minimization of the free energy of this arbitrary state of a system
containing the reactants, subject to the condition of equality of the two
free energies, yields an expression for the free energy of the reactants in
this centered distribution and, thereby, for AF*. The functional form
of the equation for AF* is given by Equation 3, and that for AF*?, the
free energy of formation of the centered distribution from the product, is
given by Equation 4 (8).

CAF* = w 4 m? [(1 — ’l;f) A+ M=+ A?\R] : 3)
AF* = (m 4+ 1)?[(1 — m)\= + A + Ahel, 4)

where w is the work required to bring the reactants together to a mean
separation distance R in the activated complex. (Both coulombic and
noncoulombic terms can contribute to w.) A\, is an “intrinsic reor-
ganization factor,” which can be expressed in terms of the properties of
the solvated electron (8). X.,® is an “intrinsic reorganization factor’’ of
the second reactant and depends only on the properties of that reactant,
such as differences in equilibrium bond lengths and orientation polariza-
tion in the oxidized and reduced forms (8). The « superscript indicates
that the quantities are evaluated for reactants far apart, and A\ is the
change in the sum of intrinsic reorganization factors from (A,> 4+ A\;®)
to (A% + A\.f). In terms of continuum theory A); for the one-electron
transfer equals —e?(D,,”! — D,!)/R, where D,, and D, denote the optical
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and static dielectric constants, respectively, and where e is the electronic
charge (8). The quantity m is the solution of

AF* — AF* = AF°'y, — w. )

In this last equation AF°’;,,is the “‘standard’ free energy of reaction
AF° in the prevailing medium, corrected for the translational free energy
loss when the “oriented center,” in which the electron formerly resided,
disappears during the formation of product from the centered distribution
on the hypersurface. This corrected AF°’ constitutes the “driving force”
for reaction at the mean separation distance R:

AF°'yy = AF°' — AF®yu (6a)
= AF* — RTIn[(2wmykT)%¥21000/h3N,] (6b)

for a standard state of 1M, where m, is the effective mass for translation of
the solvated electron (the ‘“polaron”) and N, is Avagadro’s number. The
value of AF° s i8 5.3 keal. /mole if m, is 3/N, grams/molecule (B).

The functional form of Equations 3 and 4 differs somewhat from that
found earlier (5) for conventional electron transfers, the difference arising
from the sensitivity of the wave function to changes in solvent polariza-
tion. Equations 3 and 4 simplify on close examination: These reactions
are extremely rapid because the solvated electron is a very strong reducing
agent, so that AF°’ is very negative. In this case, AF'*is very small and,
therefore, m? is seen from Equation 3 to be small. In fact, for the usual
reactions of the solvated electron a posteriori numerical calculations from
the observed rates show that m? << 1, and so m?2 can be neglected in the
coefficients of A,® in Equations 3 and 4.

The equations then become

AF* = w + m2\ (7)
1 AF°,, —w
= — {1 42 Wt
- d (et
where
A= AR 4+ N 9)

These equation are now similar to those derived earlier for con-
ventional electron transfer reactions (5).

The value for A\,® is the same as that for this same reactant in an
ordinary homogeneous or electrochemical electron transfer occurring at
the same R and can be estimated from them, as described later (6).
AF°';,, is known for many reactions of the solvated electron, and w can be
estimated approximately. Accordingly, a theoretical value of AF* can
be calculated from Equation 7 once A.f is known. Either A2 can be
calculated from other sources (it depends on the model of the solvated
electron) or a value can be used which best fits data on &, for several re-
actions, or both. In making such calculations it should be noted that
AF* is not highly accurately given by Equation 7, because of the various
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approximations. It is more realistic to compare theoretical and experi-
mental values for AF*, therefore, rather than those for %,...

The work term w makes a relatively minor contribution to AF*. In
numerical calculations it is usually assumed to be electrostatic in origin
and to be given roughly by the shielded coulombic formula, w' = (eje;/
DR) exp (—«R), where e, and e; are the charges of the reactants, D is the
dielectric constant and « the Debye kappa. (In very dilute solutions
exp (—«R)=1.)

Dependence of k... on AF°’. Possible Chemiluminescence.

To explore the behavior of AF* with AF°’ it is convenient to rewrite
Equations 7 and 8 as

o/ - 2
AF*=w+2[1+‘£‘—;‘—E’] (10)

The value of AF* — w is seen to decrease at first as AF°’ becomes in-
creasingly negative, to pass through a minimum at (AF°®’;,, — w) = — A,
and then to increase as AF°’ becomes still more negative. 'The physical
origin of the behavior is seen from Figure 1: As AF°’ is made more nega-
tive the product surface in Figure 1 is lowered relative to the R surface,
and AF* becomes smaller at first, because the intersection occurs at lower
energies on the R surface. This effect of AF°’ on AF* is the normal one,
and the configurations at the intersection are seen to be a compromise be-
tween the stable ones of the initial state and the stable ones of the final
state. When AF°’ becomes still more negative, the intersection is seen to
occur to the left of the minima of the R and P surfaces in Figure 1, at
higher and higher parts of the initial R surface as AF°’ becomes increas-
ingly negative. The configurations at the intersection are no longer
compromise ones. This latter AF°’ region might be called the abnormal
AF°’ region.

When AF°’ is sufficiently negative AF* becomes large, and either the
reaction with the solvated electron should become very slow or a reaction
should occur by other paths, two of which are the following:

(a) Formation of electronically-excited states and possible chemi-
luminescence (8):

Although the intersection of the R surface with the surface for the
electronic ground state of the product occurs at high AF*s when AF°’/\
becomes very negative (slightly more negative than —1), the calculations
given below indicate that an intersection with a surface in which the
product is excited may then occur at low AF*; chemiluminescence may
therefore result:

For formation of the excited state of the product AF* is again given
by Equation 10, with \.® and AF°’i,. now referring to formation of this
excited state. For example, in a reaction for which AF°’;,, is as negative
as — 4 e.v., and in which the fluorescence occurs at say 6000 A. (2 e.v.),
the AF°/;,, for formation of the excited state is then only —2 e.v. or even
less. If A/4 for both reactions is about 0.4 e.v. and if, for present pur-
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poses we neglect w, then AF* for a reaction leading to the ground and
excited state of the product is 0.9 e.v. and 0.025e.v., respectively. In the
first case the reaction is much too slow for measurement in these systems
and in the second case it would occur with ease, the barrier AF* being
about 0.6 kcal./mole.

(b) Atom transfer reaction: In principle, it is possible that an atom
transfer reaction such as Equation 11 can occur when the second reactant
is an atom transfer acceptor or is otherwise reactive to the atom. To be
sure, there is no evidence as yet for such reactions of the solvated electron.
By suitable choice of reactant they could be avoided.

e(H;0)~ + Fe(CN);~3 -~ OH~ + Fe(CN);CNH -3 (11a)
Fe(CN);CNH 3 — Fe(CN);—* + H+ (11b)

Estimating AF®’,,, and \

From measured forward and reverse rate constants of the reaction of
a solvated electron with water Baxendale (1) estimated the standard
potential for the solvated electron. Use of a more recent rate constant
(3) and correction (8) for a certain omitted entropy change yields a value,
E®', = + 2.7 volts, for the standard oxidation potential of the solvated
electron. To calculate AF°’;, for a reaction from a difference of the
standard oxidation potentials of the two reactants, E°’, — E°’ 2, the AF°’
must be corrected for the AF°,,., of about 5 kcal./mole. This correction
can be made (8) by taking the effective E°’,, E°’,,, for a solvated electron
to be 2.9 volts.

AF 0 = — eF(E°yy — E°'y) (12)

In homogeneous electron exchange reactions between two species
differing only in their valence states, AF* is given by Equation 10 with A
equal to 2\,* and (AF°’;,, — w) replaced by AF°’ — + w? (5). (W
and w” denote the work required to bring the reactants together to the
mean separation distance R, and the products to this R, respectively.)
AF®! is zero for a simple electron exchange reaction and w" equals w?” for
it, since the products are chemically indistinguishable from the reactants.

AF* r }\212
ox = W 4 o (13)

The separation distance R should affect primarily the orientation
polarization contribution to A rather than the vibrational contribution
from the inner coordination shell (5). If R is about the same for this re-
action as it is for reaction with the solvated electron then ), is the same.
The difference in A\;® would probably be relatively minor in any case for
typical R’s.

Since AF*,. equals —RT In(k./101 M ! sec. '), A\® can be esti-
mated from the electron exchange rate constant k., when correction of
AF*,, is made for w’ or when w" is small enough to be neglected. Values
of AF*,. have also been obtained indirectly from measurements of rate
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constants of other redox reactions involving the species, particularly in
(2), where tests of this evaluation are described.

In electrochemical electron transfer reactions, the value of the rate
constant %,; at zero activation overpotential yields a value of AF*,;. The
latter equals —RT In(k.;/104 cm. sec. '), and the theoretical expression
for AF*,is (5)

w 4 w? _):gf
2 4

AF*,; = (14)
Correction of this AF*,; for the work terms then yields a value of A.%.
The consistency of Equations 13 and 14 has received some experimental
support (9), though further work is desirable. Examples of some ap-
proximate values of \;® computed in these ways are (C): Co(NH;)s** 3
(~60 kcal./mole), Fe(phen);**3 (~15 kcal./mole), Eu*® +3 (~40
kcal /mole).

The value of A\.* for the solvated electron has been estimated in
several ways (8, 10). By assuming that diffusion of the solvated electron
in water occurs as a site-to-site electron transfer and using an expression
for AF* for a unimolecular electron transfer reaction (5); Sutin estimated
(10) a lower bound of 5 kcal./mole for A\ from the known diffusion con-
stant. The writer has estimated (8) a value of roughly 15 kcal./mole to
fit the rate constant for reaction of the solvated electron with Sm *3,
assuming that \,® was about the same as that for another rare earth,
Eu+*s. An estimate of A.® can also be made from spectral and solvation
data, but depends on the detailed model used for the solvated electron
(8) and neglects the “electron affinity” of the first excited state of the
solvated electron. (This electron affinity describes local interactions;
these are not covered by simple polaron theory.) The latter estimated
value of )\,? is rough but is consistent with the value just cited and with a
value estimated a priori (8). At the same time this second estimate from
the data yields a rough and perhaps not reliable value of the “‘electron
affinity”’ of the ground state of the solvated electron (8).

From Equation 10 an estimate can be made of an error in calculated
AF* owing to anerrorin . If the errors are denoted by &’s we have

Fo,int - w) AFO’int

oA (15)

A
SAF* = — (1
( + A 2\

For example, an error of 5 kcal./mole in A introduces an efror of 0.6
kcal./mole in AF*, when AF°';,,/A= — 0.6. Similarly the error in AF*
owing to an error in AF°’;, is

o _ 0
SAF* = (1 + AF e = w) SAF (16)
A 2
An error of 2 kcal./mole in AF°’;, introduces an error of 0.9 kcal./mole
in AF* when AF°',,,/A=2 — 0.6. However, one sees from Equations 15
and 16 that the sensitivity of AF* to a change in A or AF°’;,: depends on the

value of AF°’,,/\. We have selected a typical value.
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Further Applications

The prediction (8) of possible chemiluminescence at suitable AF°’,,, /-
N’s has already been discussed. Applications of the equations have also
been made to calculations of rate constants for reactions of solvated elec-
trons, using \.*’s estimated as above (8, 10). If, when AF°’,, is very
negative, the calculated rates are too low, the explanation may lie in
the formation of excited states or, in some cases, in atom transfers. A
search for the predicted chemiluminescence is under way (11). It would
be favored by a reaction for which \.? is small enough that AF°’ int/ A
is quite negative for formation of the ground state of the product. In-
terestingly enough, it is possible to vary AF®° systematically without
varying A, simply by varying a substituent in a large organic ligand (2).
Thus, a control of the relative values of AF*s for reactions leading to
ground and excited states becomes possible and so, thereby, does the
yield of any chemiluminescence.

To investigate reactions of solvated electrons in the borderline region
of diffusion and activation control there are two regions of E°’ for the
second reactant which are of interest, for typical ’s. Estimated from
Equation 10, neglecting w, these are: E°’; > ca. 1.5 to 2 volts (8) and E°’,
< ca. —0.5 to —1.0 volts for a typical A of about 55 kcal./mole. The
former region, particularly, would be expected to yield the most reliable
empirical values of A., since they involve compromise configurations in
the activated complex, just as %.x and %,; do. The resulting \.*’s may be
compared with those obtained from the second E°’; region. In cases
which involve appreciable changes in bond lengths of a reactant, it may
be necessary to replace the harmonic oscillator approximation (g) by use
of anharmonic potential energy functions. (Approximation (h) is auto-
matically replaced at the same time.) For this purpose one may replace
Equation 10 by an equation derived earlier for ordinary electron transfer
reactions (6) as the derivation of Equation 10 from Equation 3 and as the
similarity of Equation 10 to the equation for conventional electron trans-
fers both indicate.

Appendix

(A) In activated complex theory the rate constant can be ex-
pressed in terms of the free energy F+ of a system hypothetically con-
strained to exist on a certain hypersurface, the “activated complex,”
cf. Marcus, R. A., J. Chem. Phys. 41, 2624 (1964). F¥ can be expressed
in terms of the free energy F'* of a system centered on that hypersurface
(6). The difference between F+ and F* contributes a factor to p- A
second factor in p arises from the fluctuations in the separation distance
of the reactants in the activated complex 5).

(B) Theoretical values of m, and A\.® would depend on the model of
a solvated electron. The value of m, used in the text is at best rough
(8), but AF°y.., is relatively insensitive to it in the region of interest.
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A theoretical value of AF°’ would also depend on the model, but for-
tunately its experimental value is known instead.

(C) Values of \® for Co(NH;)s+> *? and for Eu*» + were esti-
mated from k. in (9), neglecting w because of the high salt concentra-
tions. The value of Fe(phen);*% +3 was estimated from the value as-
signed to ke in (2), neglecting w. Only a lower limit for Z.., quoted
in (2), is known. A possible noncoulombic source of w for certain
Fe(phen);*3 reactions is noted in (2) and (9) and, if correct, may apply
to reaction between e(aq) and Fe(phen);*3. Data on other k..’s and k..’s
are given in (2) and (9) and in various other articles.
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