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When a polar-solute molecule undergoes an electronic transition and forms a state of different polarity,
the Franck-Condon principle shows that the new system is first formed in a nonequilibrium thermodynamic
state. An expression for the spectral shift and broadening by a series of solvents of differing polarity is
derived in the present paper in terms of thermodynamic properties of certain equilibrium distribution
systems. For this purpose use is made of a recent particle description of nonequilibrium and equilibrium
polar media, which emphasizes functional dependence and avoids, thereby, the usual more specific assump-
tions. A relation between the broadening and the shift is then deduced under certain conditions. Expressions
are also derived for the effect of pressure and temperature on the shift, in terms of the polar contribution
to the volume and entropy of solvation, respectively, and for the influence of applied electrical fields. An -
expression is obtained for the solvent-reversal shift of Brooker in terms of the polarizability difference of
the initial and final states of the solute. Introduction of more specific assumptions is then made for purposes
of comparison with earlier works, which constitute special cases of the present one, and for estimation of

dipole moments and polarizabilities of excited states from spectral and electrical shifts.

INTRODUCTION AND OUTLINE OF PAPER

WHEN a polar molecule in a polar medium ab-
sorbs or emits light to form a relatively nonpolar
electronic state, a large spectral shift occurs, the shift
being a blue one in absorption and a red one if a polar
solute fluoresces (see Refs., e.g., 1-5). When the initial

* Supported by a grant from the National Science Foundation.
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state of the solute is polar and the solvent medium is
polar the observed spectral shifts are large—of an order
of magnitude greater than the usual red shifts due to
dispersion forces.

Theoretical treatments for the polar contribution to
the spectral shift are few in number.!~3 They have em-
ployed second-order quantum-mechanical perturba-
tion theory for computing the potential energy in the
initial and final state. A thermodynamic average of
this energy difference (an average over the initial
state because of the Franck-Condon principle) has
been estimated by evaluating various contributions
with the aid of a permanent dipole-induced-dipole
model for the polar part of the interactions. The dipolar
solute was regarded as being embedded on a dielectric
continuum.'? In these perturbation treatments polar
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and second-order dispersion contributions to the
spectral shift were additive.®

With the aid of a recently developed formalism’:
for treating polar media under equilibrium and non-
equilibrium conditions the above work can be both
generalized and simplified in certain respects, and
other properties such as the polar contribution to
broadening can be calculated. The formalism employs
second-order perturbation theory for solute-medium
interactions, as before, but makes no such assumption
for interactions within the medium and it employs
no specific model for the solute (e.g., no permanent
and induced point dipole in a sphere, imbedded in a
continuum). The formalism describes instead the func-
tional dependence of the solute-medium interactions
on the permanent and induced charge distributions.
One can then introduce into the final expressions typical
specific models used in the literature for computing

polar interactions, since they are automatically included

as special cases, and compare with and extend earlier
work. Certain relationships are deduced later inde-
pendently of such models, however.

Equations (13), (24), and (29) are obtained for the
polar contribution to the spectral shift and to broaden-
ing. Formal expressions are obtained from (13) and
(29) for the effect of pressure, of temperature (““thermo-
chromism™), and of external electric fields (“electro-
chromism”) on the shift. Under a certain condition
(“orthogonal” initial and final charge distributions,
as defined later) the broadening and the spectral shift
are predicted here to be simply related. Some compari-
son with the data is given. A specific example of the
above “orthogonality” occurs if one of the two states
of the solute is nonpolar. An independent test for such
nonpolarity can be made by measuring solvent effects
on both absorption and fluorescence spectra.

Under the “orthogonality” condition, it is shown,
the spectral shifts in various polar solvents should bear
a simple relation to the polar contribution to solvation
free energies: Differences in spectral shifts in various
polar solvents are calculated to equal twice the differ-
ences in the polar contribution to the solvation free
energy. The factor of 2 arises because of “‘orientation

6London dispersion forces (induced-dipole-induced-dipole)
are second order and have an approximately 1/R® potential-
energy function. An estimate of their contribution to spectral
shifts has been made, for example, by H. C. Longuet-Higgins and
J. A. Pople [J. Chem. Phys. 27, 192 (1957)7, and the dispersion
terms also occur in the work of Ooshika! and of McRae?®. Coupling
between the dispersion forces and “polar” forces would then be
expected to arise in higher-order terms. London dispersion force
and polar contributions to the spectral shift are, one may conclude,
additive within this approximation of second-order perturbation
theory. To be sure, first-order dispersion forces, with an approxi-
mately 1/R® potential-energy function, can occur between like
species if at least one of them is excited to an optically allowed
state (excitation-transfer forces). See, for example, R. S. Mulliken,
Phys. Rev. 120, 1674 (1960) and references cited therein.

7 (a) R. A. Marcus, J. Chem. Phys. 38, 1335 (1963); (b) com-
pare 39, 460 (1963).

8(a) R. A. Marcus, J. Chem. Phys. 39, 1734 (1963); (b) com-
pare 38, 1858 (1963). A typographical error occurs in Eg. (13)
of Ref. 8(a): The #’s should be deleted. No equations deduced
from (13) need correction.
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strain” in the final state. Under such conditions at
least, and perhaps more generally, one would then ex-
pect some parallelism of spectral shifts of different
solutes in a series of solvents. Such a parallelism has
been found in a number of studies*#%! though there
are occasionally highly specific effects. A related paral-
Jelism with effects of different polar solvents on the
free energy of activation of a reaction involving a
polar transition state has also been found.*® A numeri-
cal estimate of the polar contribution to the free energy
of solvation of some dipolar solutes is made in the
present paper from the spectral data. '

For purposes of comparison of Eq. (13) for the
spectral shift with previous equations in the literature,
the particular form which this equation takes when
the medium is treated as a dielectric continuum and
when the solute is treated as a dipole in a sphere is
also considered. Extension of the equations to ellip-
soidal shapes (from spherical ones) and to separated
charge distributions (from point-dipole ones) is also
given.

The separated-charge model reveals that the point-
dipole approximation yields too high a result for dipole
moments estimated from spectral shifts, though the
error is negligible when the charge separation is small
enough (e.g., the ion-pair pyridinium iodide®** men-
tioned in Appendix IT). To correct for this effect, Lippert
adjusted the radius of the sphere to some effective
radius,®® using a correction factor estimated from a
comparison of solvation free energies for the point-
dipole and separated-charge spherical model of a zero-
polarizable solute. One can now use instead an expres-
sion for the shift directly, derived for any given model.
Lippert also considered a point-dipole zero-polariz-
ability ellipsoidal model.?

The dipole moment of excited states calculated from
spectral-shift formulas may be compared!® with those
obtained from measurements of electrical dichroism
and of fluorescence polarization in electric fields. They
are comparable, but those calculated from spectral
shifts are slightly too large, suggesting that the extent
of charge separation is slightly larger than previously
estimated. Dipole moments of charge-transfer com-
plexes have also been estimated by each method.?

In the case of some merocyanines there is a peculiar
reversal of spectral shift with solvent polarity, beyond
a certain polarity.®-! This shift has been interpreted
in two ways that are qualitatively not dissimilar.3>:1!

% (a) E. M. Kosower, J. Am. Chem. Soc. 80, 3253, 3261, 3267
(1958); Molecular Biochemistry (McGraw-Hill Book Company,
Inc., New York, 1962), and references cited therein; (b) in Ref.
9(a) Kosower has compared these spectral shifts with Winstein’s
Y function, for example.

10 J, Czekalla, Z. Elektrochem. 64, 1221 (1960); Chimia 15,
26 (1961); J. Czekalla and G. Wick, Z. Elektrochem. 65, 727
(1961); J. Czekalla and K. O. Mayer, Z. Physik. Chem. (Frank-
furt) 27, 185 (1961); W. Liptay and J. Czekalla, Z. Naturforsch.
15a, 1072 (1960). .

n], G. S. Brooker, G. H. Keyes, R. H. Sprague, R. H. Van
Dyke, E. Van Lare, G. Van Zandt, F. L. White. H. W. J. Cress-
man, and S. G. Dent, J. Am. Chem. Soc. 73, 5332 (1951); L. G. S.
Brooker, G. H. Keyes, and D. W. Heseltine, ibid., p. 5350.
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The calculation for one of these interpretations® is
discussed and corrected. Independent knowledge or
computation of the polarizability difference of ground
and excited state would be extremely helpful here for
testing any such model.

An application of the statistical-mechanical results
is made to thermochromism.”? It is concluded that
under the “orthogonality”’ condition mentioned above
the differences in the temperature coefficient of the
position of the spectral maximum (in units of calories
per mole per degree) for various solvents is twice the
difference in polar contribution to the entropy of solva-
tion of the solute for these solvents, but only when the
nonpolar terms cancel. This polar contribution is then
estimated from the spectral data of diphenyl betaine,
a molecule with some appreciable separation of charge.

An application is also made to pressure effects on
spectral shifts'® and to the influence of external electric
fields." An expression is obtained for the polar contribu-
tion to the volume of solvation in terms of the pressure
effect when the cited conditions are fulfilled, and as
a particular case the magnitude of the pressure effect
is predicted from the temperature effect under certain
conditions. The electrical effect is expressed in terms
of the dipole moments and polarizabilities of the two
electronic states of the solute involved in the absorption
or fluorescence, and may therefore provide information
about them in favorable instances.

CONFIGURATIONAL POTENTIAL ENERGY
AND SPECTRAL SHIFT

We use a recent “particle” description’-® for polar
media. In the particle description the macroscopic
system may be considered as composed of particles,
each of which represents a single molecule or a whole
collection of molecules. As one particle, one may select
any “central species” s, whose behavior is of particular
interest in the phenomenon under investigation, a solute
molecule, for example. There may be one or more of
these s in some phenomena (e.g., in bimolecular re-
actions). The remainder of the system, M, the “me-
dium,” can be treated as another particle. The symbol
iis used to denote s or M when the remarks below apply
to either.

At any given intraparticle configuration, each Par-
ticle ¢ has a charge density at any point r, p;,°(r). It
is the sum of p,°(r), its value at the same iniraparticle
configuration when 7 is isolated from all other particles,
and of p,2(r), the charge induced by the remaining
particles at the given interparticle configuration. Both

12 Experimental data on thermochromism have been reported by
K. Dimroth, C. Reichardt, and A. Schweig, Ann. Chem. 669,
95 (1963).

13 Pressure effects on emission spectra of several organic com-
pounds have been made by D. W. Gregg and H. G. Drickamer,
J. Chem. Phys. 35, 1780 (1961). However, there appear to be no
measurements on polar compounds in polar media for which polar
spectral shifts have been studied. .

U Electrochromism for nonpolar systems has been studied by

J. Kumamoto, J. C. Powers, Jr., and W. R. Heller, J. Chem. Phys,
36, 2893 (1962). .
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pi° and p, vary with r and both depend on the intra-
particle coordinates; p;® depends on the interparticle
ones as well. The potential at r’ due to all particles but
1, ¢s(1r’), is given by (1)7

() =3 [rlor () +omlr, (1)

F=x
where r=|r—r’|. The induced charge density in
Particle j is related to this potential by means of a
certain operator 4;, which has a symmetry property
given by Eq. (35) of Ref. 7(a)

(2)

Such a formulation has been shown to include the usual
special cases employed in the literature to treat polar
interactions in condensed phases,” and to include elec-
trode systems as well as homogeneous ones.

The polar contribution to the interparticle potential
energy of any configuration of the system is given by
Eq. (3)7

pi'(r) = A;(r, 1) p;(x").

Uv°l=%z f dip:ldr. 3)

For any given interparticle and intraparticle configura-
tion the remaining contribution to the total potential
energy of the system, U, will be the sum of an inter-
particle nonpolar term, an intraparticle term for the
medium when it is isolated at the given intraparticle
configuration, and an intraparticle term for the central
species when they are isolated at the given intraparticle
configurations.’® Expressions for the various symbols
in the above equations in terms of electronic wave-
functions and their properties may be found in Ref.
7(a), but are not needed for derivation of the final
equations, (13), (24), and (29).

For certain calculations, such as those of the spectral
properties, it is convenient to consider the central
species s at any specified nuclear configuration and to
investigate their interaction with each other and with
the remainder of the system, M. The many coordinates
of M, =, are allowed to fluctuate in accordance with
the appropriate statistical-mechanical distribution.
Classical statistical mechanics is used for this solvent
motion, partly because of convenience and partly
because much of the discussion is associated with
orientational and translational motions. Some of the
results should persist when a quantum distribution
function is used, however, since the functional de-
pendence of the distribution function on charge distri-
butions is of major importance in the derivation, rather
than the specific form of the distribution function.

The polar interparticle interactions influence the
free energy of the system. We consider a system of
any given volume. The polar contribution to its Helm-

15 The “nonpolar” interparticle term includes London dispersion
and electron exchange contributions to interparticle interaction,
and is taken to be additive with the polar one. &7
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holtz free energy?® at this constrained volume is defined
as this Helmholtz free energy minus that of the un-
charged system (p,°=0) for the same volume, and is
denoted by F. Later in the derivation F is related to
the Gibbs and Helmholtz free energies of charged and
uncharged systems, each having an equilibrium volume
appropriate to prevailing pressure p, thereby taklng
into account electrostrictive eﬂects

If U(0) denotes U when all p,° vanish, then F is
given by Eq. (4)8:

F=—kTn em(knd“// (

The values of py°(r) and of p;i*(r) at any point r
depend not only on r but also on the coordinates of
the instantaneous intraparticle configuration of the
medium <.

We also define a hypothetical “optical polarization”
system as a system having a polar contribution to the
free energy F°? given by (5)8

For=(U—-U(0)),

G

(5)

where the average is with respect to the distribution
function of the uncharged system

A )

Thereby, the solvent medium in the [op] system re-
sponds to a charging of the solute molecule only via-an
electronic polarization of the solvent molecules.

For any configuration < the potential-energy differ-
ence between the initial state [0] and the final state
[1] of the system after light absorption or fluorescence,
becomes the difference between *polar’” and other
terms, denoted by UP°! and U"P, respectively,

Uy—Uo= (U 4-Uy™?) — (Ug*4-Uo™).  (6)

By the Franck-Condon principle, U; and U, are to
be evaluated at the same nuclear coordinates of the
entire system, those of the initial state. The mean
polar contribution to the spectral shift is U po!— Uype!
averaged over the equilibrium configurational dis-
tribution function for this initial state of the entire
system, at the given volume of the system. The volume

18 The Helmholtz free energy of a system in thermal equilibrium
at temperature T, of arbitrary volume V, having the specified
solute molecule at a specified intramolecular configuration of the
solute and fixed in position, is —2T Inf exp(—H/kT)dQ/N|. The
N1 allows for mdxstmgulsi:abxhty of the solvent molecules, H
is the Hamiltonian, dQ is the phase-space volume element in
v space divided by the appropriate power of 4, and the many-
dimensional integration over dQ is such that the system is confined
to a volume V. (The N1 is replaced by a product of factorials if
there is more than one “solvent” component, such as added salt
or mixed solvents.) Integration over the momenta coordinates is
straightforward, yielding the usual factor which is the same for
the charged and uncharged systems and yielding a configurational
integral j’ exp(—U/kT)dr/N! The common factors cancel when
the F’s in Eqs. (4) and (5) are computed.
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of the system has no time to change during the rapid
spectral transition. In the case of fluorescence we con-
fine our attention to systems of solute molecules whose
fluorescent lifetime is sufficiently long that most of them
find themselves in an equilibrated solvent environment
before fluorescing.

When saturation of electronic polarization is absent,
we may expand U in powers of the p,° and, in this
standard approximation, neglect powers higher than
the second in all p;°

U=U©O+UW)+U(). )

U(0) is the sum of a term independent of p;° and of
one containing only the second power of pa° 7 U(0)
does not depend on p,°. U(1) is bilinear. It contains
terms of the first power in p,° and of the first power in
px° and vanishes when either p,° or pp° vanishes. U(2)
contains terms of the second power in p,° and is in-
dependent. of par®.

Since the polar contribution to U(0) is the same in
the initial and final states, the polar contribution to
the spectral shift, averaged over all configurations of
the initial state [0], is given by (8}, and is denoted by
AEr .

AEp= (Upo'— Uyl )y
= (Ur(1)+U1(2) = Uo(1) —Uo(2) )o, (8)

where ( )o denotes the average with respect to the
configurational distribution in the initial state [0] at

the given volume .
1o/ [l

Equation (8) represents the shift for any given in-
ternal coordinates of the solute. One must then average
over these vibrational coordinates, in accordance with
the initial equilibrium distribution. If one neglects any

"dependence of the polar term (8) on the vibrational

state, as we do, Eq. (8) then represents the polar shift.

FLUCTUATIONS

The deviation of any function y from its mean value
(v) is denoted by &y,

dy=y—(y). (10)

We neglect any correlations in the fluctuations of the
polar and the nonpolar contributions to. U;— U,
That is, (6(UP°!—UPY)d(U"»—Us™P) ) is assumed
to vanish. For any spatial configuration of the atoms
in the solute molecule, the fluctuations in the polar
term are primarily due to rotational motions of the

17 Thereby, only the correlation of fluctuations in U;(l)-i-
U1(2)— Uo(l) Uo(2) with fluctuations in the nonpolar contri-
bution to U, — Uy is neglected. [Any polar term in Uy ((?) and U, (0)
cancels in Uy~ Us.]
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solvent molecules. The fluctuations in the nonpolar
term are due at least in part to translational fluctu-
ations of positions of the solvent molecules. There are
also fluctuations in vibrational coordinates of the
solute, and we ignore any correlations between this
vibrational contribution to broadening and the polar
contribution.

We obtain

(Lo(Ur— Uo) I Yo= ([8(Urre1— Uot) Ity
+{[o(UrP—Us») Yo (11)

We wish to calculate the polar term in (11). We
first note that since U(2) does not depend on p°,
unlike U(0) and U(1), it is insensitive to the usual
rotational and translational fluctuations of the medium
that occur in condensed phases. Hence, we may neglect
the 6U(2)’s. From (7) and (11) we then obtain (12)
for the polar contribution, &, to the mean-square fluctu-
ation in energy difference of the initial and final states

&= ([8(U*!—Tr") I Yo= ({S[(U(1) — Us(1) ]} 2.
(12)

EQUATIONS FOR THE SPECTRAL SHIFTS

The terms in (8) have been expressed in Ref. 8 in
terms of certain free-energy changes. One can find the
following result for the polar contribution to the spec-
tral shift from Eqgs. (15) and (18) of Ref. 8(a), ap-
plicable when the generalized polarizability operator
4, is the same in the two electronic states of the solute
(a correction term for a change of 4, is given later) :

AEp= Fi— Fo+Fy_ov— Fi,. (13)

In (13) F, and F, are the polar contributions to the
Helmholtz free energy of a system in which the solute
is in its final and initial electronic states, respectively,
and in which the environment is in thermal equilibrium,
but at the given initial volume V. Fy_, is the correspond-
ing contribution for a hypothetical solute whose per-
manent charge distribution is that for the state [1]
minus that for the state [0]. Fep,q is the polar con-
tribution to the free energy of a system in which the
medium responds to the [1]—[0] charge distribution
only via an optical (i.e., electronic) polarization. These
equations apply to dielectrically unsaturated systems
and, when the F’s are properly interpreted,® to par-
tially dielectrically saturated systems as well. All F's
refer to the same initial volume.

From Eq. (13) one obtains (14) and (15) for the
polar contribution to the spectral shift of absorption,
Ahy,, and that of fluorescence, Akv,

Ahwg= F,— Fn+F°pa—v" Foy,
—8hvy=Fy— Fot-Fory —F,

(14)
(15)
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where ¢ and g denote excited and ground electronic
states, respectively.
Addition of these two results yields (16)

hA(ve—v;) = Fo®_y+Fov,_ ,—F, o—F,.  (16)

When F is an even function of the charge distribution
Eq. (17) follows

hA(ve—vs) =2(Fov,_,—F,_,). (17)
EXPRESSION FOR SHIFT IN TERMS OF
GIBBS FREE ENERGIES

The Helmholtz free energy of a charged system of
volume V, which may or may not equal its equilibrium
volume V, at the prevailing pressure p, is denoted by
A(T, V). The Helmholtz free energy of the uncharged
system of volume V is A9 (T, V) and its equilibrium
volume is V®. We introduce quantities G(T, p, V)
and G(T, p, V), defined by (18) and (19). When
V in (18) equals V., G(T, p, V) is the usual Gibbs
free energy of the system at the pressure p; G is then
a function of T and p alone. Similar remarks apply to
G\9(T, p, V) when V in (19) equals V©

G(T, 5, V)=A(T, V)+pV, (18)
GO(T, p, V)=AO(T, V) +pV. (19)

It can be shown!® that G(T, p, V) —G(T, p, V.) is of
the order of (V—V,)? and that

G(O)(T, P: V) _G(O)(T’ P: V(O))

is of the order of (V— V)2, Thus, it follows that when
second-order terms are neglected 4 (T, V) — A®(T, V),
which equals G(T, p, V)—G9(T, p, V) according to
(18) and (19), also equals

G(T: P, Vc) _G(O)(T, P; V(O)).

The latter is the polar contribution to the Gibbs free
energy of solvation, and contains electrostrictive effects
since V, need not be the same as V©®,

Since each F in Eq. (13) for the shift is by definition
A(T, Vo) —AO(T, V,), where V, is the volume of the
initial state [0]], we see that each F is also the polar con-
tribution to the Gibbs’ solvation free energy G( T, p)—
G®(T, p), on neglecting the second-order terms. (We
omit the ¥, and V©, to indicate that the equilibrium
volumes are implied, as in the conventional notation.)

Somewhat more care is needed in the analysis of
Fer, which refers to a system not only constrained to
a given volume as was F but also constrained in its
response. However, F°P should be approximately the

'8 Consider for example G(T, p, V) —G(T, p, V,). This term
equals (3G/dV)r,,(V—V,.) plus second- and higher-order terms

in (V—V,), aG/3V being evaluated at V="V, However, differ-
entiation of (18) shows that (8G/aV)r,, equals (9A4/dV)r+p,
which vanishes at ¥ =V, according to a well-known thermodyamic
relation. (That relation applies only at V= Ve, of course.) Thus,

the term G(T, p, V) —G(T, p, V.) is of the order of (V-Vy3
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same for nonpolar solvents, and the major solvent
effect in Eq. (13) should be on the F’s. We recall that
under certain conditions!® F°P is exactly equal to an
expression of the type (4) for a nonpolar system [one
for which U(1) vanishes]. These conditions are ful-
filled for dielectric continuum treatments, for example.!®
Thus, F1°? in Eq. (13) is regarded as the polar con-
tribution to the Gibbs’ free energy of a nonpolar system.

BEHAVIOR OF EQ. (13) AND SOLUTE POLARITY
When the initial state is nonpolar Eq. (13) becomes
AEp=F°r, (20)

which is insensitive to the polarity of the solvent. In
this case the polar contribution to the spectral shift
does not vary markedly from solvent to solvent.
Thereby, one has a test of solute polarity: The polarity
of the initial state is small when the shift does not vary
appreciably with solvent polarity; the polarity of the
final state is small when the shift of the reverse tran-
sition does not vary appreciably with solvent polarity.
Consequently, the measurement of solvent shifts for
both the absorption and fluorescence spectrum is de-
sirable, when feasible.

Equation (13) also has a simple form when the final
electronic state is nonpolar or, more generally, when
its charge distribution is ‘“‘orthogonal” to that of the
initial state in a sense defined by Conditions (a)
and (b):

(a)
(21)

(b) for any configuration < there is an equally prob-

able one %', such that the magnitudes of U:(1) and
U;(1) are unchanged and such that either U;(1) or
U;(1) changes in sign but not both, when the coordi-
nates are transformed from < to <’.
In (21), ¢,® is the potential at r for any configuration
< in a system for which p,° is set equal to 0. In (21)
( ) is the average for the uncharged system, as in
Eq. (5).

We note that all quantities appearing in Conditions
(a) and (b) are linear functionals of the p,%’s: U(1) is
linearly dependent on the p,° and vanishes when the
ps° vanish; ¢;—¢:@ is seen in Appendix I to have a
similar property. Conditions (a) and (b) are satisfied
trivially when either state is nonpolar. They are also
satisfied under other situations, for example, when the
charge density in the two states ¢ and j are each repre-
sented by a dipole, but oriented along mutually per-
pendicular symmetry axes of a geometrically symmetri-
cal solute molecule—an ellipsoid, sphere, cylinder, etc.
(At best, such a molecule could be only approximately
symmetrical, however.)

[<¢c;_¢a(o) )stodr= 0-

¥ For a discussion of nonpolar and optical polarization systems
and of these conditions see Ref. 8(a).
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When Conditions (a) and (b) are fulfilled it can be
shown that (22) is obtained (Appendix I)

Fy_o=F+F,, IFy_°P= Fy°P+- F°P, (22)

Thus, when either the final state is nonpolar (and
hence when Fy= F;°?=0, and so Fi_o= F_y, F1_°»=F_y)
or when its charge distribution is “‘orthogonal” to that
of the initial state one finds

AEr= Fyop+F_op— Fy— F_=2F°»+ FeP—2F,, (23)

Fy°P vanishing for a nonpolar final state.

When F°P is relatively constant among different
solvents, it follows from (23) that differences in spec-
tral shifts for two solvents should be equal to twice the
difference of polar contribution to the solvation free
energy of the initial electronic state of the solute in the
two solvents. The fact that it is equal to twice the latter
difference rather than to the difference itself reflects
the fact that solvation lowers the energy of the polar
state by an amount approximately equal to the solva-
tion free energy but the strained state of the medium
in which the excited state is formed raises the energy
of the latter by an amount roughly equal to F¢°®— Fy.
It should be noted that Fy°» and F, are both negative,
that | Fo|>| *? |, and that FeP—F, is a “strain”
term, for it vanishes when the solvent is not capable
of orientation or vibrational polarization.

In the case of a diphenyl betaine molecule,* where the
formal charges are an O~ at one end of the molecule
and an Nt in the center, with the two separated by
a phenyl group, the AEr in water minus that in iso-
octane is 26 kcal mole~!. In the case of a substituted
pyridinium iodide® this difference is 34 kcal mole™.
Under the assumption of a nonpolar excited state, the
corresponding polar contribution to the free energy of
solvation of the two dipolar compounds in water is
thereby estimated to be —13 and —17 kcal mole™,
respectively. Some caution here and later should be ob-
served, however, for hydrogen-bonded solvents if a
local saturation effect occurs; the interpretation of
Fi_y, and, hence, of F_y, becomes more complex then.
An alternative description for the nearest-neighbor
solute-solvent interaction could be preferable in that
case.

If, instead, one assumes that the presumably small®
dipole moment in the excited state of the pyridinium
iodide is not actually zero but is finite though perpen-
dicular to that of the ground state, Eq. (23) still applies,
and so, therefore, does the estimated polar contribu-
tion of —17 kcal mole™ to the solvation free energy of
the ground state.

EQUATION FOR THE BROADENING

The fluctuation term in Eq. (12) appears in Eq.
(16) of Ref. 8(a) in an incidental way. On combining
that equation with Eq. (7) there we find

#=2kT(Fron—Fy), (24)
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where Fron is the polar contribution to the free energy
of a system having the charge distribution [1] and
having an orientation polarization appropriate to the
initial state [0]. The rhs has been evaluated in Ref.
8(a), namely in Eq. (14) there for dielectrically un-
saturated systems or in Eq. (18) for partially saturated
systems. In either case we find

52= ZkT(Fj_oop‘— Fl_o), (25)

where proper interpretation is to be given to the F’s
when partial saturation occurs. When there is a change-
of-polarizability term in Frer—F, it is simply to be
added to F,_°P— F;_,, since the above derivation of
(24) did not neglect this possibility.

If 6, and &, denote the broadening for the absorp-
tion and fluorescence spectra, respectively, then one
obtains from (16) and (25) an equation connecting
broadening and spectral shift

8a2+82= 2k ThA (va—vy). (26)

Some particular cases arise: (1) when F is an even
function of the charge distribution Eq. (25) shows that
6a2 and &2 are equal

8.2= 812; (27)

(2) when the ground state is polar and the excited
state is not, it was noted earlier, the absorption spec-
trum but not the fluorescence spectrum will be shifted
by changing the solvent polarity (and conversely).
In this case Ay, is relatively independent of solvent
polarity. When F is an even function of the charge dis-
tribution we then obtain (28) relating the difference
in §,2 and in Ay, for two solvents

A{62) = A{EThAv,). (28)

APPLICATION TO THE DATA ON BROADENING

If the electronic transition moment is roughly con-
stant over the band, the mean-square energy differ-
ence of initial and final states, appearing on the lhs of
(11), equals a mean-square “half-bandwidth,” as de-
fined below. One normally measures instead the band-
width at half-maximum. If in the neighborhood of its
maximum an absorption or fluorescence band is ap-
proximately a Gaussian function of #, the distance from
the maximum, the intensity at x is proportional to
exp(—=x/c)% In this case the root-mean-square half-
bandwidth (x?)} is readily found to be ¢/vZ and the
half-bandwidth at half-maximum to be ¢(In,2)% The
latter therefore equals the former multiplied by 1.2.
The bandwidth therefore equals 2.4 times {x?)}, the
quantity appearing on the lhs of (11).

We make the correlation assumption embodied in
Eq. (11). It then follows that the mean-square half-
bandwidth is the sum of a polar term and of a non-
polar term. The latter arises in part from the vibra-
tional fluctuations of the solute, and we assume thereby

that correlations of the solute vibrations and solvent
rotations can be ignored.

Dimroth and co-workers have recently published
spectra of some betaines* to which the present results
may be applied. For example, the absorption maximum
of betaine-26 in methanol is shifted from that in dioxane
by about 6000 cm™. Dimroth and co-workers point
out that the excited state should be relatively nonpolar.
Equation (28) may then be applied. At room temper-
ature the difference in mean-square half-bandwidths
in the two solvents computed from this equation is
1100 cm™. Hence the predicted difference in width
at half-maximum in the two solvents is 2600 cm™.

Because of the presence and distorting effect of
another band on the short-wavelength side we do not
estimate the bandwidths from the spectra directly.
Rather, it is better to estimate the half-bandwidth
at half-maximum, namely, the half-width on the long
wavelength side. From this difference the bandwidth
at half-maximum in the two media is estimated to be
about 2500 cm™!, in good accord with the predicted
value. Somewhat analogous remarks apply to a com-
parison of betaine-1 in feri-butyl alcohol, methanol,
and water, though not for betaine-30 in ethanol and
in water, but we omit the details.

The total bandwidth at half-maximum found experi-
mentally from the spectral shape in the above way is
about 3000 to 5000 cm™ in a relatively nonpolar
medium. (Only a few curves were published, however.)

It would be desirable for the fractional share of the

polar contribution to be larger, if Eq. (28) is to be
tested more accurately. If a system can be found in
which the vibrational potential-energy functions are
sufficiently similar, the width can be reduced somewhat.
The bandwidth for merocyanines in a suitable polar
solvent is as small as 2000 cm™, and is itself perhaps
due principally to the polar interactions. The narrow-
ness of the band was ascribed® to the above behavior
of the vibrational functions, an argument that was
supported by other evidence.?

THEORIES AND DATA ON SPECTRAL SHIFTS

The present work can be used to assess the very
interesting results of Ooshika' and McRae® obtained
by more approximate methods. As noted earlier these
authors used quantum-mechanical perturbation theory
and then estimated the averages of various polar terms
by treating the solvent as a dielectric continuum. The
solute molecule was treated as a sphere containing a
polarizable point dipole. Several additional approxi-
mations were introduced to facilitate the involved
manipulations. The latter approximations and that
of a point-dipolar solute in a sphere are absent in the
present treatment. The approximation of a dielectric
continuum also has not been introduced yet.

# J. R. Platt, J. Chem. Phys. 25, 80 (1956) ; cf. Ref. 3(b). Both
this article and Ref. 3(b) contain extensive references to the two-
resonant structure theory of the merocyanines, which explains a
large polarizability effect.
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Ooshika’s results were later simplified by Lippert,?
who omitted the dispersion terms and set the solute
polarizability equal to zero. Application of this modi-
fied Ooshika equation permitted Lippert to calculate
dipole moments of excited states from data on spectral
shifts.2 McRae has used his treatment to explain the
interesting reversal in spectral shift with solvent po-
larity for the merocyanines, by assuming an appreciable
difference in polarizability of ground and excited states
and considering a quadratic Stark effect.?

Equation (13) can be used to compute spectral shifts
and to include the change-of-polarizability effect just
mentioned. Thus, all of these results can be compared
directly. For completeness, we give in Appendix II
the F values for a variety of solute models which have
been used in the literature to calculate polar inter-
actions by treating the solvent by a dielectric con-
tinuum, and which can now be applied to the present
problem of spectral shifts. Alternatively, a statistical-
mechanical model can be used to calculate the F’s ap-
pearing in Eq. (13).

Upon applying the models in Appendix II and com-
paring the results with Ooshika’s, McRae’s, and
Lippert’s one finds:

(1) When the polarizability of the solute molecule
is set equal to zero, the results of McRae and Ooshika
for the polar term are in agreement with each other
and in agreement with those computed from Eq. (13)
when the sphere-dipole model is introduced in the latter
to compute the F’s. This model was used by Lippert.?

(2) When the polarizability of the solute molecule
in its initial and final electronic states is not taken to
be zero but is taken to be the same, the results of
McRae and Ooshika disagree. If in Eq. (13) one in-
troduces this same point-dipole model, the result agrees
with that obtained by Ooshika to first order in the
polarizability.? The source of disagreement in higher

2 Correction is made for several typographical errors [Ooshika
(private communication)] in Qoshika’s basic equation (the first
one in Sec. 3 of Ref. 1): The p2 in the first line should be replaced
by (sd+ne?)/2 and a 2(n2—1) the last term but 1 should be
replaced by n2—1.

In making the comparison with the corrected equation, we ob-
serve that his

mgy (g wol m)?/ (em—eg)

and
"E.(c | wo | m)?/ (em—eo)

equals «,/2 and a,/2, respectively, and that his
mgatl!n(g | wol m) 1/ (em—eg),

.,334,[‘" (e] wo| m) P/ (em—e0),

and

mgﬂfw (gl wolm)ICuele | wolm)]/ (em—es)

equals y,° L‘o"{v/ 2, uoruoe/2 and poe wearp/2. [For typographical
reasons, QOoshika’s letters with arrows have been replaced by
boldface letters. The dots in the scalar product were not specified,
but examination of Eqs. (14) and (155) there and of his equation
just preceding Eq. (27) suggests the choice just adopted.] The
final two terms in the cited basic equation can be i(s)entiﬁed as
dispersion terms. The principal shortcoming lies in third term
involving a,—ay; it contains an additional approximation.
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terms is the neglect of successive effects of the polarized
dipole on the reaction field in the earlier work.

(3) When the polarizability of the solute is different
in the initial and final states there appears to be no
agreement. This term was, in fact, the most difficult
one to evaluate and requires an elaborate calculation.
The result in Ref. 8(a) is correct to first-order differ-
ences in polarizability (for the given initial approxima-
tions, without containing the additional ones intro-
duced by McRae and Ooshika). It is given later by
Eq. (30). Its particular value for the polarizable point
dipole in a sphere model, embedded in dielectric con-
tinuum, is given in Eq. (37).

(4) When there is an appreciable separation of
charge in the polar solute the use of a point-dipole
model can lead to appreciable error, as discussed in
Appendix II.

(5) If one considers a somewhat more general shape
than a sphere for the solute, an ellipsoid for example,
and introduces the value of F for this model one ob-
tains some estimate of the error involved in using a
sphere, as in Appendix II or in Ref. 2(b). The error
can either be reduced, the calculations show, by treat-
ing the ellipsoid as a sphere whose diameter is approx-
imately the major axis of the ellipsoid, 2a in the case
of a molecule whose dipole moment is oriented along
this axis, or simply by treating this molecule as an
ellipsoid.

(6) On using the data obtained by Kosower® for
pyridinium iodide in polar solvents and using the model
of separated charges, it is estimated from the separated-
charge formula that only the dipolar contribution is
appreciable. From the spectral data, the polar con-
tribution to the free energy of solvation of the ion-pair
ground state is estimated to be —17 kcal mole™, with
the aid of Eq. (23), as noted earlier. The dipole mo-
ment estimated from this solvation free energy and
Eq. (A11) is about 10 D, a not unreasonable value.

(7) While McRae’s interesting interpretation of the
reversal of spectral shift with solvent polarity for the
merocyanines may be qualitatively correct, the quan-
titative results need correction, due to the discrepancies
noted in Secs. 3 and 4. In the case of the “polarizable
point-dipole-in-a-sphere’” model used by McRae the
new expression for the shift is given in the following
section. There exists a two-resonant structure explana-
tion of this (presumed) large polarizability difference
of initial and final states of merocyanine.?

REVERSAL OF SPECTRAL SHIFT DUE TO
POLARIZABILITY DIFFERENCES

On using Egs. (9), (15), and (35) of Ref. 8(a), the
polar contribution to the spectral shift is given by
(29), to first order in the polarizability operator dif-
ference, A,,— A4,,

AEp=A+A,, (29)

where A is the normal term and A, is the term due to
a polarizability operator difference in initial and final
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electronic states?
O Ify_or" aF,yr
o= (55 _+5)
9y Jy=0 \ 07 /=0

+E / (Po1_0P D1-0,00A A4 (o JodT,  (30)

where the polarizability operator 4, in F;_°® and
Fo is
As7=Aco+'Y(Au—Aco): (31)

and where (@s)0 and ($1-°? )1—o,0p are the values of
¢, at the point r in the [0] and [1-0, op] systems, each
averaged over the equilibrium statistical-mechanical
configurations in the respective systems. (In dielectric
continuum theory such a (¢,) becomes the potential
¥(r) minus the contribution directly due to particle s.)

For illustration and comparison with earlier work
the value of A, is given below for a solute treated as
being a sphere of radius ¢, as having a permanent point
dipole of moment @ and the usual induced point-dipole
polarizability, «, and as being imbedded in a dielectric
continuum. For this model we have?®

p° (1) =—V,8(r—r,)* u, (32)
AT, ¥) =V,5(r—1.) -aV,, [ drs(r'—r), (33)

where r is any point in the system and where r, is
the position of the permanent and of the induced dipole.
In this case the last term of (30) becomesss

— (V416 )1-0,0p (1— t0) (Vebsq o. (34)

Each — (V¢,) is the reaction field of the solute s which,
in the absence of external electric fields, equals®

Ju/(1—fa), where
f=(1/a)[2(D-1)/(2D+1)]. (35)

On using the value of F for this model given in Ap-
pendix IT the following results are obtained?:

A=—[*uoti MFop(m—w) I (m—wo), (36)

A= =3[ M*uot *op(v1— wo) Plav—a0),  (37)
with
fr=f(1—fa)7,

where

Frop=Sfop(1—fopa)™2,  (38)

Jor=2(Dop— 1)/“3(2Dop+1); (39)

and where yo and y; are the values of u in the initial
and final states and oy and a; are the polarizabilities
of the solute in these states.

When the final state is less polar than the initial
one, A is positive for a polar medium and increases
with increasing solvent polarity. Since a; is greater

#In obtaining (30) from Ref. 8(a) for present use we have
equated the np and op systems, as one may do for a solvent-
continuum treatment [and for some other systems, Ref. 8(a)].

# Compare Eq. (42) of Ref. 8(a).

than ay if 1 refers to an excited state, while x; in (36)
is less than po in magnitude and f*—f is positive, A,
is a term of opposite sign to A; A, then increases quad-
ratically with solvent polarity (i.e., with f*—f*,.)
while A increases only as the first power. However,
initially A is normally larger than A,. The maximum

- shift occurs when dAEr/df* vanishes, i.e., when (40a)

obtains

wor { (w1— ) L f* ot *op (w— w0) J(er—as) } =0.
(40a)

If the primary dipole moments u; and y, can be esti-
mated then (40a) permits some estimate of a;—ay
to be made from the data, but with caution because
of the approximations inherent in the point-dipole-
m-a—sphere model. More elaborate models, such as
those in Appendix I, could be introduced into (30)
instead. This reversa.l of solvent shift would thereby
provide information on polarizabilities of excited
states, if McRae’s interpretation® is qualitatively
correct.

In studying the spectral-shift reversal, solvent mix-
tures of varying composition were used. Because of
the possibility of selective solvation, the calculation
of f* in Eq. (35) from the bulk dielectric constant of
a solution is uncertain. Some rough estimate of the
f* for a mixture might be obtained by examining its
shift of the spectrum of a solute for which no spectral
reversal occurs but which also has roughly the same
dipole moment as the original solute. By means of a
calibration curve obtained with pure solvents the f*
for a selectively solvated solvent mixture might then
be obtained.

When the polarizability ap is not known, it may be
convenient to regard the solute in the way it was re-
garded in some early work in solvent-solute inter-
actions, namely as a medium of low dielectric constant,
D;2 It has been shown’™ that the formalism is similar
to one based on ay, to the leading induced moment
term (i.e., to the induced dipole term), provided e
is replaced by a function of D; which depends on the

size and shape of the solute. For a sphere we have’™

D;=(d*+2a)/(d*~a). (40b)

For an ellipsoid the corresponding result is given by
Eq. (27) of Ref. 7(a). When a4 is not known, D; can
be taken to be about 2 in the first approximation and
ap calculated from (40b) or from the corresponding
expression for the ellipsoid.

APPLICATION TO THERMOCHROMISM

A change of temperature can shift the absorption
spectrum by shifting an equilibrium between two
different forms or by modifying the configurational
distribution of molecules in the medium. When the

% For example, (a) g . Kirkwood and F. H. Westheimer, J
Chem. Phys. 6 506 1938) (b) F. H. Westheimer and J. G.
Kirkwood 3bid. p
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latter is the principal effect, the polar contribution
to the temperature coefficient of the shift found from
(13), on recalling the relation of the ’s to Gibbs free
“energies, is

— (8AEr/aT)p= S1— So+ 51— S1y,  (41)

where the S’s are the polar contributions to the en-
tropies of the systems cited. S1—¢°P is negligible. When
-the final state is nonpolar S; vanishes and S;_o becomes
S_o. When F (and hence S) is an even function of the
charge distribution, the expression becomes

— (0AEr/dT)p=—250. (42)

Equation (42) also applies when the final charge dis-
tribution and the initial one are “orthogonal” in the
sense defined earlier, as one may show by differentia-
tion of (23) on assuming S to be an even function as
before.

From data obtained for betaine-30, there would
not appear to be any simple cmrelatmn between
(0AEr/dT)p and AEr. If the nonpolar contribution
to the temperature shift is given by some analog of
(41), this lack of correlation supports the contention
that entropies of solvation are more sensitive to non-
polar effects than are free energies.

When the temperature effects, dvmax/dT, for the .

least polar and the most polar (alcoholic) are sub-
tracted, the difference in dvm./dT for diphenyl be-
taine is about 10 cm™!-deg™. If this difference is
largely —ZSn, the polar contribution to the entropy
of solvation is about —15 eu at room temperature.
Some knowledge of a nonpolar contribution to dv/dT
is obtainable when one state is nonpolar and the dv/dT
is measured for a transition starting from that state.

~ EFFECT OF PRESSURE ON THE SPECTRAL SHIFT

The spectral shift depends on pressure partly because
of a difference in size of the solute in its initial and final
electronic state and partly because of a difference in
electrostrictive effects. The second of these causes is
due to a difference in polarity of the solute in the two
electronic states, and we consider its contribution.

Upon differentiating (13) with respect to p and re-
calling the relation of the F’s to Gibbs free energies we
obtain

(3AEr/9p)r=V1—Vot+VieP—Vi,  (43)

where the V’s are the polar contributions to the volume
of solvation of the solute in the [1], [0], [1—0, op],
and [1-0] systems.

When the initial and final charge distributions are
“orthogonal” Eq. (43) becomes (44), on assuming
Ve=V_,,

(0AE/0p) 1= VP4 VP — 2V, (44)

If the nonpolar contribution to the pressure effect,
dvmax/dp, were solvent independent or were small
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(and it may not be) then the value of dAEr/dp for
a polar solvent minus that for a nonpolar one would
be —2(Vy— V°P). If one state were nonpolara measure-
ment of dv/dp for a transition starting from that state
would provide some information on the magnitude of
a nonpolar term.

A dielectric continuum estimate of the relation be-
tween dAEy/dp and dAEr/dT may be made as follows:
The volumes appearing in (44) can be calculated by
differentiating the F’s appearing in Eq. (13), bearing
in mind the relation of F’s to Gibbs’ free energies.
However, we note that the ratio of a V to the corre-
sponding S is independent of the solute model when
the ‘solvent is treated as a dielectric continuum

V_ dF/dDaD/3p _  (3D/ép)r
S dF/dDaD/sT  (aD/oT)e

The value of dAEr/dp for a polar solvent minus that
for a nonpolar one was —2(Vo— V°?), while the value
of AEr/dT was 2(So—S¢°?). Thus, when V¢ and
So°P are negligible we obtain (45) for ‘“orthogonal”
charge distributions, bu! only when the nonpolar con-
tributions in the numeralor cancel and those in the de-
nominalor cancel

(GAET/GP) polar— (aAET/aP) nonpolar
(aA«ET/a T) polar™

__(8D/ap)r
(OAEr/T) nonpotar  (0D/3T)p

(45)

The value of the ratio on the right is roughly about
—0.013 deg atm™! for ethanol.?® Since dAE;/dT for
diphenyl betaine was about 10 cm™!-deg™; as noted
earlier, one would predict from (45) that

(aAE‘/I‘/ap) polar™ (aAET/aP) nonpolar

would be about —0.15 cm™!-atm™!. There appear to
be no measurements of the pressure effects with polar
solutes for which the temperature effect has also been
measured.

EFFECT OF ELECTRIC FIELDS ON THE
SPECTRAL SHIFT

An electric field can affect the spectral shift by inter-
acting differently with the permanent dipole of the
solute in the initial and final state and by inducing
a different dipole in the two states when the polariz-
abilities in the initial and final states differ. Equation
(13) applies as before® but now the calculation of
each F is made for the solute having any given orienta-
tion of the solute in the electric field. Broadening should
occur because of the Boltzmann distribution of solute
orientation in the applied field. The contribution of the
solute polarizability difference to the electric field
effect may be computed by employing (13), (29), and

* Landolt-Bérnstein Tabellen, edited by K. H, Hellwege and ,
A. M. Hellwege (Springer-Verlag, Berlin, 1959), "6th ed., Vol. II
Part 6, pp. 678-689.
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(30) and taking the presence of the electric field into
account. We consider, for simplicity, the point-dipole-
in-a-sphere model described earlier. However, more
complex models, such as the others in Appendix II,
could be used instead.

The F;_5in Eq. (13) depends only on the difference
of the permanent charge distributions in the [0] and
[1] systems. Since the permanent charge distribution
on the electrodes cancels in computing this difference,
the latter electrode charge does not affect Fy_o. Sim-
ilarly it has no effect on Fi_°® or on {(¢,,—°?) in Eq.
(30). For the value of any other F it is convenient to
use (46)2%

A=t 3 [ @nipacir+ [ (60)oucir), (40

where 2=1 or 0.

In the present case there are three s’s, namely the
solute and the two electrodes. The solvent is treated
as a dielectric continuum in this section in the standard
way; (6,®) in (46) vanishes in this approximation.
For the dipolar solute p,° is given by (32) and 4, by
(33). For one plane electrode p,° is ¢%(x), and for
the other p,° is —¢%(x— L), where ¢° is the “perma-
nent” surface charge density of the first electrode,?
% is the coordinate normal to the two plane-parallel
electrodes, and the latter are situated at x=0 and
x=L. The A, of each electrode in the present discus-
sion is such as to give rise to the usual electrostatic
image charge distribution.?

When the solute is far from the electrode the in-
fluence of the electrode image charge on the dipole
vanishes, and the field inside the sphere is found from
standard electrostatics to be the sum of two terms®:
a nonuniform field from the net dipole of the solute
m and a uniform field R from the electrodes and the
polarized medium. The net field inside the sphere is

% Equation (46) is deduced in Appendix III. It may be com-
pared formally with the usual dielectric continuum expression:
{@ux ) is the usual macroscopic electrostatic potential at r minus
the self-potential of s. It is also the microscopic potential at r minus
the self-potential of s, averaged over the equilibrium statistical-
mechanical distribution of configurations = of the solvent mole-
cules. When one of the typical approximations in continuum
theory is made, namely of neglecting (¢,¢) in the hypothetical
system for which p,° vanishes, Eq. (46) formally resembles the
usual®® continuum expression, without containing the continuum
aﬁpprt()gc(i)r)nation as yet. The latter can then be introduced, as in

£q. .

¥ That is, ¢° is the charge density for the given potential drop
across the electrodes and for the given medium, but excluding
any contribution from the image charge arising from the specified
solute molecule.

2 When a particle (such as an electrode, a medium, or a solute)
is treated as a continuum, as it often is, the functional equation
relating the induced charge density pi= to 4, still apBlies but now
A, has a value found from standard electrostatics.™ If one uses
electrostatics, as we do in obtaining (50}, pi® for the electrode is
then obtained from the usual image charge calculation. When
the solute is far from the electrode, as in the present case, the
influence of pi® vanishes, and so we can ignore it.

®Tor example, W. F. Brown, Jr., Encydopedia of Plysics,
edited by S. Flugge (Springer-Verlag, Berlin, 1955), Eqs. (9.4)
(9.14), and (26.2). We use units for which y=4x there.

derivable from a potential ¢(r), given by (S0)

m=u+aR, (47)
R=gE_+fm, (48)

where f is given by (35) and
g=3D/(2D+1), (49)

¢(r)=(m-r/r*)—R-.r (r<a). (50)

In the above equations p is the “permanent” dipole,
i.e., the value of m at zero field R, and E,, is the ap-
plied field, i.e., E,L is the potential drop in the solu-
tion between the electrodes.

The potential outside the sphere is found to be the
sum of two terms: one associated with a nonuniform
field arising from an apparent dipole moment M and
the other directly associated with the uniform applied
field E 2

¥(r)=M-r/r")—Eq1, (r20), (51)

where
M= (gm/D) — (a%fE./2). (52)
From (47) and (48) one finds
R=f*u+¢*E,, (83)
where
g*=g/(1—af). (54)

In (46) we consider first the s which refers to the
dipole, and recall that its p,° is related to u as in (32).
The value of (¢, ) for this s is obtained by subtract-
ing from (49a) m-r/s%. One then finds —ju-R for
this contribution to the first term of (46). We con-
sider next the s referring to the first electrode. The
(¢s )x is obtained from the electrostatic potential
(49b) by subtracting a term y,® which is proportional
to ¢ and which is independent of D and u. On recalling
that p,° for this s is ¢%(x) and using a symmetry
theorem® for charge distributions we find that the
contribution for this s to the first term of (46) is
—IM-E,0—1[5°(y,—¢.P)dA, where E,® is — W, M,
V. is the applied potential at x=0 (at x=L it will be
VYo— EoL), and integration is over the electrode area
A which in the final answer for the spectral shift we
allow to become infinite. Similarly, the corresponding
term in (46) for s being the second electrode is

—iM. E,m+% f W EL—§,®)dA.

3 Reference 28, Eqs. (8.8), (9.5), and (9.15).
3 For two specified charge distributions p; and p; we have

Joi(e)i(x)dr=[fpi(r)p;(t')ridr dr’'= [p;(t)¥i(r)dr,

where
i(r) =fp;(t)yrdr and r=|r'—1'|.

In applying this result to one term in the example just cited, p;
corresponds to the charge density of one of the electrodes and p;
to a solute hypothetical dipole moment M.
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Upon adding these results, noting that E,W4E,®
equals DE,, and that [y,?¢%4 equals — [y, e%4,
we obtain

F=—%9-R—%DM-EG,—% /«r"(EwL—Z;p,“))dA. (55)
1Y}
This result is to be introduced into (29) and (30).
We also note that the only s which contributes to
the last term in (30) is that for the solute molecule.
This term then becomes®

— (ae1—a) Ri*-R,, (56)

where the Ry is given by (53) with u replaced by uo
and where Ry is given by (53) with E,=0, u re-
placed by wi— o, a by a, and f by for.

On performing the differentiation indicated in Eq.
(30), and subtracting from the final expression for the
shift the value of the shift when E_ vanishes we ob-
tain (S7)

AEr(E,) —AEr(E,=0) =—g*E- { wi— o+ (01— cx)
X[l‘of*'l‘%Eoog_*’{‘(l'l_ o) f*op]l: (87)

where f*, f*,,, and g* are given by (38) and (54).

The shift depends on the orientation of the original
solute dipole. The part of the reversible work (52) of
formation of the dipole in the medium which depends
on the orientation is

AF(6)=—g*uoE,, (58)

where @ is the angle between yo and E,. The prob-
ability of finding 6 in 6, 8--d6 is

( AF(8 - AF(6
exp(— kl(‘ )) sin{)dﬂ/lgo exp(— kZ(“ )) sindd6

(59)

when the dipole is free to orient itself. When AF (0)/kT
is comparatively small or when no reorientation is
possible because of a rigid solid solvent, the orientation
in the presence of the external field E_ is random, so
that the f-dependent terms in (57) contribute to the
broadening rather than to the spectral shift. In this
case, the averaging function is sinfd6/2 instead of
(59) and one finds

AEq(E,) —AEr(E,=0)x—}(aa—a)g®E 2 (60)

When instead AF(6)/kT is not negligible but is
still small the contribution of the other terms in (57
to the mean spectral shift is obtained by multiplying
by (57), expanding AF(#) and integrating over 6.
It turns out to be proportional to E_2/£T.

Some experiments on the influence of electric fields
have been made by Kumamoto, Powers, and Heller
who studied the absorption spectrum of methyl red
imbedded in a nonpolar solid (polystyrene) and em-
ployed electric fields of about 108 V cm™!, and found

the shift to be about 10 A for the 5000-A absorption
band. They found the shift to be proportional to E_2
and noted that some broadening would occur because
of permanent dipolar effects. They found little broad-
ening and suggested that the dipole moments were not
large and did not change markedly between initial
and excited states. In this case the shift would be
given by Eq. (60). From a knowledge of the dielectric
constant of polystyrene an estimate of a;—ay can be
made from the data. Alternatively, a model such as an
ellipsoidal one could have been used instead.

The electrochromic effect studied by these authors
should provide information on the reversal-shift effect
noted earlier and embodied in Egs. (36) and (37).
It would be particularly helpful to investigate the two
effects for the same solute. A relation between them
may be examined with the aid of the above equations.

APPENDIX I. PROOF OF EQ. (22) FOR
“ORTHOGONAL” CHARGE DISTRIBUTIONS

We first note and later prove that U(1), U(2), and
the polar contribution to U(0), U#°!(0), are given by
(A1) to (A3)

1
Uwei(0) = [ oa w0, (A1)
U =3 [oop0ar, (A2)
U@ =33 [acndr, (a3)
where
Ne=ds— (. (A4)

On using Eq. (10) of Ref. 8(a) for Fy_o, F;,and F_,
and on using (A3) for their U/(2)’, one finds

Fro—F—F_4= Z /Puo"h-ndr>
— (/RD)[(U(1) U-o(1) )= (Tx(1) Y(U(1))], (AS)

where the subscript —0 denotes a system having a
charge distribution —p,,° on the s’s. In deducing (AS)
use was made of (A6) and also of the fact that the
U(1)’s are linear functionals of the p,° [i.e., U_o(1) =

U1(1)+U_(1)]
Z f Par N _odT = E / Ps_o M0,GT. (A6)

Equation (A6) itself is deduced later.

On introducing Eq. (21), i.e., on imposing Condi-
tion (a) for the “orthogonality” of charge distribu-
tions, the first term on the right-hand side of (AS)
vanishes. On imposing Condition (b) the next term
in (AS5) vanishes, and because of the symmetry of the
molecule assumed in Condition (b) both (U:i(1) ) and
{U-(1) ) vanish.
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To complete the proof it remains to establish- (A1)
to (A3) and (AG). If a parameter X is introduced into
the expressions (1), (2), and (3) for ¢;, p;i" and Ur°l,
such that A multiplies p,° wherever it appears, and if
the corresponding U? is denoted by U?, we find

=326+ (@2 —¢) Jir, (A7)

where p,”=2\p,°, pxr°=pn°, and where ¢p>—¢;® satis-

fies the following set of equations, obtained by sub-

tracting Eq. (1) for ¢ from the corresponding equa-

tion for ¢,; the equation for ¢, is obtained by setting
o . .

p:°=01n (1): .

1 1
A {0 = No.,° A DA — O
¢ — o GZ,;“ f Mo, dr+#2‘; [ ~A;(6—¢; )cfr,
(A8)

where s’ is used to indicate that the first sum does not
include a py°. Comparison with Eq. (1) shows that
(A8) is the “¢,” of a hypothetical system in which
the charge distribution is Ap,,° and in which ps°
vanishes. Inasmuch as the A(¢i—¢:®)’s and the
(¢2—¢:®)’s can be shown to satisfy the same set of
equations and the potential function is uniquely de-
termined, Eq. (A9) then follows

2~ O =N(pi— ). (A9)

One also sees from (A8) that ¢2— ¢ is a linear func-
tional of the Ap,°: It depends linearly on them and
vanishes when all Ap,° vanish. On introducing (A9)
into (A7), equating the coefficients of A°, AL, A? in (A7)
to Ur1(0), U(1), and U(2), and using (A10), Egs.
(A1) to (A3) are obtained

pM fp.°¢.<wdr= pr(bu—du®)dr.  (A10)

To prove (A10) we note that ¢;©@ is the “¢;” of a
system in which p,° vanishes, and that ¢;—¢,® is the
“¢;” of a system in which ps° vanishes. Application
of Eq. (39) of Ref. 7a then yields (A10).

To prove (A6) we note that 5;_, is the “¢;’ of a
system in which pa° vanishes and in which p,° equals
ps_o’, While 9;, is the “¢;” of a system in which pa®
vanishes and in which p,° is p,,°. Application of Eq.
(39) of Ref: 7(a) then yields (A6).

APPENDIX II: F VALUES FOR VARIOUS MODELS

1. Polarizable Point Dipole in a Sphere
The F value is given by

F=—if*e, (A11)
where f* is given by (38).

2. Separated Pair of Charges in a Low-Dielectric-
Constant Sphere

In this case the F value is given by%?

F=—jc?, (A12)
where
_, D—De& [, DintdT
c=4=%DD ,.Z.;p[l_*_D(n+1) » (AL3)

where p equals (r/a)*, 2r being the distance between
the charges which lie along a diameter, equidistant
from the center. In (A13) A4 is the same as the second
term with D replaced by unity. The relation between
D; and « is given by Eq. (40b) (typically D~D,,).
When the electronic polarization of the solute is ig-
nored, D; is set equal to unity. :

When the #=0 term suffices in the two sums in
(A13) (one sum is in 4), the result reduces to (A11)
when (40(b) is introduced for D;.

3. Separated Pair of Charges in a
Low-Dielectric-Constant Ellipsoid

When the charges are placed at the foci F is given
by (A12), where now ¢ is given by?3

(Di— D)
oD
a D.-D nw=l,3,6: 00

P, D; d.P,./d)\ 1
X[E_F dQn/dJ - (A1)

In (A14) A is again the second term when D is re-
placed by unity, a is the semimajor axis of the ellipse,
A is a/r, 2r is the distance between the two foci, P,
and Q, are Legendre functions (of A) of the first and
second kind. For large A, the use of asymptotic expres-
sions for P, and Q, leads readily to (A11).

In a calculation cited in the text, r/a was taken to
be about § for the substituted stilbenes, for the partial
charges in the excited state were assumed to be cen-
tered on the electron-donating group and on the
electron-accepting one. Comparison of this result for
hA(vs—vr) with that for the =0 term, i.e., with the
dipolar term in (A13), indicates that the value of
#e—Hg calculated from the shift is in error by 409,
if only the dipolar term in (A13) is used. The percent
error is, of course, less if the charge separation is less.

In the ion-pair calculation an effective polarizing
radius a of 2.2 A was used and a value of r/a of { was
assumed. Use of (A13) then shows that the n=0
term suffices. Kosower has suggested that the excited
state, although not an ion pair, will have a dipole
moment approximately normal to that of the former
ion pair. In this case, the two charge distributions are

c=A— (2n+1)

2 Reference 24(a); derived from Eq. (6) there.
# Reference 24(b); derived from Egs. (8), (13), and (15)
ere.
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“orthogonal” in the sense defined earlier, and examina-
tion of Eq. (23) and (A11) shows that the usual shift
should equal f*u? plus a term independent of solvent
polarity. From the slope of a plot of shift vs f* the
dipole moment uo can be estimated. There i some un-
certainty as to the value to be selected for ag. A value
of D; of 2 in (40b) was used, although a better choice
can undoubtedly be made. The dipole moment cited
in the text is the “primary dipole” u. The actual dipole
moment is slightly different because of the solute’s
polarizability and the effect of the reaction field. The
actual dipole can be computed from the primary one.

APPENDIX III: DERIVATION OF EQ. (46) FOR F

[+]

If the charge density on each p,° is multiplied by
A and the corresponding ¢,, in system [%] is denoted
by ¢, the value of F is given by the reversible work

~ term

A=l
F= f f (G Wo,2dTdN, (A15)
A=0 Jr

where { )* indicates an average with respect to the
equilibrium distribution of configurations = for the
given A. The statistical-mechanical equivalent of the
dielectric unsaturation approximation is introduced
by making (¢, )* linearly dependent on A

<¢’ak)‘)k>‘= (d’a(o) )+)\( (¢8k)k— (d’e(o) )); (A16)

where (¢n): and ($®) are the equilibrium values
of (¢s?)i* at A=1 and A=0, respectively.

Equations (A15) and (A16) then yield (46).

We conclude this Appendix by showing that (46)
is the same as (4) but with the dielectric unsaturation
approximation introduced. The proof is given, since
it is the F defined by (4) which appears in Egs. (13)
and (30).

The averaging function appearing in ({ ) is given
by (9), (with the O replaced by k). We then use (7)
for U, noting that U(2) can be replaced by its average
value since it is independent of ps° and hence insensi-
tive to changes of «. On multiplying all p,° by A (and
hence multiplying all linear functionals of p,° by A),
expanding in a power series in A and retaining only
terms up to first order in A (dielectric unsaturation
approximation) we find

(¢ak)k= (¢‘ub>"‘" (l/kT) I:<¢lkUk(1) )_' <¢ak)<Uk(1) )],
(A17)
where ( ) denotes an average (9) but with U in the
averaging function replaced by U(0). From Eq. (46)
we find (A18) with the aid of (A2) and (A3) and

neglecting terms depending on the third power of
the p,°

Fr=(Ux(1)+Us(2) )
— (1/2ET)[(U2(1) )— (Ux(1) }].  (A18)

However, this expression is precisely the one deduced
elsewhere from Eq. (4) and used there to obtain (13)
in the dielectric unsaturation approximation.s®



