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A unified theory of homogeneous and electrochemical electron-transfer rates is developed using statistical
mechanics. The treatment is a generalization of earlier papers of this series and is concerned with seeking a
fairly broad basis for the quantitative correlations among chemical and electrochemical rate constants
predicted in these earlier papers. The atomic motions inside the inner coordination shell of each reactant are
treated as vibrations. The motions outside are treated by the “particle description,” which emphasizes
the functional dependence of potential energy and free energy on molecular properties and which avoids,
thereby, some unnecessary assumptions about the molecular interactions.

1. INTRODUCTION

THEORETICAL calculation of the rates of

homogeneous electron-transfer reactions was de-
scribed in Part I of this series' and the method was
subsequently extended to electrochemical electron-
transfer rates.? The calculation was made for reactions
involving no rupture or formation of chemical bonds
in the elementary electron-transfer step. In this sense
these electron transfers are quite different from other
types of reactions in the literature. This property,
together with the assumed weak electronic interaction
of the reactants, introduced several unusual features:
“nonequilibrium dielectric polarization” of the solvent
medium,® possible nonadiabaticity, unusual reaction
coordinate, and an approximate calculation of the
reaction rate without use of arbitrary adjustable
parameters,

Applications of the theoretical equations were made
in several subsequent papers.2¢ The mechanism of
electron transfer was later examined in more detail
in Part IV using potential-energy surfaces and statisti-
cal mechanics.’ (In Part I the solvent medium outside
the inner coordination shell of each reactant had been
treated as a dielectric continuum. The free energy of
reorganization of the medium, accompanying the for-
mation of an activated complex having nonequilibrium
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dielectric polarization, was computed by a continuum
method.) In Part IV, changes in bond lengths in the
inner coordination shell of each reactant were also
included, and the statistical-mechanical term for the
free energy change in the medium outside was replaced
only in the final step by its dielectric continuum
equivalent.

A number of predicted quantitative correlations
among the data were made on the basis of Part IV.
They have received some measure of experimental
support, described in Part V and in a recent review
article.®7 A more general basis for these correlations is
described in the present paper, which also presents a
unified treatment of chemical and electrochemical
transfers.

The form of the final equations for the rate constants
is comparatively simple, a circumstance which leads
almost at once to the ahove correlations. (It permits
extensive cancellation in computed ratios of rate
constants.) This simplicity has resulted from several
factors: (1) Some of the more complex aspects of the
rate problem are rephrased so that they affect only a
pre-exponential factor (p) appearing in the rate con-
stant, a factor that appears to be close to unity.
(2) Little error is found to be introduced when the
force constants of reactants and products are replaced
by symmetrical reduced force constants. (3) An
important term (\) in the free energy of activation
is essentially an additive function of the properties of
the two redox systems in the reaction.

The electron transfer rate constants can vary by
many orders of magnitude: For example, known
homogeneous electron-exchange rate constants vary
by factors of more than 10 from system to system,
and electrochemical rate constants derived from elec-
trochemical exchange currents vary by about 10° at
any given temperature.® (An electron-exchange reac-
tion is one between ions differing in their valence

SR. A. Marcus, J. Phys. Chem. 67, 853, 2889 (1963).
7R. A, Marcus, Ann. Rev. Phys. Chem. 15, 155 (1964).
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state but otherwise similar.) Thus, small factors of
2 or 3 are of relatively minor importance in any theory
which is intended to cover this wide range of values.
Some approximations in this paper are made with this
viewpoint in mind.

In the present paper classical statistical mechanics
is employed for those coordinates which vary appre-
ciably during the course of the reaction. This classical
approximation is a reasonable one for orientational and
translational coordinates at the usual reaction tempera-
tures and, in virtue of the above remark, for the usual
low-frequency vibrations in inner coordination shells.
Because of cancellations which occur in computations
of ratios of rate constants this approximation could be
weakened for deriving the predicted correlations, even
when the quantum corrections would not be small.

In calculations of absolute values of the electron-
transfer rate constants a classical approximation will
introduce some error when the necessary changes in
bond lengths to effect electron transfer are so small as
to be comparable with zero-point fluctuations. How-
ever, in this latter case, the vibrational contribution to
the free energy of activation is itself small and does
not account for any large differences in reaction rates
in redox reactions which have been investigated experi-
mentally. Hence, for our present purpose and, in the
interests of simplicity, this particular possible quantum
effect may be ignored.

2. ORGANIZATION OF THE PAPER

The paper is organized in the following way:

Individual and over-all rate constants are distin-
guished in Sec. 3, potential-energy surfaces for weak-
overlap electron transfers are discussed in Sec. 4, and
formal expressions for the rate constants are given in
Sec. 5. The latter expressions arise from a generalization
of activated complex theory ® The approximate relation
of certain surface integrals appearing in Sec. 5 to more
readily evaluated volume integrals is described in
Sec. 6, where certain complicating features are re-
phrased so as to cast some of the difficulties into an
evaluation of one of the pre-exponential factors p.
In Sec. 6 a linear dependence of an effective potential
energy function (governing the configurational distri-
butions in the activated complex) on the potential
energies of reactants and products is established
[Eq. (13)]. The rate constants are expressed in Sec. 7
in terms of the contribution of the coordinates of the
solvent molecules in the medium and of the vibrations
in the inner coordination shell of each reactant to the
free energy of formation of the activated complex.

To deduce from Eq. (13) a simple dependence of
the free energy of activation on differences in molecular

*R. A. Marcus, J. Chem, Phys, 41, 2624 (196-;). The U in the
present Egs. (1) to (3) was denoted there by Us.
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parameters, the contributions of the above two sets of
coordinates are treated differently (Sec. 8), since one
set already has a desired property while the other does
not. Changes in bond force constants accompanying
electron transfer are responsible for this difference in
behavior. However, it is shown later in Appendix IV
that the -introduction of certain “reduced force con-
stants” circumvents the difficulty, with negligible error
in typical cases. The contributions of the two sets of
coordinates are computed in Secs. 9 and 10. The
medium outside the inner coordination shell of each
feactant is treated by a “particle description.”®® The
latter is a considerable generalization over the custom-
ary permanent-dipole-induced-dipole treatment of polar
media and serves to emphasize the functional depend-
ence of the free energy of activation on various
properties and to facilitate thereby the analysis leading
to the predicted correlations.

The standard free energy of reaction and the cell
potentials are introduced in Secs. 11 and 12, and are
used in Sec. 13 to evaluate a quantity (m) closely
related to the electrochemical and chemical transfer
coefficients. The final rate equations are summarized
in Sec. 14.

The additive property of A, mentioned in the previous
section, is discussed in Sec. 15 and further established
in Sec, 16. The significance of the characteristic scalar
quantity (m) appearing in the potential-energy func-
tion of the activated complex is deduced in Sec. 17.
Deductions from the final equations are made in Sec.18.

In Sec. 19 the present paper is compared with earlier
papers of this series, and the specific generalizations
made here are described. Detailed proofs are given in
various appendices. In Appendix VIII it is established
that under certain conditions the correlations derived
above should apply not only for rate constants of
elementary steps but also for the over-all rate constant
of a reaction occurring via number of complexes of the
reactants with other ions in the electrolyte.

3. INDIVIDUAL AND OVER-ALL RATE
CONSTANTS

Many chemical and electrochemical redox reagents
are ions which possess inner coordination shells and
which may form complexes with ions of opposite sign.
Any such complex is “inner” or “outer” according as
the latter ions do or do not enter the inner coordination
or shell of the reactant. To a greater or lesser extent,
all such complexes normally contribute to the measured
rate of the redox process. For this reason both a rate

° R. A. Marcus, J. Chem. Phys. 38, 1335 §1963). .

10 R, A, Marcus, J. Chem, Phys. 39, 1734 (1963). The notation
differs somewhat from the present paper: 7, U, U, and p,° there
become V!, Us, Us, and pg° here. A typographical error occurs in
Eq. (13): The 4’3 should be deleted. No equations deduced from
(13) need coryection.
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ELECTRON-TRANSFER REACTIONS. VI

constant for the over-all reaction, involving all com-
plexes, and a rate constant for each individual step,
involving a specific complex with a given inner coordi-
nation shell or involving a specific pair of complexes in
a bimolecular step, have been defined in the literature.
They equal the over-all reaction rate divided by the
stoichiometric concentration (or product of such con-
centrations in the bimolecular case), in the case of an
over-all rate constant, and the reaction rate divided
by the concentration of the particular complex (or
product of such concentrations in the bimolecular case),
in the case of an individual rate constant. Often the
individual rate constants are measured experimentally.
Frequently, however, only the over-all rate constant
is determined in the experiment.

The derivation up to and including Sec. 6 applies to
over-all as well as to individual rate constants. The
Secs. 7 to 17 apply only to the individual rate constants.
To calculate the over-all rate constant from the expres-
sion derived for the individual one in these latter
sections, one must take cognizance of any reactions
leading to the formation and destruction of the com-
plexes and must average over the behavior of all
complexes, as in Appendix VIIL.

4. POTENTIAL-ENERGY SURFACES

The potential energy of the system is a function of
the translational, rotational, and vibrational coordi-
nates of the reacting species and of the molecules in
the surrounding medium. A profile of the potential-
energy surface is given in Fig. 1 in the case of homoge-
neous reactions. (The related electrochemical plot is
considered later.) The abscissa, a line drawn in the
above many-dimensional coordinate space, represents
any concerted motion of the above types leading from
any spatial configuration (of all atoms) that is suited
to the electronic structure of the reactants to one
suited to that of the products. Surface R denotes the
potential-energy profile when the reacting species have
the electronic structure of the reactants, and Surface
P corresponds to their having the electronic structure
of the products. If the distance between the reacting
species is sufficiently small there is the usual splitting
of the two surfaces in the vicinity of this intersection
of R and P. If the electronic interaction causing the
splitting is sufficient, the system will always remain
on the lowest surface as it moves from left to right in
Fig. 1. Thus, the system has moved from surface R to
surface P adiabatically, in the usual sense that the
corresponding motion of the atoms in the system is
treated by a quantum-mechanical adiabatic method.
On the other hand, if the electronic interaction causing
the splitting is very weak, a system initially on Curve R
will tend to stay on R as it passes to the right across
the intersection. The probability that as a result of
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Fic. 1. Profile of potential-energy surface of reactants (R)
and that of products (P) plotted versus configuration of .all the
atoms in the system, The dotted lines refer to a system having
zero electronic interaction of the reacting species. The adiabatic
surface is indicated by a solid line.

this nuclear motion the system ends up on Curve
P is then calculated by treating this motion non-
adiabatically.*

It should be noted that the system can undergo this
electron transfer either by surmounting the barrier if
it has enough energy or by tunneling of the atoms of
the system through it if it has not. We confine our
attention to the case where the systems surmount the
barrier. Some atom tunneling calculations have been
made, however.1?

Since the abscissa in Fig. 1 is some combination of
translational, rotational, and vibrational coordinates,
this “reaction coordinate” is rather complex: The sur-
faces R and P intersect, and the set of configurations
describing this intersection form a hypersurface in
configuration space. The exact motion normal to this
hypersurface depends on the part being crossed. In
some parts it involves changes in bond distances in
the inner coordination shells of the reactants, in other
parts it involves a change of separation distance of the

1 See, for example, L. Landau, Physik. Z. Sowjetunion 1, 88
(1932); 2, 46 (1932); C. Zener, Proc. Roy. Soc. (London) A137,
696 (1932); Al40, 660 (1933); C. A. Coulson and K. Zalewski,
ibid, A268, 437 (1962). The present situation has been summarized
in Ref. 7, where the definition of nonadiabaticity was also dis-
cussed. Reference should also have been made there to the work
of. E. C. G. Stueckelberg, Helv. Phys. Acta. 5, 369 (1932); cf.,
H. S. W. Massey, in Encyclopedia of Physics, edited by S. Fliigge
(Springer-Verlag, Berlin, 1956), Vol. 36, p. 297.

12 N. Sutin and M. Wolfsberg, quotecf by N. Sutin, Ann. Rev.
Nucl. Sci. 12, 285 (1962). These authors discussed the possibil-
ity of tunneling of the atoms in the inner coordination shell.
Possible quantum effects which include atom tunneling in the
medium outside this shell have been treated by V. G. Levich,
and R. R, Dogonadze, Proc. Acad. Sci. USSR, Phys. Chem.
Sec. [English transl. 133, 591 (1960)7]; Collection Czechoslov.
Chem. Comm, 26, 193 (1961) [;transl., 0. Boshko. University
of Ottawa, Ontario.] Any conclusions concerning the contribution
of atom tunneling depend in a sensitive way on the assumed
values for the bond force constants and lengths in the inner coor-
dination shell, properties on which data are now becoming avail-
able, and on the assumed value for a mean polarization frequency
for the medium. [Atom tunneling is different from electron
t(t;{m}elgr)lg the latter being a measure of the splitting in Fig. 1

ef. 7).
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Fi16. 2. Same plot as Fig. 1 but for an electrode reaction. The
finite spacing between the many-electron levels of a finite elec-
trode is enormously magnified, and only three of them are indi-
cated, The splitting differs from level to level.

reactants, and in still others it involves reorientation
of polar molecules in the medium.

Analogous remarks apply to electrode reactions
except that the intersection region is more complex
because of the presence of many electronic energy levels
in the metal. A blown-up portion of this region is indi-
cated in Fig. 2. The diagram consists of many potential
energy surfaces, each for a many-electron state of the
entire macrosystem. All the surfaces are parallel since
they differ only in the distribution of electrons among
“single-electron quantum states” in the metal, (Only
one distribution of the electrons among these single-
electron quantum states correspond to each surface in
Fig. 2 if the energy level of the entire macrosystem is
nondegenerate. It corresponds to several distributions
in the case of degeneracy.) There is a probability
distribution of finding the macrosystem in any many-
electron energy level indicated in Fig. 2. As a conse-
quence of a Fermi-Dirac distribution of the electrons
in the metal, most electrons which are transferred to or
from the many-electron energy levels in the metal will
behave as though they go into or from a level which
is within 2T of some mean energy level, and hence
practically equal to it. Thus, except for the calculation
of the transition probability associated with the transi-
tion from Surface R to Surface P in the intersection
region, the situation is in effect very similar to that in
Fig. 1. We return to this point in the following section.

In the present paper we confine our attention in
electrode reactions, as in homogeneous reactions, to
reaction paths involving a surmounting of the barrier.

S. EXPRESSION FOR THE RATE CONSTANT

We consider any particular pair of reactants (or a
reactant, in the case of intramolecular electron trans-
fer). These “labeled” reactants may be any two given
molecules in solution or one molecule and the electrode,
and each may form complexes to various extents with
other ions and molecules. In effect, we need to calculate
the probability that the vibrational-rotational-transla-
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tional coordinates of the entire system are such that
the system is in the vicinity of the many-dimensional
intersection hypersurface in configuration space.

It is assumed below that the distribution of systems
in the vicinity of the intersection region of Figs. 1 or 2
is an equilibrium one. The usual equilibrium-type
derivation of the rate of a homogeneous or heteroge-
neous reaction in the literature employs a special form
for the kinetic energy, a form consistent with the set
of configurations of the activated complex being de-
scribable by a hyperplane in configuration space. A
more general curvilinear formulation has been given
recently.® Upon integrating over a number of coordi-
nates which leave the potential energy invariant one
obtains (1), (2), and (3) for homogeneous bimolecular
reactions, homogeneous unimolecular reactions, and
heterogeneous reactions, respectively®'3;

b= (82T} / exp(—U/kT) R?(mi)-ldS’ )
s Q
_ E* exp(—U/kT) (m*)-4dS
uni"‘(zﬂ_)[‘g Q ) (2)
_ (kTN [ exp(—=U/kT) (m*)4S
k”“‘(zf)-[q Q ' ®)

In these equations m? is the effective mass for motion
normal to the hypersurface S, R is the distance between
the two reactants (normally between their centers of
mass), Q is the configuration integral for the reactants,
and dS is the area element in a many-dimensional
internal coordinate space.’®* Both m* and R may vary
over S. In (1) to (3) integration has already been
performed over several coordinates, as follows: (i) in Q,
the center of mass of each reactant; (ii) in the numera-
tor of (1), the center of mass of one reactant and the
orientation of the line of centers of the two reactants;
(iii) in the numerator of (2), the center of mass of the
reactant, and (iv) in the numerator of (3), the two
coordinates of this center parallel to the solution-solid
interface. Thus, these coordinates are to be held fixed
in the internal coordinate space in (1) to (3).

In adapting these equations to electron-transfer
reactions one should consider the possibility of the
reaction occurring nonadiabatically and, in the case of
electrodes, should consider the existence of many levels
which may accept or donate an electron to a reactant
in solution. In the framework of a classical treatment
of the motion of the nuclei in (1) to (3), a factor «

B3 In these equations S is an abbreviation for S (made for
brevity of notation), since several integrations over “external
coordinates” have been performed and there remains only the
integration over a hypersurface in internal coordinate space?
Similarly, the symbols S’, V, and V’ discussed later should bear
a subscript int, which is omitted here for brevity.
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can be shown to appear in the integrand (Appendix I);
x is a momentum-weighted average of the transition
probability from the R to the P surface per passage
through the intersection region. (It is momentum
weighted since the transition probability depends on
the momentum.) « can vary over .S. Normally, we take
x as approximately equal to unity when the reactants
are near each other, introducing thereby the assump-
tion that the reaction is adiabatic.

In the case of (3) the situation is somewhat more
complex because of the presence of the many electrode
levels. At present there is, in the literature, no theoreti-
cal calculation of the transfer probability from a level
R to a continuum (essentially) of levels P, per passage
through the intersection range, for the entire range of
transfer probabilities from 0 to 1. Such a calculation
would take into account the fact that in an unsuccessful
passage through the intersection region the system can
also revert to other R levels different from the original
onc. At present only the limiting case of very small
transfer probability has been considered in the litera-
ture. In this case transfers to and from each of the
levels have been treated independently using perturba-
tion theory; they do not interfere at this limit.

When the transfer probability in electrode reactions
is fairly large when ion and electrode are close, a
different approach must be employed.!® Here, we take
advantage of the fact that for a metal electrode most
of the electron transfers occur to and from levels near
the Fermi level's: In the terminology of a one-electron
model, most of the levels several 2T below the Fermi
level are fully occupied and cannot accept more elec-
trons. The Boltzmann factor discourages transfer to
the rather unoccupied levels several kT above the
Fermi level. Conversely, transfers from the occupied
levels below the Fermi level are discouraged by a higher
over-all energy barrier to reaction while transfer from
a higher level is discouraged by the fact that most of
the higher levels are unoccupied. To illustrate this point
more precisely, let #(¢) be the density of the “one-
electron model levels” for the clectrode and f(e) the
Fermi-Dirac distribution,

f(e)={exp[ (e— ) /kT]H+1}7, (4)

where ¢ is the energy of one of these levels and where
. is the electrochemical potential of electrons in the
metal. Both € and z. depend on the electrostatic poten-
tial of the metal ¢:

e=e(0)—ep;  E=u—cd, (5)

W R, R. Dogonadze and Y. A. Chizmadzhev, Proc. Acad. Sci.
USSR, Phys. Chem. Sec., English Transl. 144, 463 (1962), 145,
563 (1962); V. G. Levich and R. R. Dogonadze, Intern. Comm.
Electrochem, Thermodyn. Kinet., 14th Meeting, Moscow (1963),
preprints. This work is reviewed in Ref. 7.

18 This approximation was used but not discussed in Ref. 2,
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where ¢(0) is the value of e at $=0 and ¢ is the chemical
potential.'®

The probability that electron transfer from the
electrode to the ion or molecule in solution will occur
from a “one-electron model” level of energy ¢ would
be expected to depend on e by a factor roughly propor-

tional to
n(e)f(e) exp(e/2kT), (6)

the third factor arising in the region where the “electro-
chemical transfer coefficient” is 0.5, a common value.®
Since n(e) is a weak function of e the last two factors
in (6) largely determine the most probable value of e.
The maximum of (6) is then easily shown to occur at
¢=fZ.. Similarly, contribution to electron transfer from
an ion in solution to a particular level ¢ would be
expected to vary with e as in

n(e)[1—f(e) ] exp(—e/2kT), )

which also has a maximum at e=f,, of coursc.

Because of this circumstance (that most contribu-
tions arise from levels e near f,), we approximate the
situation in Fig. 2 by replacing the set of Surfaces R by
one surface and P by another surface, corresponding
to an electronic energy in the electrode given by g, as
above.!s If electron transfer accompanies each passage
through the intersection region in Fig. 2 the reaction
is referred to as “adiabatic,” purely by analogy with
the term in the homogeneous reaction. The reaction
rate is given by (3), where the equation of S depends
on the electrostatic potential. On the other hand, when
the transfer probability per passage is very weak a
term « should be introduced in the integral, x being
a velocity-weighted transition probability appropriately
summed over all energy levels in the electrode (Appen-
dix I). A value for x in this weak interaction limit
has been discussed elsewhere.” When a complete cal-
culation for the transfer probability from and to a
continuum of electrode levels becomes available it can
be used to estimate x. Normally, however, we assume
the electrode reaction to be “adiabatic” and so take
k=21 on the average.

6. RELATION OF THE SURFACE INTEGRALS
(1) TO (3) TO VOLUME INTEGRALS

Although some deductions can be made from the
surface integrals in (1) to (3) when the equation of
the intersection surface S is simple, we find it con-
venient to express the surface integral in terms of
volume one. The same aim was followed in Part IV
but in a less precise way. The principal equation
derived in this section is (26), which is later used in
conjunction with Eqgs. (1) to (3) to obtain an expres-
Sion fOt kra(e'

1 For example, C. Herring, and M, H. Nichols, Rev, Mod,
Phys. 21, 185 (1949).
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Let Ur be the potential-encrgy function for the
reactant and U be that for the products. As mentioned
earlier the intersection of the R and 2 surfaces in Fig.
1 (and 2) forms a hypersurface in configuration spacc.
This hypersurface is called the “reaction hypersurface.”
Its equation is given by (8). It is a hypersurface in
the entire coordinate space and also in the internal
coordinate space since (8) is independent of the
external coordinates®

Ur—Ur=0 (for points on reaction hypersurface). (8)

This surface is a member of a family of hypersurfaces
in configuration space, represented by (9), where cis a
constant:

L.'r_ L‘."=C. (())

The surface (8) can be obtained from the surface (9)
by lowering the 2 surface in Figs. 1 or 2 by an amount ¢.

\We employ a coordinate system ¢' to 4" used in the
derivation of (1) to (3) and rccall that onc coordinate,
¢", in the internal coordinate space was chosen to be a
coordinate constant on the hypersurface (8). Let ¢V
be zero there. In fact, each member of the family of
hypersurfaves (9) is made a coordinate hypersurface
for ¢V,

We consider any of the integrals in (1) to (3),
include the factor & in the integrand, and write 4S5 as
dS'd R The factor & depends primarily on R. In the
following cxpression the same symbol « is used to
denote this , averaged over S’ Each of the integrals
in (1) to (3) can be rewritten as

ij“[/ cxp(—-g—)()rt,‘)‘ldS'JdR, (10)
R st kT ‘

where a is 2, 0, or 0 according to whether (1), (2), or
(3) is the equation involved.

We wish to relate the above integral over S’ to a
volume integral (11) over the internal coordinate
space at fixed R, as in (18) and finally as in (26)":

o U* r!
/yr c.\p( k']')‘”i ’

where U* is a function to be determined; R2dV’ is an
element of volume of this internal coordinate space
at fixed R3

(11)

w 'l_'his factoring of dS (or as it was called there dSi,) was
described in Ref. 8.
18 The « appearing in (10) is now a symbol representing

- -
/x(m’)" cxp(—v>d.5"/f(m‘)“* c.\‘p(—)dS’,
AT kT

where x is the original kappa.
®These “internal coordinates” were defined® as those coor-
dinates for which integration was not performed in obtaining

(1) to (3).
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To establish (18), we first note from Appendix II
that the distribution in volume which is centered on S’
(but not confined to §’, of course) is f*, given by (12)%

[*= exp(—g)/fexp(—g)dlﬂ, (12)

(13)

where
U*=Ur+m(U™—U")

and m is a parameter which varies with the coordinate
R and which is determined in Sec. 13. On §’, one sees
from (8), U* equals U~ for any given R.

We then recall from Ref. 8 that dV’ and dS’ are
related by (14), and we introduce a quantity [ (¢%, R)
defined by (13):

dV'= (a~¥)- W S'dg™, (14)

U™, x ,
expl— (¢, R)1= [ o 7@ 4, (13)

where @¥¥ is conjugate to an element ayy in the line
clement of the many-dimensional configuration space.
On recalling from Ref. 8 that m?* equals a*¥/g"¥,
where g*¥ is conjugate to an element gyy in the line
element of the corresponding mass-weighted configura-
tion space, the S’ integral in (10) can then be rewrittcn

asin (16), where ((g¥¥)}) is a suitable average over S

/ exv(“‘i%)<»:=)-ws'= (5)) exp[—1(0, R)].
(16)

In deriving (16) we have also used the fact that U*.
cquals U7 on S'.

Finally, the integral in (11) can be rewritten as
[ exp[—TI(¢", R) g™, in virtue of (14) and (15). On
the basis of a Gaussian expansion Eq. (17) can be
derived (post).

f exp[—17(¢¥, R)Jd¢¥
=[21"(0, R) P exp[—1(0, K)], (17)

where 7(0, R) is d*I(q¥, R)/d¢"*, cvaluated on S’
(and hence at ¢¥=0). One then obtains, from (10},

® [f, for any R, a distribution function f* is stated to be centered
on §’, we mean that it is centered on the sct of configurations
which lic at the intersection of the hypersurface S and of the
hypersurface R =constant. Occasionally, in some part of the
internal coordinate space the two hypersurfaces may be “cotan-
gential,” but this circumstance daes not alter the argument. At
these parts of space the value of U equals Ur and (12) becomes
“exact” for computing relative probabilities of various configura-
tions, rather than approximate.

A ((gN¥)1) in (16) is defined as

-U =U
N¥P (¥ V)4 exp — 457 f (a¥¥)-4 ex (——)ds’.
f(.ﬂ N(u¥y) °\l‘<kT-) / a exp e
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(16), and (17),

fR xR“[ j; ’ exp(—;g—,)(m‘)‘*dS']dR

_ [ «kR={(g")}) exp[— F*(R)/kT],
—j; [2«17(0, R) 4R, (18)

where F*(R) is the configurational free energy of a
system having the potential-energy function U* for
this separation distance R

F*(R)\ _ ( U *) ,

exp( WT ) /exp 2T av’.

To complete the proof of (18) we must verify (17).

We recall from the definition of ¢V that Ur— U? depends

only on ¢g¥ on any hypersurface (9). To ensure centering

of the system on 5, ie., at ¢"=0, m(R) is to be
selected so that (20) is satisfied:

(Ury=(UP),

(19)

(20)

where ( ) denotes average with respect to the distri-
bution function f*. On using (12), (14), and (15),
Eq. (20) becomes

[ exel-1(g", BIU—Udg=0. (1)

Because of the centering of f*, expansion of I(¢", R)
about ¢¥=0 is permissible, as is one of Ur—U?

I(¢¥, R)=1(0, R)+¢"I'(0, R)
| +L(gM)*/2170"(0, R)++++,
Ur— U”=0+QN(U'— Up)’+. TR

(22)
(23)
where / indicates a derivative with respect to ¢V,
evaluated at ¢¥=0. We retain only leading terms in
each case. Insertion of (22) and (23) into (21) followed
by integration reveals that I'(0, R) vanishes. Intro-
duction of (22) into the left-hand side of (17) then
establishes (17).

Some of the terms in (18) can be expressed in terms
of quantities of more immediate physical significance.
It may be shown from (12), (14), (15), (22) and the
vanishing of I’(0, R) that

I"(0, R) = {(5¢")*)", (24)
where ((¢¥)?) is the mean-square deviation of ¢V.?2
The mean-square deviation of the perpendicular dis-
tance s from the reaction hypersurface is given by (25)

2 This averagl;:, ((Sq”)’), is defined as [(5g¥)2 f*dV'. It is
readily shown that (¢¥) vanishes,
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for small s’s:
((85)2)= ((a¥™)=1(8g")2)= ((a¥)~1){(5¢™)?), (25)

where ((a¥¥)—1) is a suitable average of (a¥¥)"1.2

We make use of the fact that ((g"¥)})((¢"V)-1)}
has units of (mass)~, and denote it by (m*)~3, and
that the integrand in (18) has a maximum at some
value of R, denoted in (26) by R. [When R becomes
large « tends to zero and when R is small the van der
Waals’ repulsion makes F*(R) large.] On treating the
integrand as a Gaussian function of R, (18) becomes

LKR“[[S' exp(—%)(m‘)“‘dS'] dR

= kpR*(m*)~ exp[— F*(R) /kT], (26)

where « is evaluated at this value of R and where p is
a ratio (27) whose value should be of the order of
magnitude of unity:

p=[{(8R)?)/{(8s)") (27)

where ((6R)?) is the mean square deviation in the
value of R; p and « can be calculated from more specific
models when the various integrals defining them can
be evaluated.

7. RATE CONSTANT IN TERMS OF AF*

Let Fr be the configurational free energy associated
with the Q of Egs. (1) to (3) as in (28). Thereby, it
is the free-energy contribution for an equilibrium dis-
tribution of “¥’ coordinates” when the reactants are
very far apart but fixed in position,

Fr=kT InQ. (28) |

Let F7(R) be the corresponding quantity when the
reactants are a distance R apart. We then have

w'=F"(R)—F", (29)

where " can be called the reversible work to bring
the reactants from fixed positions infinitely far apart
to the cited separation distance.

We also introduce AF*(R):

AF*(R)=F*(R)—Fr(R). (30)

Equations (1) to (3) for ka, now yield (31) to (33),
when (26) and (28) to (30) are used,

kvi=kpZyi exp(—w'/kT) exp[—AF*(R)/kT], (31)
kuni=xp(RT/2xm*)} exp(— AF*/kT), (32)
Erey=kpZyes exp(—w'/kT) exp[—AF*(R)/kT], (33)

# This average is defined here as

—U* -
f (aNN)-1(5gN)? exp(-—-——)dV' / f (5gN)? exp(—)dV'.
RT kT

gi or ItIhIe proof that ds® equals (a¥¥)~1(dgV)3, see Ref. 32, Appen-
IX 114,
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where Zy,; and Zy are given by

Zvi= (8xkT/m*)}R? Zne= (kT 2em*)}.  (34)
[In Eq. (32) AF* is simply F*— [, there being only
one reactant.] Zu,; is in fact the collision number of
two uncharged species in solution when they have unit
concentration, when their reduced mass is #.*, and when
their collision diameter is R. Zje is the collision number
of an uncharged species with unit area of an interface
(here, the electrode), when it has unit concentration
and when its mass is m™®,

F* and Frin (31) to (33) involve an integration
over the orientation of cach reactant. The integrand
in I is independent of these coordinates and, in the
case of the “outer-sphere clectron-transfer mechanism”
discussed here, the integrand in F* is assumed to be
independent of them also. (For purposes of deriving
many of the correlations in Sec. 16, this assumption
could be weakened because of cancellations.) Integra-
tion over these coordinates is regarded as having been
performed in (31) to (34), since the orientational
factors now cancel in AF*(R). Thus, in the subsequent
calculation of F#* and /* each reactant may be regarded
as fixed not only in position, as before, but in orienta-
tion also.

8. DISTRIBUTION FUNCTION AND THE
FREE ENERGY

The main purpose of this section is the derivation
of Eqs. (47) to (49).
Equation (19) for F*(R) can be rewritten asin (33),
with the aid of (12), (13), and (20):
FH(R) = (Ur)+kT (Inf*), (35)

where
wey= [vrear,

Since —k(Inf*) is the configurational cntropy of a
svstem having the distribution function f* and since
{Lr) is the mean potential energy of a nonequilibrium
svstem having a potential-energy function U7 but a
distribution function of f* inappropriate to this L7, we
see that F/*( R) is also equal to the configurational free
energy of this nonequilibrium system.

In obtaining an expression for /**( R) it is convenient
to divide, as one usually docs in related problems, the
internal coordinates at the given R into two groups:
V’; coordinates describing the positions of the atoms in
the inner coordination shells of the reactants, and
V', coordinates describing the positions of the aloms of
the medium relative to each other and to those in the
inner coordination shells. It is also convenient Lo write
U as the sum of two terms, U; and U, one describing
the intramolecular interactions of the atoms in each
coordination shell, the other describing the interactions
of the atoms of the medium with each other and with

(Inf*)= / (/) f*v". (36)
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those of the inner coordination shells. Thus, L'; depends
only on the 1"'; coordinates; L', depends primarily on
the ¥, coordinates, but also depends on the I"’; ones,

U=U+L.. (3N

The quantities U;* and U,* are defined in terms of
'#, ele., to be given by (13), with i and o subscripts,

respectively. Then, U# is the sum of U®* and L%
The volume clement 4V’ is written as

av'=dVv'dV’, (38)

where d17'; is defined as the product of the differentials
(11idy?) of the Vi coordinates. Thereby, dV’s con-
tains the Jacobian appearing in 4¥’. It may vary,
therefore, with the ¥’; coordinates.

In calculating F* and F* we may evaluate the
integrals appearing in them by first integrating over
the 1, coordinates and then over the V’; ones. This
procecdure is convenient since the ¥”’; ones perform
small oscillations while the others can undergo con-
siderable fluctuations. With this procedure in mind,
we define new quantitics fi* and fo*, the former de-
pending only on the ¥; coordinates, the latter depend-
ing on the V', coordinates and parametrically on the
I, ones:

fo*= exp[(XD$— L:o*)/k ]‘]) (39)

K. %
fr= e =55) /[ (=g )av G0

where
U= U *+x0% (41)
xo* U.* y
N —— = N — — ] o ‘I’2
L\l)( “.) /c\p( “,)Il (-42)
One then obtains
JE= [ * (43)

Quantities f,7, fir, ', and x," can be defined, by
replacing the * by an r superscript in (39) to (42).
However, x.” is simply .7, the "/, contribution to the
configurational free energy of the reactants for the
siven value of the I'; coordinates

Fr U
sl —— Y= | expl ——= V.. A
L\p( “,) / L\[)( “‘) (4
We also introduce /¥, detined by
Fo*= (U Yoot kT (Inf*) 2o, (43)

where the average { )+ is computed with respect to fo*.
I°* is the V', contribution to the free energy of the
nonequilibrium system having the potential encrgy
function U7 and the distribution function f*. The
first and sccond lerms in (45) arc the encrgy and
entropy contributions, respectively.

T'o obtain an expression for U*, the function largely
conlrol!jng the V'; coordinate distribution, we first
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obtain (46) by introduction of (39) into (45) and by
use of (13) with subscript o’s added. Equations (41),
(46), (37) and, with subscript #’s added, (13) then
vield (47), since Uy and {';» are independent of the
I/, coordinates:

Xo*= Fa*+”1 (Uo'— (,’on) “0 (46)
CH=Ur+F A 4m{Ur=U")s. (47)

Equations (35), (37), (43), and (43) yield (48a),
when one notes that U and fi* arc independent of
the value of the ¥/, coordinates. Equation (48b) then
follows from (20), (47), and (48a):

F*(R)= (Ur+Fo*) etk T (Inf*)e,
= (UA-kT Infi*)si,

(48a)
(48b)

where the average({ )»; is computed with respect to
the distribution function f*.
The free encrgy I7(R), given by

—kT lnf c.\'p(— ,—f:li_)d 8

evaluated at R, can also be shown to be given by
expressions similar (o (48) but with the asterisks
replaced by r’s

Fr(R)= (U FS )it b T (0fi i

To evaluate ke, we compute AF* from (30), (48),
and (49), and use (47).

The similarity of (48) and (49) and later of (51)
and (52) is an example of the fact that properties of the
[r] system can be obtained from those of the [*]
system by setting m=0. The origin of this behavior is
scen in the original Eq. (13) defining the [*] system.

(49)

9. VIBRATIONAL CONTRIBUTION TO AF*(R)

While it is not necessary to introduce the harmonic
approximation, the cxpressions are appreciably simpli-
fied by it. There is evidence that the approximation is
ndequate for many reactions of interest.

It is recalled that the generalized coordinates were
denoted by ¢o. Let the first n; of these be vibrational
coordinates of the reacting species, i.c., the V'’ coordi-
nates, and let g+ denote the value of_the jth vibra-
tional ¢/ occurring at the minimum of U;*. We have

0%=0*Q.)+1 i_/)k*(l]j—‘]'j)(‘[k_‘]‘k)

PR
=U*Q.)+3(Q"-Q.")-F*(Q—-Q.), (50)

where Q— Q. denotes'a column vector whose clements
are g/—q+J. F* denotes a square matrix whose clements
are fi*. The superscript 7" denotes a transpose (& row
vector here), and the dot indicates the scalar product
of this row vector with the column vector F¥*(Q—Q.).

LB 687

On multiplying numerator and denominator of (40)
by exp[{:*(Q+)/k77], introducing this expression for
f:* into (48b), then using (30), integrating,* and
finally introducing an expression for U:(Q*) [Eq. (47)
evaluated at Q=Q%], Eq. (51) follows:

F*(R)=Us(Q)+F*(Q:)—m{l7(Q)=U?(Q:))
=T I[ 2=k T)"/| fu* 1], (51)

where | £;x* | is the determinant of the fi*'s.
If ¢ denotes the value of a vibrational ¢/ occurring
at the minimum of U/, it can be shown that Fr is

given by (52) after a quadratic expansion of U/s(Q)
about Q,,

Fr(R)=Us(Q)+Fr(Qr) =3k T [ 2wk )i/ [ {],
(32)

where
fir= (22U /agagt) at Q=Q.. (33)
Equation (54) is then obtained from (51) and (52)
by noting that {(U7(Q.)—U?(Q-) ). vanishes (Appen-
dix V), that Uy equals Us—F7” at any Q, and that
Us(Q.) can be expanded about the value of U at Q,:

F*(R)—F(R)=%(Q."—Q,")-F"(Q-—Qx)

+ALX(Q )+ 3T In(] fi* /1 far 1), (54)

where

AFHQ)=F*(Q)—Frs(Q)

It is shown later that at any given R and Q AF,*(Q)
equals m*\(Q), where A\(Q) is given by (69), and
that AF,*(Q), which is F,*?(Q)—F,(Q), cquals
(m+1)2,(Q). We then obtain (56) from (47)%

U*=Ur4+m(Usr=Ur)—m(m+1)0(Q).

Since U;* is a minimum at Q= Q., the first variation
in U* vanishes for any arbitrary infinitesimal 6Q. In
Appendix VI it is found that N\, may be neglected in
obtaining

Q7 -[(m+1)F(Q.—Q,) —mFr(Q.—Q,)]=0. (37)

Since the 8¢ arc selected to be independent, the
coeflicient of 6Q7 vanishes. Hence,

Q.=[(m+1)Fr—mFrI[(m+1)FQ,—mFrQ,],
(58)

(at any given R). (35)

(56)

and the first term in (54) becomes

HQ 7~ Q1) -Fr(Q-—Q.) =1nmaQT-FAQ, (59)

#We use Iq. (2) in R. Bellman, Tuiroduclion to Malrix An-
alysis (McGraw-Hill Book Company, Inc., New York, 1961,
p. 90, to obtain the last term of (31). _

= On recalling the definition of U and U;®, and adding and
subtracting mh 7 (Info)ey it follows that U:* in (47) can be
written as  (m+DUgF—mlz plus  AFS4m(AFS—AF ).
Equation (56) then follows.



688
where
AQ = Qp_ 0"1 (60)
F=Fo[ (m+1) F'—mF? T F[ (m+1) Fr—mFs}F,
(61)

and the equality of Fr, F?, and [(m+1)F—mFr]
with their transposes have been used. '

On differentiating (S6) twice and noting that an
a ppsteriori calculation shows that the last term in (56)
may be ignored in the differentiation we find (62), for
use in the In term in (51)

fu*=28U*/agiogk= (m—+1)fur—mfu>.

Later it is shown that Eqs. (54) and (59) can be
simplified considerably to a good approximation by
introduction of symmetrical and antisymmetrical func-
tions of the force constants and then neglecting terms
involving the antisymmetrical ones

k=2 iw'far/ ( far+fic?), (63)
L= (far—fu?) /( fa"+fuP). (64)

The first of these quantities was chosen so as to have
dimensions of a force constant and the second of these
s0 as to be dimensionless.

(62)

10. ORIENTATION AND OTHER
CONTRIBUTIONS TO AF*

For purposes of generality we employ the particle
description of the potential energy in a macrosystem.®1
It introduces fewer assumptions than those normally
used in condensed polar media. Because of its compara-
tive generality it also permits a simultaneous formula-
tion of the theory of homogeneous intermolecular
electron transfers, electron transfers at electrodes, and
intramolecular electron transfers. In this description
the system consists of particles each of which is a
reacting molecule or any electrode present, the latter
including as part of it any strongly bound layer of ions
or solvent. The remainder of the system, the medium,
can then be regarded as one giant particle.

The potential energy is the sum of an intraparticle
term (the energy when the particles are isolated, each
having the given intraparticle coordinates) and an
interparticle term (the energy change when the particles
are brought together for the given values of the intra-
particle coordinates). The solvent particle possesses a
“cavity” for each reactant particle, which the latter
fills when they are brought together.

The intraparticle terms below contain the electronic
and potential energy of the reactants and of the medium.
The interparticle term is, in the first approximation,
the sum of interparticle polar terms and of interparticle
electron correlation (i.e., exchange repulsion and
London dispersion) energies.? It can then be expanded
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in powers of the permanent charge density p,° of the
reactants. The usual approximations in the literature
correspond to neglect of powers higher than the second,
together with the assumption of specific forms for these
terms.?

In terms of the symbols U; and U, introduced earlier,
we have

U=U+U,, (37)
where
Us=U(0)+U(1)+U(2). (65)
In (37) Ui is the intraparticle term for the reactants
and U, is the sum of the intraparticle term for the
medium and of the interparticle term. U(0), U(1),
and U(2) depend functionally on zeroth, first, and
second powers of p,° and, respectively, on second,
first, and zeroth powers of px°, the permanent charge
density of the medium.? U(0) also contains the intra-
particle term for the medium and the electron correla-
tion interparticle term. U; and p,° depend only on the
intraparticle coordinates, V’;, of the reactants, and ps°
depends only on those of the medium, V/,.?

The distribution function f,* defined in (39) can be
shown to be similar to that which occurs when the
permanent charge distribution on a reactant A4 is p,°¥*,
given by (66) for all 4:

Pam.I = Par°+ m (Paro_ papo) ’ (66)

where p,° is the permanent charge distribution of
Molecule A when it is actually a reactant and p,,° is
that when it is a product. The proof is given in Appendix
IIT and utilizes the facts that U(1) is a linear functional
of p.° and that U(2) is insensitive to the usual transla-
tional-rotational fluctuations in condensed media, for
reasons noted there, unlike the U(0) and U(1).
Normally, as will be seen later, m will be close to —3.
The V’, contribution to the free energy of formation
of a system with a nonequilibrium V', distribution,
AF,*, at any given R and at any given Q, has been
evaluated elsewhere on the basis of the particle descrip-
tion described above and of an assumption of (at most)
partial electric saturation®:

(67)

In (67) For and F denote the polar contributions to the
free energies of two hypothetical equilibrium and di-
electrically unsaturated systems, each having a p,°
equal to m(p."—p.p°) on each reactant. The first
system is an ‘“‘optical polarization’” system,? i.e., a
system whose medium responds to these p,°’s only via
an electronic polarization. The second system responds
via all polarization terms. Both F°P and F are quadratic
functions of the m(per®— pap°)’s.

It can be shown?® that FF°°— F depends on the square

® According to Egs. (10) and (11) of Ref. 10 For—F equals
uw2y— (@) )’3/2/2 T. The latter depends only on the second

power of the charge distribution, since
of the first power.

AF*=FPn¢_p— Fup)-

(1) is a linear functional
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of the permanent charge distribution on the reactants,
in this case m(pur®—psp°). We may then describe the
dependence of AF,* by

AF*=m?\,, (68)

where
o= (U (1) =Ur(1) = (U (1) = U (1) YIVET (69)

and the averaging function is”:

Us+Ur , Ur+ U, ’
(- N/ [l =5
(70)

To use Eq. (68) and those derived earlier, an expres-
sion is needed for m. It is derived below after some
preliminary analysis involving the standard free energy
of reaction, the electrochemical cell potential, and the
activation overpotential.

11. STANDARD FREE ENERGY OF REACTION

The configurational free energy of the system when
the reacting species are labeled reactant molecules,
fixed in position but far apart, was denoted by Fr. The
corresporiding quantity when the pair refers to labeled
product molecules was denoted by F?. The momentum
and translational contributions of each member of the
reacting pair to the free energy of the initial state
cancels that in the final state in these reactions in-
volving no change in total number of moles of redox
species. Thus, the difference F»— F* is equal to the free
energy of reaction when a pair of labeled reactants
form a pair of labeled products in the prevailing
medium.

This free energy of reaction in the prevailing medium
can be expressed in terms of “standard” chemical
potentials, The chemical potential u; can be written as
u'+ET In ¢, where p;° is the “standard” chemical
potential, defined here as the value of u: at ¢;=1.
Because of the labeling, FP— F~ does not contain a con-
tribution from entropy of mixing of the reactants.
Since it is these mixing terms which contribute the
kT In ¢; to u,, we therefore have

Prpr= T = T,
4 r

where Y, and ), denote summation over products
and reactants. There are one or two terms in each sum,
according as the reaction is unimolecular or bimolecular.

The right-hand side of (71) is AF®, the “standard”
free energy of reaction for the prevailing medium,

(71)

77 I{ the dielectric unsaturation approximation is used, one can
show!® that (U +U.?)/2 would be replaced by U (0) in Eq. (70).
Within the range of validity of the partial dielectric saturation
approximation, the average of the fluctuation term (69) would
be the same if (U,"+U.P)/2 were replaced by U,*, by U, or by
U». We have simply selected some mean value for the exponent,
symmetrical in  and .
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temperature, and pressure. Hence,
FP—Fr=AF%, (72)

It equals —kT In K, where K is the equilibrium
“constant” measured under these conditions. Both AF®’
and K can vary with electrolyte concentration, with
temperature, and with pressure.

12. ACTIVATION OVERPOTENTIAL AND
ELECTRODE-SOLUTION POTENTIAL
DIFFERENCE

For electrode systems, the counterpart of (72) is
obtained by considering the free energy of Reaction
(73) for a labeled molecule at any fixed position in the
body of the solution, but far from the electrode, M

Red+M= Ox+M (ne), (73)

where Ox and Red denote the oxidized and reduced
forms of the labeled molecule in the body of the solution.
This free energy change, which accompanies the transfer
of n electrons from the ion or molecule to the electrode
at a mean energy level discussed in Sec. 5, has a number
of contributions, such as one from the change in elec-
tronic energy, one from the change in ion-solvent
interactions in the vicinity of the ion, and one from
the change in vibrational energy. Let F* now denote
the configurational free energy of the system containing
the electrode and a labeled reactant, the latter fixed
in a position far outside the electrode double layer.
Let F7 denote the corresponding quantity when labeled
molecule is a product, the electrode having gained »
electrodes as in (73).

The term F?P—Fr is linear in the metal-solution
potential difference, as may be seen from the discussion
in Sec. 5, and thereby in the half-cell potential E. (E
is defined to be the half-cell potential corrected for any
ohmic drop and concentration polarization.) We have
then

Fr—Fr=A+neE, (74)

where A is independent of E, and where we have used
a standard convention regarding the sign of E. [This
convention is one which makes Reaction (73) increas-
ingly spontaneous with increasing positive E,, a
quantity defined later.] :

Because of the labeling the entropy-of-mixing term
of the oxidized molecules and that of the reduced
molecules are again absent in F* and F?. When the
system is at electrochemical equilibrium and when the
probability of finding the labeled species as a reactant
is the same as that for finding it as a product, F?— Fr
must vanish. Also, £ then has its equilibrium value,
which is E,’ for the case of equal concentrations of the
labeled species. [ E,’ is the “standard” oxidation poten-
tial or, as it is sometimes called, the formal oxidation
potential of the half-cell; I5, is defined in terms of the
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equilibrium half-cell potential E, by (75) for any
ratio of concentrations (Red)/(0x)]

E.= E,'+ (kT /ne) In[(Red)/(Ox)]. (75)
One then obtains, from (74),
0=A+neE,’. (76)
Hence,
Fr—Fr=ne( E—E,'). 77

We observe from (77) that E— E,/, rather than the
activation overpotential E— E,, plays the role of the
“driving force” in these reactions. The same role is
played by AF®’ in the homogeneous reaction.

In terms of formal electrochemical potentials of the
product and reactant ions and in terms of the electro-
chemical potential of the electrons in the electrode we
have, incidentally, for Reaction (73),

Fr—Fr=g," — 5%+ nfi.. (78)

13. EQUATION FOR m

We first note that AF® can be written as the alge-
braic sum of the following terms: The free energy
change when the reactants are brought together to the
separation distance R, %"; the frec energy of reorganiza-
tion of the reacting system at this R, AF*; the free
energy difference of reactants and products in this
reorganized state, which equals

((UP-HET Inf*)— (U+ET Inf*))

because of cancellation of momentum and of transla-
tional contributions; minus the free energy of reorgani-
zation of the product system at this R to the above
state, —AF*?; and minus the free energy change when
the products are brought together to the separation
distance R, —w®. Thus, (79) is obtained when (20) is
used,

(Homogeneous)
- AFY=wHAFH(R)—AF*(R)—wr. (79)

The electrochemical equation corresponding to (79)
is (80), as one may show from (77),

(Electrochemical)
ne( E— E,') =w+AF*(R)—wr—AF*(R). (80)

Here, AF*» is obtained from AF¥*, and w? from w" by
interchanging # and # superscripts and, at the same
time, interchanging —m and m~1. To establish this
result it suffices to note from (13) that U'* and all its
associated properties are unaffected by such a trans-
formation, but the properties of the reactants become
those of the products.

Upon introducing Eqs. (54) and (60) for AF*(R),
using (68) for AF,*(Q.), and upon introducing the
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counterpart of this equation for AF*P(R), the equation
for m is obtained. The final equations for the reaction
rate become quite simple when one notes -that to-an
excellent approximation terms involving the lx's de-
fined in (64) can be neglected. The proof is given in
Appendix TV. , .

14, SUMMARY OF FINAL EQUATIONS

On using the results of Appendix IV and referring
to Egs. (31) to (33), it is found that the rate constant
for a bimolecular homogeneous reaction or a uni-
molecular electrochemical reaction is given by

Frate= kpZ exP("‘AF*/kT), (31)) (33)

where Z is given by (34), AF* by (81) and (82), and
p by (27).

The rate constant of an intramolecular electron
transfer reaction, on the other hand, is given by Eq.
(32), with AF* given by (81) but with the work terms
w' and w” omitted:

Homogeneous:
w+w? N AF® (AF%+wrP—wr)?
A T TN !
r 21 7 oy , (81)
Electrochemical:
w+w? N ne(E—FE,')
F*= +°
A 7 Tt T
LE—neE,'+wr—w")?
+(ne nel,’+ wr—w") . (82
4\
In (81) and (82) A is given by

/
where A; is given by (84) and ), is given by (69) at
Q=10Q.. On introducing the symmetrical force constants
one finds Q«=Q,4+m(Q,—Q,). Since A\, depends but
weakly on Q+ and since m is usually close to —%, it
suffices tq evaluate A, at Q «=%(Q,+Q,) in the typical
case. This result is used in deriving Eq. (88a),
Ai= %Zk:k #OQiAGk. -(84)
2

The reduced force constants kj; are defined in (63)
and the Ag,’s are differences in equilibrium values of
bond coordinates (e.g., independent bond lengths and
angles), ¢;"—g,". ,

It is expected that typically p should be about unity.
As noted earlier, Z is essentially the collision number,
being about 10" liter mole™'-sec™! and 10 cm sec™ for
homogeneous and electrochemical reactions, respec-
tively.

In Ref. 6 the above equations were written in an
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equivalent form
Al¥ =" n\ (83)

Homogeneous:— (2m-+1)A=A I"°’+ wh—1?,

Electrochemical: — (2m+ 1)\ =ne(F— ') +fwr—w
(86)

The value of m defined by (86) can be shown to
differ very slightly from that in the preceding sections,
due to the approximation of neglect of the /;'s, but
the final cquations obtained when (86) is introduced
into (83) are identical with (81) and (82).

According to Egs. (81) and (82) AF* depends on
AF® or on nel according to (87a) and (8§7h) when
" and w” are held constant. -

(DAF*fAALF) =3 (1/2\) (AF®'H1wr—wr), (87a)
(AAF*0ne k) o= 2+ (1/2N\) (ne = ne b2, wr—wr).
(87h)

We refer to these slopes as “transfer cocflicients at
constant work terms.” The second term in (87a) and
(87b) can be calculated when ) is known, and this in
turn can be estimated from the experimental value of
AFF* at AF®'=0, or at k=1, using (81) or (82),
when the work terms can be estimated or are negligible.
Typically, this second term is found to be small, so
that these “transfer coeflicients” are then 0.5.

Equations (87a) and (87h) are based on the neglect
of the antisymmetrical functions /j defined in (64).
When these functions are not neglected, the transfer
coeflicient is not exactly 0.5 for zero (AF®'+wr—1w7) /N
or zero (neli—nels,'+wr—1w) /\, but is given instead
by Eq. (A14) in Appendix 1V. When these two sources
of deviation from a 0.5 value are small, we may add
them and so obtain (87¢) and (87d) instead of (87a)
and (87h):

(DAF*JOAF) =14 (1/2\) (AFror—ror4 20 (1,))
(87¢)
(DAF*/ane k) =3+ (1/2\)
X (neli=nels,Fwr—w-iNi(lL)). (87d)

‘As noted in Appendix 1V the (/) term could cause
a deviation from the 0.3 value by 0.04 when the force
constants in the products are all twice as large (or all
twice as small) as the corresponding ones in the re-
actants and when A/N is about 3. Smaller difierences
in force constants would lead to even smaller deviations
than 0.04. ‘This source of deviations would be diflicult
10 detect experimentally, since there are other sources
of deviation as well, In the case of homogencous

reactions, force constants on onc reactant may stiffen
and lhos(. in the other weaken, so that the average
ralue of (/,) may be even less than that for the above
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case, and the deviation from the 0.5 value arising from
this source correspondingly smaller.

In summary, the transfer cocfficient at constant w’s
is expected to be close to %, reflecting a type of sym-
metry of the R and P surfaces in the vicinity of the
reaction hypersurface (compare also Sec. 17). A source
of deviation from this symmetry arises from a diiference
in corresponding force constants in reactants and
products. It appears as an {/,) term in (87) and has
been shown to be small. A second source of deviation
arises when the R or P’ surface is appreciably lower
than the other, and is reflected in the presence of the
AL and we(£i—1,") terms in (87). This source of
deviation, too, is normally small. The leading term in
(87), %, arises from the quadratic nature of both the
1, and the I; contributions to AF¥,

15. PROPERTIES OF THE REORGANIZATION
TERM \

For use in subsequent correlations, we examine an
additivity property of X and the relation between the
values of A in related homogencous and electrochemical
svstems. We consider first the (hypothetical) situation
when R is very large, so large that the force field from
one reactant does not influence the other. On noting
that N\, is given by (69) and that the fluctuations
around cach reactant are now independent (large R), A,
can be written as the sum of two independent terms,
one per reactant. It then follows that when R is large
the value of \, for a reaction between reactants from
two difierent redox systems o1 and B, N, is the arith-
metic mean of the values A2 and A2 of the respective
systems:

MU=FeAS)  (Rlarge).  (88)

IFurthermore, in the clectrochemical case there is only
a contribution from one ion (assuming that any dis-
tortion of atomic structure of the clectrode yiclds only
a relatively minor contribution to AF,*). Denoting the
values of A for the clectrochemical redox system .f
and for the homogencous redox system A by At and
A= respectively, we have

ALE= 2\ (88h)

Relations similar to (88a) and (88b) also hold for \;,
independent of R, as may be scen from (84): Part of
the sum for A; is over the bonds of the first reactant
and the remainder is over those of the second one.
While the £;'s of one reactant in the activated complex
depends slightly on the fact that there is a neighboring
reactant, this influence is taken to be weak.

In the absence of specific interactions, Eqs. (88a)
and (88h) would also hold for smaller R, since in the
equation for A, cach ion would merely sce another
charge, —mAe, and the surrounding medium, in both
the homogencous and clectrode cases. In the homo-

(R large).



692

geneous case, the —mAe is centered on the other ion.
In the electrode case it is an image charge on the
electrode.® To obtain some estimate of deviations from
(88a) due to differences in ion size (one type of “specific
effects”) we examine in the next section the evaluation
of )\, in the dielectric continuum approximation.

16. DIELECTRIC CONTINUM ESTIMATE AT AF,*

The present section on a continuum estimate of AF*
is included partly for what it can reveal approximately
about certain aspects of the statistical mechanical value
for AF,* and partly for making some approximate
numerical calculations. It does not form a necessary
part of the present electron-transfer theory itself, of
course, for the latter rests on statistical mechanics.

We note that AF,* can be regarded as the sum of
two contributions, AF*o1 and AF*ym* AF¥, is defined
as the contribution if the atmospheric ions have not
adapted themselves to the change m(par’—psp°), and
AF*,. is defined as the contribution due to their

adaptation (“reorganization’). AF¥ in an electrolyte.

medium will not have exactly the same value it has at
infinite solution, since the local dielectric properties
near the reactants will be altered somewhat by the
presence of salt.

These two contributions are estimated in Appendix
VII by treating the medium as a dielectric continuum,
the ion atmosphere as a continuum, and the reactants
as spheres, and by neglecting-dielectric image effects.?®
We obtain (89) and (90) for the value of AF* for a
medium treated as dielectrically unsaturated continuum
outside the inner coordination shell of each reactant.
If partial saturation occurs, Eq. (67) still applies.® If
one then introduces “differential” rather than “integral”
dielectric constants, as defined in the Appendix, and
treats them approximately as constants Egs. (89) and
(90) again apply but now Do, and D, are mean values
of these differential constants

Homogeneous:

srm (- 1)L

89
261 202 R Dop Da ’ ( )

8 Quantum-mechanical calculations in support of the classical
image law are given by R. G. Sachs and D. L. Dexter, J. Appl.
Phys. 21, 1304 (1950). At a distance of 5 A from the electrode the
computed energy of an ion in vacuum may be estimated from their
results to be about 897 higher than that estimated [rom the image
law, Experimental evidence for the validity of the image law at
distances of 5 A has been offered by L. W. Swanson and R. Gomer,

J. Chem, Phys. 39, 2813 (1963) (cf. p. 2835}).

-7 3 The dielectric image contribution to AF* is estimated to be
negligible: It makes essentially no contribution to the value of
Prr-»°® since this hypothetical system has a low diectric con-
stant equal to the optical diclectric constant throughout. Its
contribution to F.,(r—p) is only about 85 of the value of the
term containing 1/D, in (90). Since this term is only a negligible
fraction of the 1/D,, term in (90), the dielectric image contri-
bution to AF.o* can be neglected. We note later that AFP,q* is
apparently much smaller than AF.*. Dielectric image effects
may be estimated from electrostatic calculations to contribute
ahout 8% to u# when two charges of equal magnitude meet.
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where ne is Ae, the charge transferred from one reactant

to the other; a; and a, are the radii of the two reactants

computed at intramolecular coordinates g=g+* (the.
radii are of spheres each of which includes any inner

coordination shell); R is taken to be the sum a}a;

Doy is the square of the refractive index of the medium;

and D, is the static dielectric constant of the medium-

Electrochemical:

' m’(ne)’(l 1 )(-Dl 1 )
F*so = bty | =ik /
a ! 2 a1 R op D,

where R is twice the distance from the center of the .
jon to the electrode surface and g, is the radius of the
reactant (and hence of the product) computed at g=g+".

The value obtained in Appendix VII for AF*sn in
the electrically unsaturated region (ie., in the Debye-
Hiickel region for the atmosphere around the ion and,
in electrode systems, for the diffuse part of the double
layer) is given by Eq. (91) for homogeneous systems
for the case of ay=a,(=a), and by (92) for electrode
systems. The value for AF*,n for partially electrically
saturated systems can also be obtained from (67).
Once again, one introduces “differential” quantities. If
the latter are replaced by ‘“mean” values near the
central species Eqs. (91) and (92) are again obtained,
but with D, and « reinterpreted; x is given by (A23)
in Appendix VIL. A more reliable procedure, however,
would be to use the position-dependent value of « in
solving this particular linearized Poisson-Boltzmann
equation, since the electric fields in electrolyte media
die out fairly rapidly, namely as r— exp(—wr). Equa-
tions (91) and (92) are based on the solution of a
linearized Poisson-Boltzmann equation with a local
mean «

(90)

Homogeneous:
_ m?*(ne)*
AFfwn="DR :
[uR-i— exp[—x(R—a) J(1+«%?/2) 1] 1)
1+xa+ exp[—x(R—a) %?/3R ’
Electrode:
AF*yn=3%[rhs of (91)]. (92)

Calculated as above, AF*,, is much smaller than
AF*, and is also expected to be less than the salt
effects on w” and w®. Even at high « it is only m?(ne)?
(R—a)/DsaR. Since R=22q, its value there is about
m2(ne)?/D,R, which is only about 2% of AF*..
Parenthetically, we note that this term arising from
(91) and (92) just cancels the D, term in (89) and (90},
respectively.

Added electrolyte can influence the rate constant, we
conclude, principally by affecting w", w?, and (by affect-
ing dielectric properties) AF*g.

Comparison of (89) with (90) reveals that A, for an
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isotopic exchange reaction has twice the value of A, for
an electrode reaction involving this redox couple when
the value of R is the same in cach case. It is recalled
that R is the value for which xp exp(—AF#*/kT) had a
maximum. If onc presumes this R to be the distance of
closest approach of the “hard spheres” and assumes
the reactant Lo just touch the electrode, then R is the
same in each case. In Eq. (89) a1=a: for an isotopic
exchange reaction since these are the radii evaluated
for g=gqs, it is recalled, and since typically the transi-
tion state should be symmetrical in this respect. (From
the equation cited the actual ¢+/’s can bhe computed
and the presumed symmetry verified for typical
conditions.)

It may be seen from (89) that )\, is essentially equal
to the sum of two terms, onc per reactant, and that
for the same R the value of N\, for the homogencous
reaction in any redox system .l cquals twice its value
for the electrochemical case. While the presence of the
R term makes A, not quite additive, the deviation from
additivity can be shown to be small: On denoting the
radii for ions of the two systems by ¢ and b we obtain

(93).
)‘oab_. } (‘\anu_l_l\nbb) -

L-G/@F, (1 1
TRERTYS R '(Dn.,"E)' (%)

Even if b/a is }, a fairly extreme case, the ratio of the
above difference to A2 is

(1—b/a)?
2(1+b/a) ’

i.c., Y. In virtue of this result, \, has been treated as
an additive function in applications®? of the equations
of this paper.

17. SIGNIFICANCE OF m

The parameter m was chosen in Scc. 13 so as 1o
satisfy the centering condition (20), a condition which
led to the vanishing of /'(0). On diflerentiating
I(g", R) given in (15) and sctting ¢¥=0 one finds:

t'lU">/ ad (Lr=Ur 04
(’,(I‘\' (’](['\' 4 ) ) ( )

where the average { ) is over the distribution function
on the reaction hypersurface S at the given R,

ex )(_U’)// ex (_Ur (a¥V)-W S’
spl == exp “_)‘a TR

FFrom (94), —m is seen to be the mean slope at the
reaction hypersurface S', (0L 7/d¢"), of the R surface,
for the given separation distance R, divided by the sum
of the mean slopes, (907/d¢™ ) and (—al'»/a¢™ ) of the
Rand P surfaces at S'. If the intersection surface S at
this R passed through the stable configurations of the
reactants, on the average, then (Ur/dgY) would be
zero. If it passed through those of the products instead

m=—
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(@U?/d¢" ) would be zero. In these two cascs one sees
from Eq. (94) that s would be 0 and —1, respectively.
When in the vicinity of §’ the R and P surfaces are,
on the average, mirror images of cach other about §',
(aUt/a¢") equals (—al*/ag¥) and one sees that
m=—%. Values of m close to —% are typical®? and are
to be expected, one sees from (86), when AF® is near
zero or when £ is close to £, (typically of the order
of or less than 10 kcal mole™ or 0.25 V, respectively).

18. DEDUCTIONS FROM THE FINAL EQUATIONS

Equations (31) to (33), together with the additivity
property of N (Sec. 15), and the relation between
the electrochemical and chemical N’s described earlier
lead to the following deductions, if « and p are about
unity, or if they satisfv milder conditions in some
cases. ™

(a) The rate constant of a homogencous ‘cross
reaction,” &y, is related to that of the two electron-
exchange reactions, %y, and #y,, and to the equilibrium
constant Ky, in the prevailing medium by Eq. (96),
when the work terms are small or cancel,

k2
Oxy+4 Reds= Red,+ OI\'g, (95)
* km'—" (kuk".'zKl:'f ) !, (96)
where
] I’ 9 2
Inf=—_nK) (97)

4 ln(knkgz/zz) ’

Frequently, [ is close to unity.

(b) The clectrochemical transfer coeflicient at metal
clectrodes is 0.5 for small activation overpotentials®®
(i.e., if | nly | < | AF* |, where AF,* is the free energy
of activation for the exchange current),”® when the
work terms are negligible.

(c) When a substituent in the coordination shell of
a reactant is remote from the central metal atom and is
varied in a series, a plot of the free energy of activation
AlI'* versus the “standard” free energy of reaction in
the prevailing medium AF® will have a slope of 0.5, if
A is not too large (i.e., if | AF® | is less than the
intercept in this plot at AF®=0). In this series, for a
sufticiently remote substituent, N and the work terms
are constant but AF® varies, as in (87a). The slope of
the Af*-versus-A2® plot has been termed the chemical
transfer coeflicient,’ by analogy with the electrochemical
terminology.

(d) When a serics of reactants is oxidized (reduced)
by two different reagents the ratio of the two rate
constants is the same for all members of the series in

3 For example, it suflices for some of the deductions that xp he
constant in & given series of reaction or that it have a geometric
mean property.

3 (a) We have phrased this condition for the case that (Ox) =
(Red). For any other case, 5 should be replaced by £— Eo'. (b)

The exchange current cited refers to the value ohserved when
(Ox) = (Red).
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the region of chemical transfer coefficients equal to 0.5
[i.e., in the region where | AF®’ | <(AF*) sp,*=o in €ach
case .

(¢) When the series of reactants in (d) is oxidized
(reduced) electrochemically at a given metal-solution
potential difference the ratio of the electrochemical rate
constant to either of the chemical rate constants in (d)
is the same for all members of the series, in the region
where the, chemical and (work-corrected) electro-
chemical transfer coefficient is 0.5.

(f) The rate constant of a (chemical) electron—~
exchange reaction, ke, is related to the electrochemical
rate constant at zero activation overpotential ®® ke, for
this redox system, according to Eq. (98) when the work
terms are negligible:

(kex/zsoln) lEkol/zel,

where Zyn and Zo are collision frequencies, namely
about 10" mole~!-sec™! and 10f cm sec™.

When the work terms are not negligible, or do not
cancel in the comparison, the deductions which depend
on this condition refer to rate constants, to K, and to
an electrochemical transfer coefficient corrected for
these terins. Again, a minor modification of the transfer
coefficients from the value of § in (b) or (c) can also
arise from the antisymmetrical force constant term (/)
in Eqs. (87) and (Al14).

It is shown in Appendix VII that under certain
conditions these expected correlations apply to over-all
rate constants as well as to those involving only one
pair of reactants.

(98)

19. GENERALIZATION AND OTHER
IMPROVEMENTS

Some of the extensions or improvements in the
present paper, compared with the earlier ones in this
series, are the following:

(1) Use is made of a more general expression for the
reaction rate as the starting point.

(2) A more detailed picture of the mechanism of
electrode transfer is given for the electrochemical case.

(3) The derivation is now given for both electrode
and homogeneous reactions, and in a single treatment.

(4) The statistical-mechanical treatment of polar
interactions, based in Part IV on the interactions of
permanent and ‘induced dipolar molecules in the
medium, was replaced by a more general particle
description of polar interactions, through the use of
the potential-energy function (37) and (65).

(5) The equivalent equilibrium distribution made
plausible in Part IV was proved more rigorously here.

(6) The functional form (68) for AF,*, obtained in
Part IV only by subsequently treating the medium as
a dielectric continuum, was derived here using a
statistical-mechanical treatment of nonequilibrium
polarization systems.
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(7) The basic equation for 2 has been converted
to a simple form [e.g., (31) and (81)], a form used in
Part V, by neglecting the antisymmetrical function of
the force constants, a neglect which has only a minor
effect numerically.

(8) The symmetry arguments used in Part IV to
convert the £T/k and a portion of a AF* term to the
Z factor in (31) have now been given more rigorously.

(9) The ion atmospheric reorganization term was
but mentioned in Part IV. It is now incorporated into
AF,*, The nonpolar contribution to %’ and w* is also
formally included.

(10) The contribution of a range of separation
distances to the rate constant is included.

The results in the present paper may be compared
with earlier papers in this series. In Part I, AF,* was
computed for homogeneous reactions at zero ionic
strength, and dielectric continuum theory was used.
Equation (89) was obtained. The actual mechanism
of electron transfer was discussed there, but without
the detailed description which the use of many-dimen-
sional potential energy surfaces provides. The latter
was used in later papers of this series, a use which
added to the physical picture. The counterpart of
Part I for electrode systems was also derived and
applied to the data in a subsequent paper.?

In the earliest papers, the dielectric continuum
equivalent of the equivalent equilibrium distribution
was derived by a method apparently different from
that used in the present paper. The distribution
selected was the one which minimized the free energy
subject to the constraint embodied in Eq. (20), or
really embodied in the dielectric continuum counter-
part of (20). In Appendix IX this method is in fact
shown to yield the same result for the equivalent
equilibrium distribution as the functional analytic one
used in Appendix II. It is entirely equivalent.

APPENDIX I. NONADIABATIC ELECTRON
TRANSFERS

Several estimates are available for the probability of
nonadiabatic reactions, per passage through the inter-
section region of two potential energy surfaces, and
have been referred to and discussed in Ref. 7. In each
case the motion along the reaction coordinate was
assumed to be dynamically separable from the remain-
ing motions. (For conditions on separability see, for
example, Ref. 32 and references cited therein.) The
probability of electron transfer per passage through
the intersection region in Fig. 1 will depend in the first
approximation on the momentum py conjugate to the
reaction coordinate ¢¥, as, for example, in the Landau-
Zener" equation. While the value of « is not so simply
represented in more rigorous treatments, we simply
write it as k(px). In the above treatments the reaction
coordinate was assumed to be orthogonal to the others

# R, A. Marcus, J. Chem. Phys. 41, 603 (1964).
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in mass-weighted configuration space, so that gy; van-
ishes for i#N (and so, therefore, does g¥é) in the
kinetic energy. On recalling the derivation of Equations
(1) and (2)%and on introducing the above assumptions,
the rate constant is given, one can show, by Eqs. (1)
or (2), but with the integrand multiplicd by «:

o ‘ " . g.\’.\’ ,,.\.2
j; Nmok(l’.\')s" Y c~\l’(" T ')'1/’.\’

o NN p 2
/o e Vpy cxp(—g 2k/'; ‘\ )«1 by

This & can depend on all the other coordinates, ¢f(i%.V)
at the given value of ¢ characterizing the intersection
surface S. The denominator in the above equation is
casily shown to equal 7, and so to be independent of
the ¢'. In the discussions of x(py) in the literature, the
derivation of the Landau-Zener equation, for example,
the reaction coordinate has been assumed to be recti-
linear; g~ is then a constant and the integral in the
numerator then becomes independent of the ¢f and may
be removed from the integral in Egs. (1) and (2).

There appears to be no treatment in the literature for
nonadiabatic reactions involving many closely spuced
energy surfaces as in Fig. 2, covering the range of x(px)
from 0 to 1. If k(py) is sulliciently small, the transition
to each P surface from the initial R surface may be
assumed to be independent, as mentioned catrlier, and
the reverse transition to the initial R surface during
this passage may also be neglected. In this case only
does the method of Levich and co-workers in this
connection become appropriate. (For references sec
Ref. 7.) In this case the above x appears in the inte-
grand of Eq. (3) and care is taken to sum over all levels
in an appropriate fashion, as done by Levich ¢ dl.
(see Ref. 7 for bibliography). One can then evaluate
the x appearing in Eq. (33) and defined earlier. Usually,
however, we assume that &(py) is close to unity (within
some small numerical factor, say) for the py's of
interest.

K=

APPENDIX II. PROOF OF EQ. (13) FOR
THE CENTERED DISTRIBUTION

The centering is of both a horizontal type (horizontal
in terms of Fig. 1 or 2) and of a vertical type, repre-
sented by Eqgs. (A1) and (A2), respectively:

/ UV = / UV, (Al)

f UtV = / UV, (A2)

Suppose, for possibly more general applications, that
there are » linear equations of constraint of the type
represented by (A3). Here, we are especially interested

REACTIONS., VI 0V

in the case n=1,

f PrdV'=0, =1, 000, (A3)

For any temperature and U*, this integral is a linear
functional of 3; Although one can find functions, #,
other than y; (and other than lincar combinations of y;)
for which [f*ud!” vanishes at some temperature T,
the y;'s are the only ones for which this integral is
specified to vanish for all 7% That is, there are only
the n cquations of constraint (A3) on the U* in f*.
The space functions I” for which [f*Fd V'’ is real and
finite form a lincar vector space over the ficld of real
scalars. Morcover, the integral, denoted by J(1), s a
lincar functional on this space. For some subspace 4/
of it, the integral vanishes. The functions y;( j=1 ton)
form a basis for M. 1f there exists some function @ for
which /() does not vanish, then an clementary
theorem™ of functional analysis shows that any func-
tion . can be written as

r=wlJ(x)/J () I+

where y belongs to 3. In the present instance w=1is
such a function. On applying (A4) to the function
y=U*=Ur and using (A2) onc sces that ¥=w, ie,
that x belongs to M and can so be written as a lincar
combination of the functions y;. In the present case,
A is onc dimensional, the only ¥; being Ur—U”, since
(A1) is the only equation of constraint. Thus, x, i.e.,
U*—=Ur, cquals Ur—U?r multiplied by a real scalar,
and Eq. (13) is established.

(A1)

APPENDIX III. DISTRIBUTION OF ¥,, COORDI-
NATES IN THE ACTIVATED COMPLEX

\We first note that U (2) in Eq. (65) does not depend
on py°, the p° of the “medium,” and so is insensitive
to the usual rotational and translational fluctuations of
the solvent molecules, unlike U(0) and U(1). Since
U,* is given by (13), with o subscripts added, one term
in U*is Ur(2)4+m[U(2)—Ur(2)]. Since this can be
extracted from the integral in the denominator of the
above distribution function because of this insensitivity
to the 17, coordinates, it cancels a corresponding term
extracted from the numerator. The distribution func-
tion f,* then becomes (A3):

exp(— {U(0)+U" (1) +m[U(1) = U*(1) ]} /kT)

f exp(={ UQO)+U (1) +m[U(1)— Ur(1)]) /T )V,

(A3)

Since U(1) is lincarly dependent on the p,° of each
reactant, Ur(1)+m[Ur(1)—Ur(1)] cquals the U(1)
for a system in which each reactant has a p.° pa°%,

BA, E. Taylor, Imtreduction to Functional Analysis  (John
Wiley & Sons, Inc. New York, 1958), p. 138.
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given by (66). Next, on multiplying the numerator
and denominator of (A5) by the exponential of the
—U(2)/kT corresponding to these p,°*'s and placing
it under the integral sign, we see that the distribution
function f,* is the same as that corresponding to the
p.°*'s given by (66).

APPENDIX IV. SIMPLIFICATION OF EQ. (54) AND
THE EQUATION FOR F%:aie

We introduce the quantities % and /i defined in
(63) and (64). The first was chosen so as to have
dimensions of a force constant, and the second so as to
be dimensionless.

Principally, it is the diagonal stretching contributions
which are usually important. Purely for simplicity of
argument we confine our altention to the diagonal
terms. We denote the new force constants by f., /o,
and their symmetric and antisymmetric combinations
cited above by 4, and /.. In terms of &, and /,, f,” equals
k/(1=14) and [ equals k/(14L). To make use of
the symmetry of the resulting equations we use the
parameter ¢, equal to (m-1).

We obtain (A6) from (54) and (60):

AF#=3(e—1)22 ke(A0.°) (1= 1) (14-2el,) 2
AT In[(14261)/(14+0)], (A6)

where AF* is defined as AF*(R) — AF*(R). Similarly,
we find (A7) by noting that it is obtained from (AG6)
by replacing —m by m+1 and interchanging 7 and p
subscripts (sce Sec. 13)

AF#Fr=1(e+3)2D k(Aq.°)2(1-Hh) (1426l,)-2
3720 [ (14+26)/(1=1)], (A7)

where AFF;*? is AF*?(R) — AF,*?(R).

In terms of ¢, Eq. (79) can be written as (A8), upon
introducing Eq. (68) for AF,* and its counterpart for
AF*[= (m+1)\,]

— 2\ FAF*— AR r= L\FRO', (AS)

where

AR =AF% 4 wr—wr, (A9)

Most of the data arc obtained in the vicinity of
AFR®=057 We consider this region first. Near the
point (L,=0, AFp®=0) one readily verifics from the
cquations below that € is closg to zero and that it
vanishes at that point. We let 4 denote € or /,, and O
denote the “order of.” (n is a small quantity in the
vicinity of this point.) Onc then finds from (AG) to (AS)

2= Nl ) O () = AR +AT S, (A10)
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where

MN=3k(A0.0)%  A=hebN

()= k(Mg U/ 2 ok(8g,°)2 (AlD)

Furthermore, according to (79) AF* equals AF*»-
AFp”. Hence,

AF*=Y(AF*AF*) =4 (AF*-AF*r) 4 5ATR®.
On introducing (A6) and (A7) one finds
SF*= 38 Fe®tME+1) N0 + 1T (dehiH2).
(A12)

On introducing (A10) for e onc finds that (A12)
becomes

AF*= JAF 0 (1/4) (AFe™+N(L))?
+3RTIY 12— (RT/N) (OCL)¥1H0(").  (A13)

The same expression obtains for electrode processes,
with the AF® in AFp® replaced by ne( E— E').

In an isotopic exchange reaction which involves mere
interchange of charges in the clectron transfer step, the
term {/,) vanishes by symmetry. In other reactions
there will be some tendency for it to vanish, for while /,
increases on one reactant on going from State R to
State 2 (due to an increase of charge), it will tend to
decrease on the other. As a somewhat extreme case
involving no compensation, consider two reactants
onc of which has vanishing /, and also vanishing con-
tribution to A;. (Hence, we include the possibility that
this “reactant” is an electrode.) For the other molecule
let the force constants £,” and 4,7 differ by as much as
a factor of 2. Then onc finds (I, )~3. If Ni/A~3 then
M2 )Y2/16X is only about 19 of A/4, the main term at
AFp®=0. When A4 has its usual value of 10 to 20
keal mole™, say 10, and when the reactant has a
coordination number of six, then the 2T term in (A13),
is estimated to be about 4% of the A/4 term at room
temperature.

We consider next the effect of nonvanishing (/) on
the derivative (dAF7/3AF)x,a, at AFR®'=0, the
region of greatest interest. This derivative equals

O/ D)0, (A14)

In the case cited above the \;{/)/4\ term is about
+4-0.04. Thus, the derivative differs by only 8%, for
this case. Hence, the (&) term may be neglected when
¢ (and hence | AFL®/XN|) is small. When | AFg®/N| is
not small, one finds that (A13) should be replaced by
(Al4a), to terms correct to first order in the /,

AF*=JAFR® I+ 1 (AF®)?
+(AFR /AN (I[L— (AF"/N)Z]. (Alda)
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The term containing {45 is still small: A fuirly extreme
case is one where the actividad complex resembles the
reactants (m=0) or the products om— o A e h
extreme | AFR%/N | is about unity,since the cxpression
for e(=—AF™/2\) is but slightly alfected and sinee
| €] cquals § when mrisOor 1 In the interval

0< PR N LI
the last term in (Afda) has o maximum at
RYISSEN L

At this point it equals about 1 keal mole™! for the values
of (L), /N, and N/ dited above. When one does nnt
neglect second and higher-order 1erms in £, and solves
(A6) to (A8) numerically in this region one olitains
the same result: The Jy terms may be neglected.

APPENDIX V. SMALLNESS OF (£ 7{Q.i = U Qy1 s

If (Ur=U7ye at any Q is expanded about its value
at Q. and if it can be shown that the linear term
suflices, it follows that {L7= 17y, avi raged over f.7
equals the value at Q.+ plus the average ol the linear
term. In virtue of {30) the averaged linear term vanishes
and, in virtue of (20, the average ol (LU= UF)a,
over f,* vanishes. Hence, LriQ =07 he, also
vinishes.

To show hy « posteriori caleulation that the lincar
term in the expansion sufiices we make use of some
notation introducad after (311, AMfter use of (37}, of
the equality of ({'J— U2 with SE— 0 of (6R)
of the definition of {77 and U7, and of thair quadratic
expansions about Q, and Q, respectively, of the essen-
tial cquality of the vibrational entropy of reactants
and products, and of the justitable neglect ol the
antisvmmetrical functions (631 ¢Appendiy 1V one
finds (A13) for any given Q.

(U= o= — 2m+10NQY =AY
‘%"‘_} ZI‘\'[," ‘I“ l‘,"ri\f ‘ (Ii" l‘,'r /'

- '1"2:/"!;5 gl iyt o't CALS)
Y

The quadratic term, k4'q’, is seen to caneel Adinear
expansion of N,(()) xbout N OF) s satiicient, for even
the linear term is small (compare Appenedix Vi Heace,
the linear term in an expansion of (L7(Q)— UriQ) e,
suflices. The vanishing of {(Q vy — C#(Q4) 3, then
follows,

APPENDIX VI. JUSTIFICATION OF NEGLECT OF
#\,/d¢' IN THE DERIVATION OF EQ. (58)

It is shown here that the error in neglecting the
dependence of N. on Q in deducing {53) from (50) is
minor.

Since the arguments in Appendix TV revenl that the
error in neglecting the antisymmetrical fundtions (64)
is minor, we may simplify the present analysis by
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neglecting them. To this purpose all force constants
may be replaced by the svmmetrical ones, &y, defined
Ly Fq. (03},

Let A, e a column matrix whose components are
ON Oy

NLQ) =N (O )+ Do /0g7) (g =g o)) Fo e

:

=N ) FAT(Q=Q ) e (A16)
The first variation in an expansion of C,*(Q) about
Q. is {found from {36}
Gk 5QT [im+ R Qa=Q))

—mK(Q.—Q,) —nim+1)A.],
where the dements of K are the ka's.
On setting 60 equal to zero, one obtains, instead
of {38},

(A17)

Q,=m:’u:-l~i)K“’Au+(m+l')O,—m(),,. (A18)
Fquation (31) for AF* then becomes
AF*e (D[ AQTH- {me-H 1) LR A7)
SK2QT{mH 1K N
AnEN (O T In  fp* Rl (A19)

For presont purposes it suffices to consider the case
where AF? s small. An expression for AF* can be
obtained from (A19) by replacing m by — (m+1)
and AQ Ly —2Q. On letting AF*— AR equal zero
(since AF" i3 zero) the resulting cquation is solved
for m, which is therchy found to be —#%. A simple
numerical estimate then shows that the presence of the
K-, terms have negligible ¢ffect: Other than the In
term the rhs of (A19) is given by

INQ LA AEAS (KT A, (A20)

where AN, is the total change in A, when Q. is changed
to Q,. Typically A,/ is of the order of 5 keal mole™!
end is inversely proportional to ion size. When the
awean bond length changes by as much as 015 A
reorpare the prolible Fe-0 bond length difference in
Fett and Fed hydrates) and when the radius of the
reactant inchuding inner coordination shell is 3 A, AN/4
is about 1{0.13°3), i.c., about 0.25 keal mole~t, The
tiird term in LA0) is even less. For example, if one
considers the stretehing of bonds only, and if the
stretcliing B,'s for metal-oxygen bonds in a hydrated
cation are taken to be the same one finds

2 LTORT) 7 E A= (ANG/N) 2N (A21)
(Similar remarks apply to other coordination com-
plexes.) Since \i 4 is of the order of 10 keal mole ! for
the cited case (A21) is about 0,006 keal mole ™.

APPENDIX VII. CALCULATION OF AF,* IN
CONTINUUM APPROXIMATION

When diclectric unsaturation and clectric unsatura-
tion prevail there is, respectively, a linear response of
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the solvent polarization and of the charge density of
ions in an ion atmosphere to the charging of the central
ion (or ions), and not merely to a small change in its
charge. In real systems, some partial dielectric satura-
tion outside of the coordination shells may occur and,
at appreciable concentration of added electrolyte, the
response of the atmospheric ions is certainly nonlinear.
(The region of linear response of an ion atmosphcre to
a charging of the “central ion” is confined to the
Debye-Hiickel region.)

We introduce the partial saturation approximation,
wherein only a linear response to a small change in
charge of the central ion (ions) is assumed. The special
case of unsaturation is automatically included, there-
fore. We are interested, typically, in changes of magni-
tude, mAe, i.e.,, about } an electronic charge unit.
Equation (67) was derived for both the partially
saturated and for unsaturated systems, but in the
former case the definition of I°P,;_py and Fue_p has
to be interpreted carefully.

To calculate Fn_p appearing in (67) and to take
partial saturation into account, one considers two
charge distributions: (i) The original charge distribu-
tion of the reactants and the medium for the cited R.
(ii) A hypothetical charge distribution in which the
reactants’ charge distribution is altered from (i) by
an amount m(par®—pep°), in a hypothetical system
which has responded linearly to this change. To obtain
the properties of the hypothetical system in Fu..) one
substracts the above two charge distributions on the
reactants and also substracts the portions of the re-
maining charge distributions, induced or otherwise,
which did not respond. One now has in this hypothetical
[m(r—p)] system reactants which have permanent
charges given by the distribution 7:(ps°—pap°) and
are imbedded in a medium of solvent and atmospheric
ions which has linear “response functions” describing
the above response. For example, if we use a continuum
model, then the effective dielectric susceptibility of the
solvent is the proportionality constant x(r) in*

§P(r) = —x(r)sE(r),

where 6P and SE are the change in polarization and in
electric field at r. The effective dielectric constant
describing the response to this 6E is D,(r) equal to
14+4mx(r). The quantities x(r) and D,(r) can be
tensors.

Then, again, if p(r) is the charge distribution in the
ion atmosphere and, if one wishes, in the electrical
double layer at the electrode-solution interface, and if
p(r) is approximated by a continuum expression

p(r) = ci%; exp(—e/kT),

(A22)

where ¢; is the charge of Species i in this atmosphere,

#R. A. Marcus, J. Chem. Phys, 38, 1858 (1963).
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¢, is its concentration at infinity, and ¢ is the potential
at r relative to the value at infinity, then

sp(r) = — (Dci™ele ¥ /RT) 3y (x).

On recalling that the Debye kappa is defined as the
square root of the proportionality constant of p(r)
and —y¢(r) in linear systems, the quantity which plays
the same role in this hypothetical system is ¥'(r).

¥'(r)= [E_c;’”e.’ exp(—ed/kT)P.  (A23)

To calculate FoP,_p, we recall that this system
responds only via the electronic polarization of the
medium, and so &’ vanishes for this system and x'(r)
becomes x’.(r), the proportionality constant replacing
x(r) in (A22). The medium in this hypothetical
system behaves as though it had a dielectric constant
D'op(r) equal to 1+4mx..

If we take D’,, to be approximately a constant, for
simplicity, then FeP, 5 is easily calculated. We
neglect dielectric image effects.?® FoP,,_, is the sum of
the free energy of solvation of the central species when
they are far apart, plus the free energy change when
they are brought together in this “op’” medium. The
former is given by the Born formula (it is not the free
energy of solvation of the bare ion, but of the coordi-
nated ion) and the latter by the Coulombic term.
Hence,

(mde)?f 1 ) (mAe)’( 1 )]
FoPpppy=— 1— —{1——
(r-p) [ 20, \ Dlop + 2a. D'op
(mAe)?
D’opR ’
The Fpy_p term is the sum of its value when the ion
atmosphere does not respond

_ (mAe)*( ____1_) 1_7&3( __1_)]_(mAe)’
[ 2a, 1 D', +202 1 D, D',R’

and the contribution due to their response via ¥'(r),
AF*;.. On taking x’ to be approximately a constant
near the central series the leading terms of the second
contribution are®

_ (mAe) [« R+ exp[—«'(R—a) J(14-x"%4?/2) _1]
D".R | 1+«'a+ exp[—«'(R—a) %*/3R ’

(A24)

(A25)

(A26)

when a;=a,.
The difference of (A24) and (A25) is the value of
Fer— [ when the atmosphere does not respond, and

# Since dielectric image effects are being neglected one may
merely use the expressions obtained by G. Scatchard and J. G.
Kirkwood, Physik. Z. 33, 297 (1932), for the contribution to the
free energy of interaction of a pair of ions with their atmosphere
due to a response described by x. We may merely replace ¥ by
' and D, by D, under the approximations stated,
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was called AF*... In (89 to «92) we have omitted
the prime superscripts for brevity.

In the case of electrade svstems, there is only one on,
but there is also the image charge of opposite sign in
the electrode.®

Instead of (A24) 1o «A20) one tinds,

. - {(mAe)? 1 imie)?
(electrode) Fov = ————— 1—-[3,—‘" -

2a 2R
(A27)
and that For—p is the sum of (A28) and of one-half
(A26),
{amde)? 1 (mAe)? e
- (f'(l——»;)—"*w,f - {A28)
2a 1, 2D R

In this way (90) and (92} of the text were obtained.

APPENDIX VIII. CORRELATIONS OF OVER-ALL
RATE CONSTANTS

Equations (31}, (33), (81), and (82) deseribe the
rate constant for any reactants with intiact, specitied
inner coordination shells. AF" there refers to the change
for those species. Consider now the rate constants ex-
pressed in terms of the stoichiomietric concentration of
cach redox reagent. The region of (815 lincar in A
is the most important one in terms of the corrclations
made in Part V', and we restrict our attention here o
such cases for each clementary redox step (A20) below,
We consider only the case where the dissociation or
formation of any important complex does not contribute
appreciably to the raction coordinate near the inter-
section surface: We make use of (81) and note that its
derivation was based on intact coordination shells in a
system near the intersection surface: the properties of
the “reactants™ or “products™ appearing in Ee. (K1)
refer to those with such shells, even though they might
be unstable.

We consider the homogencous case first, Let m
denote the totality of any ligands X, XNy, +«+ in a
reacting member of the - redox svstem having m;
ligands of Tyvpe Y,

M= {0y, By, =v, M, oo ).

Let n play the same role for the B system

N

n::: (”.‘, ”,.,’ ..-, "” .--).

Let the reactants and products be denoted by rand p
superscripts, respectively. A tvpical contribution to
the over-all redox reaction is (A290. Let it have a
bimolecular rute constant &, Tor the forward step

r
kruin

An B = B, (A29)

The over-all sccond-order rate constant A, then in-
volves a weighted sum over the rates of all bimolecular
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mn contributions, per unit stoichiometric concentra-
tions of «I7 and of B
ko= Dk (A1 (B 200407 2008,
mon 3 n

where () denotes concentration. If 7, and 7" denote
the probabilities that an A7 species exists as 1,7 and
that a B" one exists as B,7, respectively, i.e., if

ﬂ-"I': ( "' "lr) ,/z ( "l mr) ) 7rhr"_‘ ( Bn") "/Z ‘) ,fnr,) y

then (A23) becomes
ka= kanrﬂ’mrwu'-

[

(A30)

Let F,74 1,7 denote the free energy of the system
containing a labeled 1,7 and a labeled B,” molecule
far from each other, fixed in the medium, under the
prevailing conditions. Let the corresponding property
be 104 Fa» when the two lubeled molecules are 4,7
and £, We subdivide F,7-+ F," such that F,7 depends
on the properties of A,." and its environment alone. It
is therefore independent of the nature of 8,7, We note
that the #'s can be expressed in terms of these Fs, if
we assume, as we do, that the complexes oA, and B,7
have an equilibrium population,

. exp{— For/kT)
D exp(—F,RTY ]

”m

Tm ctc. (A31)

In virtue of their definition these /s depend on the
concentration of \X''s. The free energy of any reaction
(A32) in the prevailing medium is in fact F," — F,"

AutH 2 s= ) X = A, (A32)

Each A, is given by a pair of equations of the type
{31}, (81}, where for X we write An and recall the
additivity of A

Man=No . (A33)

On using (A32) the AF® for Step (A29) is scen to be
AI"muo,= 14'"‘:'_*_ 1"np"' 14‘mr_ ,‘"r. (.—\3-1)

2

On neglecting A%/ 4\, in (81) as discussed

carlier one obtains (A35), using (A30) to (A34):
b= ZK a2 2 eXpt = [t0ma” - ima 43 (M) 1/ 20T}

m.n

X ('ﬂ'm’l Trm’"'up'h"n') : ’

(A35)

where K is given by (A36) and s, in fact, easily

demonstrated to be the formal equilibrium constant of

the reaction in the given medium, expressed in terms

of the stoichiometric concentrations

Somexp(—=F.2/kT) Do exp(—F,r/kT)
Doexp(—F./kT) Y. exp(— FJor/kT)
m n

I"u’- = . ( 4‘\ 36 )



700 R. A.

This equilibrium constant is, by definition,

;(Am’) };(B»’)/ ; (4" Zn: (Ba).

From (A35) one can at once derive an expression
for the isotopic exchange rate constant. On considering
the A redox system a typical contribution to the
exchange will be (A37) when m and m’ describe any
two complexes. The over-all rate constant, ., is then
obtained by multiplying Zmm" by #mmm® and summing
over all m and m’. The result is given by (A38), and
is then counterpart of (A35):

kmm'r
Am'+Am'p—__)Amp+Am", (A37)
Baa= 2 b T TP, (A38)
m,m/!

ks is obtained from (A35) by noting that Ko, is unity
k=2 Z, exp[ —[wmm"+Wmm’p+%'(km+)\vn'):I/kT}
X (‘ﬂ'mp"rmrﬂ‘m’pwm") ‘- (A39)

When the work terms can be neglected one finds

ka=ZKutY exp(—An/4kT) (mmPma’)

3 exp(—Aa/4kT) (ma?ma7)Y,  (A40)

Eea=Z[ 2, exp(—An/4kT) (mmPra") VP (A41)°
From (A40) and (A41) one then obtains
k¢5= (kmkbbKab)l. . (A42)

On considering next the electrochemical case, let M
denote the electrode, M describing its state before
electron transfer and M? after. As in the text we assume
that the acquisition or loss of an electron by the elec-
trode has essentially no effect on the force constants
or equilibrium bond distances in any adsorbed layer of
jons or molecules. (To be sure, one or more electrons
on the electrode may be fairly localized when the
reacting species is near it, and this number changes
when the species gains or loses electrons.) We regard
different compositions of the adsorbed layer as corre-
sponding to different domains of the coordinates in
many-dimensional space.

The free energy of a system having a labeled An’
molecule far from the electrode and fixed in position is
written as F.'-+ Fa', the corresponding term when the
molecule is 4,,? (and the electrode has lost # electrons
thereby) is Fo?+ Fa®. The free energy of Reaction (73)
for the case where the reactant is A." is then given by
(A43), since the translational contribution for Am
cancels in computing Fn?— Fa". The change depends
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linearly on E, as in (74). Fu® and Fa" are independent
of the properties of 4. They depend only on those of
the electrode and the electrical double-layer region

Fu?p+Fy?—Fo'— Fy'= AmtneE, (A43)

where A,, is independent of E.

When electrochemical equilibrium exists (E equals E,
then), it does so for each . Adding to the free energy
difference (A43) the mixing term, 2T In(A4.?)/(4x"),
the result must equal zero at equilibrium. We thereby
obtain from (A43) the value of each A,

Am=—neE,— kT In(An?)/(4a").

Equation (A45) is finally obtained for the free-energy
difference

Fu?p+Fy?— F'— Fy"=ne( E— E.)
~kT In(A4.%)/(4a").

(A44)

(A45)

Utilizing the fact that E, is related to E,’ according

to (75), where (Ox) now equals > m(An?) and (Red)

equals 2,.( A7), (A4S) can be rewritten as

Fo 4 FyP—For— Fy'=ne(E— E) — kT Inxy?/ma’.
(A46)

From (A31) and (A46) one obtains:

exp[—ne( E— E,') /kT) = exp[— (FuP— Fu")/kT]

_Zm exp(_Fmp/kT)
mzexp(—Fm"/kT) '

(A47)

For the over-all electrochemical rate constant of the
forward reaction in (73), k.1, we have

kel = Ekm"’rmry (A48)

where &, is the rate constant for (A4,") going to (A7)
at the given E. For each m, the k. is given by an
equation analogous to (82), with ne(E— E,’) replaced
by ne( E— E,) — kT Inw?/mm" [compare Eqgs. (77) and
(A46) ]. One then obtains

koa=Ze exp[—ne( E—E,) /2kT]
XY exp[— (Wn+n+$a) /26T (w1,
(A49)

The work terms naturally depend on E. When they
can be neglected one has

ko= 2Zo exp[—ne( E— E,') /2kT]
XY exp(—Mm/4kT) (mwuPra’)d.  (A50)

In the light of Eqs. (A40) to (A42), (A49), and
(A50), we see that the correlations (a) to (f) in Sec. 18
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still hold, even when applied to over-all rate constants
but, as one sees from (A42), (a) is now restricted to
the region of chemical transfer coefficient equal to
[i.e., to f~1in (96)].

APPENDIX IX. ALTERNATIVE DERIVATION
OF (13)

As we have seen in the text, the configurational
distribution of the V’; and V’, coordinates in the
activated complex is not one which is appropriate to
Surface R nor one appropriate to Surface P. That is,
it is appropriate to neither electronic structure (the
initial or final one) of a reacting species. Cognizance
of this nonequilibrium distribution of solvent molecules
was taken in Part I, using a dielectric continuum
treatment of systems possessing nonequilibrium dielec-
tric polarization. An expression for the free energy of
a system with arbitrary polarization was minimized,
subject to an energy equation of constraint, the di-
electric continuum counterpart of (20). In this Appen-
dix we show that this method, formulated now in terms
of statistical mechanics yields the same result as the
method used in Appendix II.

The configurational contribution to free energy of a
nonequilibrium system described by a potential energy
U and a distribution function f*, where f* is to be
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determined, is given by (A51) to an additive constant
Frones f UV AT f Flnfrdv. (AS1)

Minimizing (AS1) subject to the energy equation of
constraint (A52) and to (AS3),

f (Ur—UP)frdV*=0, (A52)

f V=1, (AS3)

we obtain (AS54), where a« and m are Lagrangian
multipliers:

/ (Ur+-m(Ur—U) kT Inf*+a) 5f*dV'=0. (AS4)

Setting the coefficient of &§* equal to zero, and
evaluating « from (A52) we find

e o5 e -y

where U* equals U’+m(U"—U?). This equation was
also obtained by the method in Appendix II. Once
again, m is determined by the energy condition (A52).



