Reprinted from THE JournaL oF CHEMIcAL Puvsics, Vol. 41, No. 9, 2624-2633, 1 November 1964
Printed in U. 8. A.

Generalization of the Activated Complex Theory of Reaction Rates.
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In its usual classical form, activated-complex theory assumes a particular expression for the kinetic
energy of the reacting system, one being associated with a rectilinear motion along the reaction coordinate.
The derivation of the rate expression given in the present paper is based on the general kinetic-energy ex-
pression. A rate equation of the customary form is obtained: kao= (2T /h) exp[— (F}— Fr) /k T, where F}
is the free energy of a system constrained to exist on a hypersurface in n-dimensional space and Fr is the
free energy of the reactants. The usual derivation is then reinterpreted, in terms of geodesic normal coordi-

nates, to be somewhat more general than it appears.

Normally, rotation-vibration interaction is neglected, as in the above derivation, although not in treat-
ments of some special reactions in the literature for which the centrifugal potential is important. A deriva-
tion is given which includes the infiuence of this centrifugal potential but which omits Coriolis effects.

INTRODUCTION

ANUMBER of derivations of the activated-complex-
theory equation for chemical reaction rates have
been published.! Several assumptions normally made
in the classical mechanical form of the theory are the
- following.

(1) For the reaction to occur some n— 1-dimensional
hypersurface in the #-dimensional configuration space
must be crossed. (The hypothetical system constrained
to exist on this surface is the “activated complex.” The
surface is called the “reaction hypersurface.”)

(2) The probability of finding the system in any part
of the 2 n-dimensional phase space on the reactants’
side of the above surface is that calculated from equi-
librium statistical mechanics.

(3) A system striking the above hypersurface has unit
probability of crossing it and recrossings can be neg-
lected. Thereby, the transmission coefficient is unity.

(4) The kinetic energy along the reaction coordinate
has a very simple form 2/2 u, where p is the momentum
conjugate to this coordinate and g is a constant, and
there are no cross terms with p in the total kinetic-
energy expression.?
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! For exa:w)le, H. Eyring, J. Chem. Phys. 3, 107 (1935); H.
Eyring, J. Walter, and G. Kimball, Quantum Chemistry (John
Wiley & Sons, Inc., New York, 1944), Chap. 16; E. Wigner,
Trans. Faraday Sec. 34, 29 (1938); Z. Physik. Chem. B19, 203
(1932); G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

* Normally, the potential energy is expanded about a saddle
point, retaining only quadratic terms, a normal coordinate analy-
sis is made, and rotation-vibration interaction is neglected. The
reaction h ace then becomes a hyperplane, the reaction
coordinate thereby becomes Cartesian, and Assumption 4 is then
valid, However, when some of the internal coordinates are not
vibrational, this simple expansion is not necessarily appropriate
(e.g., for motions of solvent molecules in some solution reactions).

In addition, the Born~Oppenheimer approximation
is normally employed. Sometimes this approximation
breaks down, the reaction becoming quantum-mechan-
ically nonadiabatic. The rate is then occasionally
calculated with the aid of the Landau-Zener equation,
and some approximations are contained therein.? '

In the present paper Assumption 4 is removed.
Assumption 1 is later weakened by permitting the in-
ternal motions of the complex to depend on rotational
constants of the motion. Removal of Assumption 4
leads, surprisingly perhaps, to a rate equation formally
similar to the usual one of activated complex theory.
The reason for this behavior is described later; it is
shown that if one reinterprets the coordinates employed
in the usual derivation as “geodesic normal coordinates”
no approximation in “Assumption” 4 was actually
made. The subsequent shortcomings of such coordinates
for the purposes of comparing with a quantum-mechan-
ical formulation are then noted. However, Assumption
4 has now been removed.

The present paper is confined to a classical-mechani-
cal description. A related quantum-mechanical treat-
ment was given earlier.! While the latter was more
general than the classical treatment in that quantum
effects were included, it was also less general in that
the assumption of separability of the reaction coordi-
nate was made for practical convenience in the quantum
treatment but not in the classical one. The reason for
this difference has been described previously. To be
sure, the assumption of separability is less drastic than
formerly, because of the availability of a recently
devised local approximation of “nonseparable” poten-
tial-energy surfaces by surfaces permitting separation
of variables.®

1L. Landau, Physik, Z. Sowjetunion 2, 46 (1932); C. Zener
Proc. Roy. Soc. (London) Al137, 696 (1932); C. A. Coulson and
K. Zalewski, sbid. A268, 437 (1962).

4R. A. Marcus, J. Chem. Phys. (to be published).

SR. A. Marcus, J. Chem. Phys, 41, 610 (1964) and work in
progress,
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One application of the present paper has been made
elsewhere to electron-transfer reactions.® It can also be
applied to other reactions in solution for which many
degrees of freedom are involved in the definition of the
activated complex and for which the usual saddle-point
definition!:? need no longer suffice.

HAMILTONIAN AND OTHER PROPERTIES

The line element in mass-weighted configuration
space ds is given by

dst= 3 omH(dat)r= Y girdgid (1)
=1

1,J=1

where the x* are space-fixed Cartesian coordinates of
the atoms (m¥=m=m+2 is the mass of the r’th
atom). The ¢* are generalized coordinates, and g;; is a
symmetric, covariant second-order tensor,” given by

B gx* dak
fi= ) mt——. 2
g kZ_; o7 97 2

The contravariant tensor conjugate to g;; is g*:

2. 1 a¢° o¢?
=3 —— L 3
b Zm"ax“ax"’ 3

k=l
D 8= D gt =5 4)
o= =1

where 8,% is 0 or 1 according as ¢#k or i=4.
The kinetic energy T equals §(ds/d#)? and so is
given by (5) in terms of the generalized velocities ¢*®

T=3% 2 gut'd’. (5)

i,

Some of the ¢*’s are usually rotations, with the result
that many of the g are then neither diagonal nor
constant. Since the generalized momentum p; equals
(T—U)/8¢', where U(g} +++,¢") is the potential
energy, p; is given by (6).> From (4) to (6), Eq. (7)

s R. A. Marcus (to be published) ; Ann. Rev. Phys. Chem. 15,
155 (1964).

7 See, for example, C. E. Weatherburn, Riemannian Geomelry
(Cambridge University Press, New York, 1957}, p. 24.

8 See, for example, (a) P. Stickel, Habilitationschrift, Halle,
Germany (1891). (b) E. B. Wilson, J. C. Decius, and P. C. Cross,
Molecular Vibrations (McGraw-Hill Book Company, Inc., New
York, 1955), p. 279. (c) In the case of n=3, C. Corben and
P. Stehle, Classical Mechanics (John Wiley & Sons, Inc., New
York, 1950), p. 12, where 2% is our (m*)iz’.

9 Following a standard convention we use # superscripts on ¢*
and 4 subscripts on ;, since the former are components of a con-
travariant vector and the latter are components of a covariant
vector (cf. Ref. 7, p. 22).
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is obtained for H, the Hamiltonian of the system!°:

n

pi=2 gt (6)
F=1
B=3 Lgpart U@, ). ()

We also need the line element ds in ordinary con-
figuration space:

ds= 3 (d)?= 3 audgide’ (®)

k=1 1,7=1

where @;; is a covariant tensor. The contravariant
tensor ¢¥/ is conjugate to it. Both are defined in (9):

5, gx* 9zt . < 0¢F 9¢7
B s D Y b 9
&ii k.laq‘aq” ¢ ,,.lax"ax"’ ©)
Yotiaa= Y ar0ii= b, (10)

=1 =1

We now make use of some results on determinants.
Because of the product rule, (11) follows from (2), and
(12) from (9)4:

n n LI, L' 2
detgi;= Hm"( det —), (11)
§ugel k=1 \ij=10¢’
£ 7 Jxi\2
= deta;;= t—J». 12
¢ i(.ijixa ’ (i(.l:‘ix a¢’ (12

The volume element in mass-weighted configuration
space and that in ordinary configuration space are
denoted by dr and dV, respectively®?:

dr=(detgi) 14", (13)

n ngxf\ 2 .
dV = (detay;)}] qu‘=(det _x) Ildg,  (19)
P i.j=1 0g°/ =1

where detdx?/d¢’ is understood to be the positive square
root of (detdx?/dg?)2.

19 Op multiplying (6) by g, summing over %, and using (4)
one finds that

.e L] s
¢=2 g'ps.

Introduction into (5) yields (7).

u For example, if g denotes a square matrix whose components
are gi;, and m denotes a diagonal matrix whose diagonal compo-
nents are m*, and ¢ a square matrix whose components are dx:/3g;,
then Eq. (2) can be written as g=c** m ¢, where ¢* is the trans-
pose of c. On taking the determinant of both sides and applying
the product rule Eq. (11) immediately follows.

12 Reference 7, p. 42.



R. A. MARCUS

Because of (11), one obtains (15) from (13):
n a i n n

dr=[T1(m)¥) det=— I Tdg'=CTT(m")1Iav. (15)
e dg’ =1 ey

The area element of a coordinate hypersurface on
which ¢¥ is constant will be denoted by do and by dS
for mass-weighted and ordinary configuration space,
Tespectively. These area elements are the volume
elements in an #—1-dimensional space in which dg¥
is zero.® Hence,

do=( det g:;)} [Idg’, (16)
i, 35N =N

dS=( det a;;)! [1dg" 17
i, 74N N

Since gg¥¥ and det; <y gi; are each the cofactor of
gyy in g, they are equal. From (16) one then obtains
(18). Equation (19) follows similarly from (17), since
both aa¥¥ and det; j«x a.; are the cofactor of anw in a:

do= (gg"M)} gdq‘, (18)
(19)

dS= (aa””)*:gvdq‘.

DERIVATION OF THE RATE EQUATION FOR A
REACTION HYPERSURFACE DEPENDENT ON
COORDINATES ALONE

When the “reaction hypersurface” depends on the
coordinates alone, it is independent, thereby, of any
constants of the motion. Otherwise, the latter would
appear as parameters in the equation of the hyper-
surface. The equation of this hypersurface S may be
written as f(g%, *++, ¢")=0 (on §).

A choice of coordinates can be made so that Sis a
coordinate hypersurface for one of them, ¢". Thus, ¢
is constant on S, and can be taken as zero on it. This
surface will be a ¢-coordinate hypersurface both in
mass-weighted and in ordinary configuration space.

The reaction rate is the net rate at which systems
cross S. It can be computed under the equilibrium
assumption for the reactants as follows: The prob-
ability that a system in equilibrium with the reactants
will lie in a volume element of phase space

Ed‘I‘dP-'

is denoted by
PHdQ‘dP 1]

where p is the equilibrium phase space density:

p=e¢ HG.OIT / f e—H(p.q)lkaquid?'__

f=]

(20)

On dividing the above probability by d¢" and multi-
plying by ¢", the probability that the reacting system

1 See, for example, Ref. 5, Appendix IIT.
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will cross the element J] o, dg' of the hypersurface S
in unit time is found to be

(/qundp‘) 1 dg’,
i=] i

where the integration is over all p; such that only
passages from the reactants’ side of .S to the products’
side are counted. The rate constant is then obtained
by integrating over the coordinates

krawe= | p" ] 1dp:] I dg'. (21)

i=]1 ipdr

By definition of a rate constant of a homogeneous
reaction (it has units of moles per volume and time),
the g-integration in (21) is such that three transla-
tional coordinates of the activated complex are inte-
grated over a unit volume. For a heterogeneous reaction
the integration in (21) is such that the two transla-
tional coordinates of the activated complex parallel to
the interface of the two phases are integrated over a
unit area of the interface. In the denominator of (20)
the integration over the translational coordinates of
each reactant is over unit volume.

On one side of S (the reactants’) ¢" is negative, and
on the other side it is positive. Accordingly, in order
to count only passages from one first side of S to the
other, the integration in (21) is such that ¢" is confined
to the interval (0, + ).

According to Footnote 10, ¢" is given by

=2 8" (22)
=1

For any given value of ¢, (22) represents the equation
of a hyperplane in momentum space. Integration in
(21) may therefore be performed as follows: For any
given value of (g!, +++, ¢") the p/’s are integrated over
the infinite half-space in momentum space, correspond-
ing to all variations in p; subject to

287
=1

lying between zero and infinity. By integrating .
from — Y g pi/g™ to  and by integrating the re-
maining p; from —o to «, this integration can be
performed. During a subsequent integration over all ¢
other than i=r, ¢" is kept at the value zero. Since ¢" is
0H/3p,, ¢ exp(—H/kT) equals —kT(3c#/*T/dp,).
The p, integration yields

kraw= (ET/h) exp[—(F*—F)/kT],  (23)

4In any submicroscopic region of the interface we draw a
plane near the interface (exactly parallel when the surface is
uniform), such that the distance from the interface to the plane
varies from point to point only because of surface roughness. The
Cm?ian coordinates in the plane and in any parallel plane are
zand 5.




2627

where

g~FUT = / —H1(p, MT:‘[}, d}q‘zf f (24)
e FIT = f eHp. q)lkTH dq dp. ) (25)
fom]

and H? is given by (26). It is the value of H when
¢"=¢"=0. Thus, it is the value of H for a svstem con-
strained to exist on the hypersurface of S.

Hi=T407, (26)
where
Ut= Ulg,y -, ‘I") at ¢"=0, (27)
Tt=% Zguq =3 2 g pip, (28)
i,7%r
and
giit= % [gii—ggm(e™) '] (29)

The quantity g/ is easily shown to be conjugate to gi;
on a subspace for which d¢"=0, i.e., on the hyper-
surface §

2ggn= D pg™ =0(i, k). (30)
a7 o

F1 is the free energy of the constrained system and F
is the free energy of the unconstrained reacting system.
In both free energies and in all subsequent free-energy
expressions the usual product of factorials, which con-
rects for indistinguishability of like particles, is omitted
for brevity. These factors cancel in computing (23).
In passing, we note that Eq. (23) has been obtained
without introducing Assumption 4.

Integration over the momenta in (24) and (25) can
readily be performed. One obtains

e FIAT = (2 T) (w12 / eUMTdg /) (31)

7= 2k T) R [0k b, (32)

where do is given by (16) and dr by (13).
On introducing an effective mass m? defined in the

next section, the expression for the rate constant
becomes

kT\} ,
={— e UUET (4 3) 4 e~ UIkTgy
Rrate (2“_)/ (’” ) dS/[ d ’ (33)

where dV is given by (14) and 4.5 by (17).
EFFECTIVE MASS

An effective mass m? for motion normal to S in
ordinary n-dimensional configuration space may be
defined in several ways. A definition suited to our
purpose is the following: When the momentum p is
normal to S in this ordinary configuration space the

'"THEORY OF REACTION RATES. II

proportionality factor of $?/2 in the kinetic energy is
designated by 1/m?. To evaluate m?, one may proceed
thus:

The covariant components of a vector v of unit
length (magnitude) normal to the ¢"-coordinate hyper-
surface § in this space are equal®® to »;=8;(a")—3}. The
covariant components of P, p; are therefore equal to
87p(a™)3, where p is the magnitude of p. On noting
that the kinetic energy is given by the first term in (7)
and on introducing the above values for the p/'s, the
kinetic energy is found to equal g™p?*/2a™. Hence, we
have

mi=a"/g". (34)
INTEGRATION OVER EXTERNAL COORDINATES

In a dilute gas an activated complex may be regarded
as an isolated particle. In a liquid or dense gas its -
motions may be strongly coupled to those of the sur-
rounding molecules. In the latter case it will be usefu
to consider as the activated complex a macroscopic
subsystem, near the center of which is the actual
reactant or pair of reactants and on the boundary of
which the correlation of the motion of the solvent
molecules with those of the reactants is negligible.
This subsystem is regarded as imbedded in the re-
mainder of the infinite (or practically infinite) system.
For homogeneous reactions rigid translations or rota-
tions will later be performed on the subsystem, and the
solvent molecules of the remaining part will be per-
mitted to continuously adjust themselves. For hetero-
geneous systems rigid translations of the macroscopic
activated complex parallel to the interface will be
performed with a similar adaptation of the remaining
molecules occurring.

The activated complex of a homogeneous reaction
in a gas or liquid, defined above, has as coordinates
three translations (x, y, z), two rotations of an axis
fixed in the complex (8, ¢), and n—S5 other coordinates,
which will be called the internal coordinates of the
complex, though one of them (rotation about the
body-fixed axis) has a property analogous to the five
“external” ones: The potential energy of the entire
system is invariant to changes in the five external
coordinates.

In the case of a heterogeneous reaction on a uniform
interface the potential-energy function for the activated
complex is invariant to the two Cartesian coordinates
x and y parallel to the interface of the two phases.
Presumably, such a case occurs in electrochemical
electron transfers to a good approximation when the
reactant is not adsorbed. In reactions involving localized
adsorption on perfect crystals the potential energy is a
periodic function of z and y. For any heterogeneous
reaction the remaining »— 2 are the internal ones of the
activated complex, though in the particular case of a

B R, A, Marcus, J. Chem. Phys. 41, 603 (1964), Footnote 14.
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nonuniform surface, U'* and ¢" below depend on all
n coordinates.

The integral appearing in the denominator of {33)
is evaluated for a system where the reactants are far
apart, when there is more than one of them, or far
from the interface in the heterogeneous reaction. The
function U in this integral is independent of the three
translations of the center of mass of each reactant,
which are called the external coordinates fur the de-
nominator of (33). (However, U is also independent
of some of the other coordinates, of course.)

Since the properties of the reaction hypersurface
depend only on the internal coordinates, they can be
selected so that the coordinate ¢ is one of them.

The reduced mass m? is shown in Appendix I to be
independent of the values of the external coordinates.
It normally is a function of the internal coordinates,
though it is a constant in special cases, as discussed
later. The area element 4.5 is shown in Appendix II to
be a product of a function of the external coordinates
alone and of a function of the internal coordinates
alone, the latter denoted by R?dS;, for bimolecular
reactions and by dSi, for homogeneous unimolecular
reactions or for heterogeneous reactions, as discussed
in the Appendix.

homogeneous
dS= sinfdfd¢dxdydzR*dSin, (35)
bimolecular

homogeneous
d.S= sinfdfd¢dxdydzd Sin, (36)
unimolecular

(heterogeneous)d S=dxdyd Sins, 37

where 6 and ¢ define a body-fixed axis of the complex,
R is the distance of two atoms or any two points of
the complex on this axis, and x, y, 3 have been defined
earlier. In the computation of dSis. in (35) the two
atoms or points are constrained so that one is fixed on
the cited body-fixed axis and the other can move only
along that axis. The two points can be the centers of
mass of each reactant, for example (Appendix II). In
the compution of the dSiy of (37) one point of the
complex is constrained to move along any fixed line
normal to the xy plane parallel to the solid-liquid
interface. This point can be the center of mass of the
reactant.

Similarly, the volume element dV in (33) can be
shown to be the product of volume elements
J1.dx.dy.dz. for the external coordinates of all re-
actants ¢ and of dV,, the volume element of all re-
maining coordinates. (There is only one term in J]a
when the reaction is unimolecular, of course.) These
remaining coordinates are coordinates in a space where
the center of mass of each reactant is fixed and where
the reactants are far apart.

Integration may now be performed over the external
coordinates in the numerator and denominator of (33).

MARCUS 2628
One obtains
bimolecular
(homogeneous)
| kr.w,= (87kT)* / Rz(mz)—;e-uukrf%g}, (38)

/unimolecular homogencous,
or uniform heterogeneous
kT\} adSin
Erate= (—I) f (m?) =t UIT——2 | (30)
27 Q

where constraints on the numerator integration have
just been described and where Q is given by (40),

0= [evmtav, (40)
It is the configurational integral of the reactants when
they are far apart. Integration in Q is subject to the
constraint that a point on each reactant (e.g., its
center of mass) is held fixed, and thus is over the
volume Vi, of some #n—3N-dimensional internal-
coordinate space where IV is the number of reactants.
For a heterogeneous reaction on a nonuniform inter-
face, dSin in (39) should be replaced by dx dy dSia;
z and y vary over a unit area of interface. In either
case, ke is the reaction rate per unit area of interface
per unit concentration of the reactant; it has units of
centimeters per second, for example.

SOME SPECIAL CASES OF EQS. (38) AND (39)

In the simple-collision theory the g'-reaction hyper-
surface is taken to be one of constant separation
distance between the centers of mass of each reactant
in the bimolecular reaction. This distance is R, the
collision diameter. The quantity m?, it can be shown,
is then a constant, and is in fact equal to g, the reduced
mass for the two reactants. Since R is now constant
over S it too can be extracted from the integral in (38).
Integration then leads to the simple-collision-theory
expression (87kT/u)iR? exp(—AU/kT), since the area
element in the numerator is now the same as the volume
element in the denominator.

In an analogous simple collision theory for uni-
molecular heterogeneous reactions, the g™-reaction
hypersurface is taken to be a plane parallel to the
interface of the two phases. In that case m* can again
be shown to be a constant, the mass of the reactant m,
and the simple heterogeneous collision-theory expres-
sion is obtained, (kT/2xm)! exp(—AU/kT), since the
area element in the numerator and volume element in
the denominator are equal.

Another special case of (38) and (39) is obtained
when the g"-reaction hypersurface can be chosen to be
a hyperplane in the internal-coordinate space of the
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-activated complex. (This hyperplane passes through
the saddle point, when the latter exists, and is normal
to the tangent of a line of steepest ascent to the saddle
point drawn in internal-coordinate space.) The hyper-
plane approximation has been used by Vineyard? in his
calculation of the rate of diffusion of an atom from one
site to a neighboring one in a crystal. His results are
derivable from (39). This hyperplanar approximation
is often made in the usual activated complex theory, by
using normal coordinate analysis and neglecting
vibration-rotation interaction.

CASE WHERE REACTION HYPERSURFACE DEPENDS
ON ROTATIONAL CONSTANTS OF THE MOTION

In some reactions, the equation of the reaction hyper-
surface may depend on constants of the motion, in
particular on the angular momentum. Several examples
are some unimolecular dissociations, radical recombina-
tions,'8 and ion-molecule reactions.” For example, the
reactants in the two latter reactions have been treated
as two particles which, in the activated complex, have
their mutually attractive force balanced by their
centrifugal force. The attraction was attributed to
induced-dipole-induced-dipole forces in the recombina-
tion and to ion-induced-dipole forces in the ion-mole-
cule system. The centrifugal force was calculated by
treating the pair of reactants as a “diatomic” activated
complex.

The above treatments were based on the assumption
that the reaction hypersurface is the set of coordinates
for which the attractive force equals in magnitude the
repulsive centrifugal force between the two particles.
This set depends on the angular momentum. In these
and other reactions this “diatomic” approximation is
readily imposed on the treatment of the previous
section, when an angular momentum dependence of
the reaction hypersurface is to be considered: For a
given angular momentum of the complex in any
infinitesimal range the contribution to the overall
reaction rate can be calculated. One may then inte-
grate over all angular momenta. The result will emerge
as a special case of the “symmetric top” approximation
treated below, and its derivation will be omitted for
that reason. (The derivation parallels the one below,
but the angle ¢ and the conjugate momentum py are
omitted, and the “star” subspace is one dimension
larger.)

If the “diatomic” approximation is inadequate, in
that the value of a third principal moment of inertia
of the complex changes during reaction, a somewhat
better approximation can be obtained by treating the
complex as a symmetric top and including the de-

BE, Gorin, Acta Physicochim. U.S.S.R. 9, 691 (1938); E.
Gorin, W, Kauzmann, J. Walter, and H. Eyring, J. Chem. Phys.

Tin,
7, 633 (1939).

1 H, Eyring, J. O. Hirschfelder, and H. S. Taylor, J. Chem.
Phys. 4, 479 (1936). G. Gioumousis and D. P. Stevenson, sbid.
29, 204 (1958) made assumptions equivalent to those of these

authors but calculated reaction cross sections instead.
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pendence of the reaction hypersurface on the magnitude
of the angular momentum pr. as before, and on the
component of p,.: along the symmetry axis py. If the
vibrational angular momentum is ignored, the kinetic
energy of the complex is the sum of terms from the
three translations of the center of mass, from the rota-
tions, and from the remaining 3z—6 internal coordi-
nates. The rotational energy of a symmetric-top com-
plex is given by (41)." The three principal moments of
inertia of the complex are 4, A4, and C.

Tro=(PProt/24) +3p*(CT—47).

Since prot and py are constants of the motion, and since
4 and C depend on the internal coordinates, T'w¢ acts
as a centrifugal potential, thereby affecting the reaction
hypersurface by an amount depending on pr: and py.

The reactions of present interest for which the hyper-
surface may depend significantly on the angular mo-
mentum are gas reactions. In this case, it is convenient
to transform the Cartesian coordinates of the atoms in
the complex ‘a* into generalized coordinates g¢¢, three of
which are the translations of the center of mass of the
activated complex. Another three are selected to be
the Eulerian angles (6, ¢, and ) defining the orienta-
tion of the principal axes, and the remaining #-6 are
called the internal coordinates of the activated complex.
The line element in mass-weighted space is given by (1).

The internal coordinates may be chosen so as to
satisfy the Eckart conditions,”® lessening thereby the
vibrational angular momentum. The residual vibra-
tional angular momentum is neglected, however, an
approximation which corresponds to setting g/ equal
to zero when 1 is one of the internal coordinates and j
is one of the Eulerian angles. Correspondingly, one can
show, gi; also vanishes then for these choices of ¢ and j.
Independently of this approximation the usual expres-
sion for the kinetic energy in terms of the ¢’s or p's
shows that gi/ and g;; also vanish when 1 is a translation
of the center of mass and j is an orientational or an
internal coordinate.

It will be convenient to choose the internal coordi-
nates in such a way that one of the coordinates g" is
constant on the reaction hypersurface. If the internal
coordinates are denoted by ¢* to ¢"~® their choice may
depend on p. and py, since the hypersurface and,
thereby, ¢" depend on pro. and py. Thus, we have

qi=qi(xlr tth z") (42)
qi=qi(xly co0y X% Proyy ?") (43)

This definition of ¢! to ¢"® would not necessarily be a
consistent one if the definitions of pw and py them-

(41)

i=n-5ton,

i=1 to n-6.

18 See Ref. 8(b), p. 284 where we use the actual moments of
inertia instead of the equilibrium ones and where the expression
can be shown to be of the form of the present Eq. (41) by adding
and subtracting M,2/21,° (using their notation) and noting that
brot® equals MM, 2 M2 there,

5 C, Eckart, Phys. Rev. 47, 552 (1935); cf. Ref. 8(b), Chap. 11
and reference cited therein.
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selves -depended on the ¢! to ¢"~® or on the ¢! to ¢g—.
They do not so depend, it can be shown, since the
vibrational angular momenta were neglected.

The argument leading to Eq. (23) is again applicable,
provided the integration in (24) is first performed at
fixed proc and py, reserving for the last two integrations
those over pr; and py. The gi* appearing in 7% [Eq. (28)]
are again conjugate to the g;; on an #— 1-dimensional
subspace. Indeed, because of the neglect of certain g;;’s
and g'’s, the g/* are conjugate to the g;; on the subspace
of coordinates of the activated complex for which the
orientation of the complex is fixed (df=d¢p=dy=0).
(Because of the vanishing of certain other g;;’s and g/’s,
the gi/* are even conjugate to the g;; on the internal-
coordinate subspace of the complex.)

Restriction of an operation to an #—3-dimensional
subspace in which the orientation of the complex is
fixed (i.e., d8=d¢=dy=0) is designated by a star, e.g.,
in D %, det*;;, det*; 4, and H*;;.s,. In all cases =1
to n—3 and, where indicated, 1547,

Integration over all momenta but pg, ps, and py in
(24) and over all momenta in (25) may be performed.
By arguments similar to those given previously one
obtains (32) and (44):

eFUT = (2} T) 012 f [ [ e—UiIkT%]g—Troddermt’ .

(44)
where
do*=(det*g;) ][ *dg?, (45)
1,91 i
and
1= ] [dg°dpo, (46)

with a=#8, ¢, and . The integrand in the integral over
I1*s dg' in (44) depends on the angular momenta
but only via pr and py. If 9., p,, and p, are the com-
ponents of p. along the body-fixed principal axes, the
symmetry axis being the z axis and p, thereby being
equal to py, then dps dps dpy equals® sin 8 dp. dp, dpy
and $%o equals p.°+4p,°+p,% Equation (43) may be
integrated in part,2 yielding (47), where the limits on
Dy are—Prot t0 +Pros:

EFHT = (Qrh T) (D12 [ ( / e-deﬂ)e—mukr

hn—l
X sinf] [dgedpydp?eor.  (47)

¥ This Jacobian can be found from the exﬁrasions for pa, pe,
and py in terms of p:, #,, and p, in Ref. 8(b) p. 282, Eq. (6),
where M, is p, etc.

2 The p;, py, ps are transformed to new coordinates pro, a and
#s, where « is a polar angle in any plane parallel to the p., p,
plane in ps, py, p: space: p:=r cosa, p,=rsina, p,=p, with
r*=p2—p. The Jacobian of this transformation equals pro..
Since the integrand in (43) depends on Prov and p, but not on «,
integration over a may be performed, yielding a factor of 2u.
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The masses can be extracted from (47) : The quantity
conjugate to g- on the n—3-dimensional subspace,
denoted by g*7, equals det*; ;< gij/g* where g* is
det*g;;. However, since the determinant of the g,’s of
the three rotations equals A42C sin?¥ and since certain
gij cross terms were neglected, g* equals g/A42C sin%.
From g one may now extract

ITm
i=1
as in (11).

A reduced mass m** for motion normal to S can
again be defined, but now only on the #— 3-dimensional
subspace. Otherwise an inconsistency would occur. If
the quantity conjugate to a;; on this subspace is denoted
by a*¥ then the argument which led to (34) leads to
(48), when applied to this subspace.

m*‘=a*"/g*". (48)

The area element &S of the hypersurface of constant ¢"
in n-dimensional space, for any given g and py, is
(ea)]Joer dgt. It also equals do* sinf(]J.dg®). On
introducing these results one finds:

(20kT) 01 n
e Lm)

e UTg §
J) [ (Azcmna"/a*")*]‘_T"‘”""dhdﬂ’m. (49)

On introducing Eq. (35) for dS and performing several
integrations one obtains

2 (n—1)/2 n .
h2
ReUSITE S, JeTrothT

f=]
x[ [ (m¥ia a1 |(ATC) T oo

where #rov=p*ot/2kT, uy=py/(2xkT)t. [When the
integral over Sin: is independent of prot and py, one may
interchange the order of integration of d.Sin: and duy
durot. One then finds that [ exp(— Trot/kT)duydtrot
(42C)~} equals unity, since py is integrated from — o
t0 +prot, and pro is integrated from O to «.]

The relation of a*™ to a™ can be deduced from deter-
minant theory, and the results are given in Appendix
ITI. Conditions under which ¢ and a* are equal are
also described there, namely when the cross terms aff
vanish if ¢ is a rotation.

From (23), (32), and (50) one obtains:
(bimolecular) Zea= (872T)}

/[ R? exp(—U3/kT)

(m*ar/a*m)}

exp(— Tvot/kT) dttydttror
(4*C)%Q ’

e~ FUET — (

(50)

ds m]

X

(51)
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where Q is a configurational integral for the reactants,
defined by (40):

i
(unimolecular) kree= (ﬂ)
2

[z

exp(— Tror/kT) dttydttror

(4*C)Q '

The “diatomic” approximation is readily derived

from (51) or (52). Inspection of the derivation reveals

that these equations apply with duy(C)—* omitted,

with Tro: equal to p%a/24, with ple=p.+p,} and

with the star on a*™ and g*" indicating that they are

conjugate to &, and g~ on an n—2-dimensional sub-
space. One obtains '

(bimolecular) krate= (87£T)}
A’m‘a -3 durot
X / [ f Rze—vz/kr( po -v) d Sm]e—rmlk'rT , (53)

a

(52)

ET\}
(unimolecular) kao= (_2)
27

Amia\} ~ Aitror
X[ ferm( ) s frn.

A special case of this diatomic approximation in
which the coordinate ¢* was taken to be R, the separa-
tion distance of the reactants in the ion-molecule
system! or in the recombining radical system,' can be
derived from (53) as follows:

(54)

In the rotation-plus-reaction coordinate subspace the
line element is

ds*=dR*+ R? sin®0d¢*+ R*d¢°,

from which the corresponding a.;s are given immedi-
ately. In this orthogonal coordinate system the a‘/’s
also vanish for i547. It follows from Appendix III (A9)
that a* equals a™. Again, in this system one easily
verifies that m* equals g, the reduced mass of the two
reactants. The approximation was also made'®? that
U? is the sum of a term depending solely on R, U(R),
and of the potential energy of the internal coordinates,
where R is now the value of R which maximizes the
integrand at the given pr.. Thereby, one obtains:

—P2rot df rot
= A (BT} Pt
bra= (8mkT)! | KT B exP(ZpR’kT)ZpR*kT’
(55)
where R is a function of ., being the solution of

(3U/8R) — ($*rot/uR®) =0. (56)

THEORY OF REACTION RATES. II

GEODESIC NORMAL COORDINATES

For any reaction hypersurface S a coordinate system
may be defined for which g,; vanishes for 547 and for
which g,r is a constant®: A coordinate system ¢*(7=1
to m, i£r) is first defined on the surface in mass-
weighted space. The coordinates of any point off this
surface are then defined by drawing the geodesic
through the point, such that the geodesic cuts the
hypersurface orthogonally. The g¢* for i%r are then
assigned the same values as those occurring at the
intersection of the geodesic and the hypersurface. The
value for ¢" is set equal to the arc length along this
geodesic from the hypersurface to the point. Hence,
ds*=g.(dg")*=(dg")? along this geodesic in mass-
weighted space. The line element in this space is

dst= D gisdg'dgi+(dg)*. (57)
=

Correspondingly, it can be shown, g™ vanishes for {5=r,

and g™ equals unity. The kinetic energy then has the

following simple form:

T=% _; gpipit(#7/2)

[} (ds/dt)?]
{ pi equals —aq"' }

If the definition of ¢" is modified so that ds* equals
3u(dgT)? along the geodesic, where g is some constant,
then the coefficient of $,* would be 1/(2u) instead.

After having made a choice of geodesic normal
coordinates one may use (58) and derive the activated-
complex-theory rate equation in the usual way, ob-
taining an expression analogous to (23). Upon intro-
ducing a canonical coordinate transformation to any
other coordinates ¢* and to their conjugate momenta
pi such as those occurring in (24), Eq. (23) is obtained
because of the invariance of the Hamiltonian and of the
phase space volume element to such canonical trans-
formations. It is clear, therefore, why (23) is the same
as the usual activated-complex rate equation in the
literature.

It is of interest to compare further the above deriva-
tion of (23) with the usual one in the literature. In
that case Assumption 4 is made, though we have seen
that if one introduces geodesic normal coordinates, no
assumption is made in using a kinetic-energy expression
of the form (58). Even without the introduction of
these coordinates, (58) can be used if a fifth assump-
tion, often made in activated complex theory, is added.
The potential energy is expanded about a saddle point
(when it occurs), and only the quadratic powers of the
displacements are retained; normal coordinates are then
introduced and rotation-vibration interaction is neg-
lected. In this case g™ is in fact zero, and the kinetic

n] L. Synge and A. Schild, Tensor Calewlus (University of
Toronto Press, Toronto, Canada, 1949), p. 71.

(58)
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energy is of the form (58). However, when the reaction
occurs in solution and many solvent molecules partici-
pate in the complex, the retention of only quadratic
terms is presumably not valid for the many-coupled
rotations of these solvent molecules, though it presum-
ably is valid for vibrations.

One advantage of the derivation of Eq. (23) given
in the earlier section as compared with one based on
geodesic normal coordinates is that a more direct
comparison with the step-by-step derivation of the
quantum form of (23) is possible in the former case.
We have seen elsewhere* that certain coordinate
systems are more useful than others in the quantum
derivation: they permit one to make a local approxi-
mation of the potential energy surface in the vicinity
of a saddle point by one which permits separation of
variables. Such ccordinate systems do not involve
geodesic normal coordinates, except in a special case,
APPENDIX I: INVARIANCE OF m?, a7, AND g~ TO

CHANGES IN EXTERNAL COORDINATES

For notational convenience, the Cartesian coordinates
al, <+ 2" of the atoms in the activated complex are
written in this appendix as 2!, y1, 21, -+, a3 Y73 gnf3,
When the Cartesian coordinates are varied at any fixed
values of the internal coordinates, the value of ¢ is
unchanged. If the 2!, - -, 2* are so transformed to new
values, &, + +«, 2" by variation of one or more external
coordinates we have, therefore:

2y

Any new set Z%, §%, 2 is a function only of «%, y
If ri and ¢ are column vectors with elements &, i, z¢
and %, ¥, 3%, respectively. They are related according
to (A2).

(A1)

i gi
i gt

‘1'(3?1, °t%h ") =¢,I'(i’, M

ri=R+Ari, (A2)

where R is a column vector whose elements are the

%, ¥, and z components of the translational displacement

and A is an orthogonal matrix describing the rotation.
By differentiation of (A1) Eq. (A3) is obtained.

g " ¢ ( 2 . 6«1
a o+ —ha?
oz 9y 922 ,,_g;,a a +a A
azq a2q qf )
lxc a 2 “zﬂ @ 2 al.c ’ A3
+ 370y byat-2 pwrre +2; 3y05” (A3)

where the I’s are the elements of the matrix A. Because
of the orthogonal nature of this matrix it follows that
the right hand side of (A3) equals

(3%q"/9x2) +(8¢"/3y?) + (6%¢"/35%).  (Ad)

This invariance of V2¢" holds for all ¢ (1 to 7). Re-
calling the definition of g™ and a™ in Egs. (3) and (9),
it follows that they are also invariant to changes in the
values of the external coordinates.

APPENDIX II: FACTORING OF dS

On recalling the value of 45 in Eq. (19) and the fact
that @ was shown in Appendix I to depend on the
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internal coordinates alone, it suffices to show that ¢
can be factored in order to show that d.S can be factored
into two terms, one depending on the internal coordi-
nates, the other depending on the external coordinates.
Inasmuch as the volume element 2V equals .

a’ﬁdq‘,
=]

and it has been shown that it can be so factored, for
example by a serial method,® ¢ can be factored and
the proof is complete. To show that the final result of
the factoring is of the form (35) to (37) we may pro-
ceed as follows:

In the serial method one puts one atom of the acti-
vated complex any place in the system, specifying its
coordinates as x, ¥, and . Another atom is then char-
acterized by coordinates relative to the first (e.g., polar
coordinates R, 6, ¢). A third atom is then characterized
by coordinates relative to the first two, and so on. The
volume element is found to be a product

HVl')

=]
of which V; depends on the ith set of (relative) coordi-
nates alone.? For example, V; is dx dy dz, V, is R?sinf df
d¢ dR, etc. Hence,

a*qu‘—dV dxdyds sm0d0d¢dR(R"HdV.) (A5)

=]

One may now transform the coordinates on the rhs of
(A5) to the coordinates used in the body of this paper
(g4, +++, ¢*), such that five of the ¢”s are 2, , 2,6, and ¢,
the remaining ones being the “internal coordinates’ of
the activated complex. It follows from (AS) that a!
equals dxdyds sinfdfd$ multiplied by a function of the
internal coordinates alone, a function which contains
factor R?, exhibited in (35). In the case of heterogeneous
reactions only x and y are the “external coordinates”
and Eq. (37) follows.

Some reactions in solution, pure electron transfer
reactions, involve no bond rupture, and it is useful to
factor dV in a slightly different form: Let the coordi-
nates of one reactant be transformed to the translations
of its center of mass, to the rotations about this center
and to the vibrations. Let the coordinates of the other
reactant be transformed to its own translations, rota-
tions, and vibrations. Then from the six translations
six new coordinates can be introduced: the three
translations (z, 9, 2) of the center of these two masses,
the orientation of the line of centers (6, ¢), and the
separation distance of the two centers (R). The
coordinates of all the molecules in the medium can be
transformed to relative coordinates with respect to this
line of centers (and separation distance). The element
dV once again has the form (AS), but with the above
interpretation of x, v, 3, 6, ¢, R, and 45 has the form

D, R. Hershbach, H. S. Johnston, and D. Rapp, J. Chem.
Phys. 31, 1652 (1959).



2633

(35). In computing d.Sin, one center of mass is to be
held fixed and the other constrained to move along a
fixed line, because of this factoring.

APPENDIX III: RELATION OF a*r TO o~
We use the following theorem®: If M is a minor in
the determinant of the a*/’s, if m is the corresponding
minor in the determinant of a;;’s, and if #i is the alge-
braic complement of m in & then:

(A6)

The minor in ¢’ formed by the a;;’s from the rotational
coordinates and from g¢* is denoted by a,,, while that
formed by the a‘’s for these coordinates in det @'/ will
be denoted by a’*, From (A6) one finds:

a"x=@d,a1=a**"g7},

M=nig,

(A7)

since a* ¢*" is the algebraic complement of 6, in a*
and, inspection shows, so is @r,. However, when M in
$# M. Bocher, Iniroduction to Higher Algebra (The Macmillan

Company, New York, 1907), p. 31. One uses the fact that the
elements of the adjoint of ¢ are aa'’.

THEORY OF REACTION RATES. II1

(A6) is taken to be the minor formed by the ¢i’s of
the rotational coordinates alone, it will be called ax.
Then, 7 is simply ¢*. From (A6) one then finds

ax=ga*a"l. (A8)
From (A7) and (A8) one obtains, finally,
a*r=g"x(ax)L, (A9)

Inasmuch as a** and ¢* are minors with a#”s as elements,
and the former contains a¢™, a relation between g*~
and 6™ has been obtained. '

When the cross terms g for ¢ equal to a rotational
coordinate equal zero, a"* factors into @™ a*. One then
has:

a*r=g", (A10)
These 6"’s vanish when the coordinate hypersurfaces
of the rotations are each orthogonal to the g™-coordinate
hypersurface. The example cited in the text is a special
case of this situation in which all coordinate hyper-
surfaces for the coordinates are mutually orthogonal.



