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Generalization of the Activated Complex Theory of Reaction Rates.
I. Quantum Mechanical Treatment
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In its usual form activated complex theory assumes a quasiequilibrium between reactants and activated
complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction
of rotation with internal motion in the complex. In the present paper a rate expression is derived without
introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and
reduces to it when the added assumptions of the latter are introduced. The new equation for the trans-
mission coefficient contains internal centrifugal terms. The fourth assumption can also be weakened and
a rotational interaction included in the formalism. In applications of the rate equation use can be made of
the recent finding that in the immediate vicinity of a saddle point or 2 minimum, a potential energy surface
can be imitated in some major topographical respects by a surface permitting separation of variables. The
separated wave equation for the reaction coordinate is then curvilinear because of the usual curvature of
the path of steepest ascent to the saddle point. Calculations of transmission coefficients and rates can be
made and compared with those obtainable from the usual one-dimensional Cartesian-like calculations
on the one hand and with some based on the numerical integration of the #-dimenstonal Schrodinger equa-
tion on the other. An application to a common three-center problem is discussed.

INTRODUCTION

N activated complex theory the reaction coordinate
has been assumed to be Cartesian and, in quantum-
mechanical treatments at least, to be dynamically sepa-
rable from the other coordinates.!? The effect of any
rotational constants of the motion on the internal motion
of the activated complex has normally been neglected,?
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under the auspices of the U.S. Atomic Energy Commission, while
the author was a Visiting Senior Scientist at Brookhaven Na-
tional Laboratory. New address: Noyes Chemical Laboratory,
University of Illinois, Urbana, Illinois. .

1H. Eyring, J. Chem. Phys. 3, 107 (1935); E. Wigner, Trans.
Faraday Soc. 33, 29 (1937); E. Wigner, Z. Physik. Chem. B19,
203 (1932). M. G. Evans and M. Polanyi, Trans. Faraday Soc.
31, 875 (1935), employ an argument based on the partition func-
tion for the imaginary frequency, a partition function normally
derived for a rectilinear (i.e., Cartesian) vibrational coordinate.
G. H. Vineyard [J. Phys, Chem. Solids 3, 121 (1_957).], gives an
elegant classical formulation for site-to-site motion in crystals.
He assumed the reaction coordinate to be rectilinear.

3In a classically based quasi-equilibrium treatment one con-
siders dynamical properties of the system infinitesimally close to
the (r—1) dimensional hypersurface in configuration space de-
fining the properties of an activated complex. (The total number
of coordinates in configuration space is #.) In the quantum treat-
ment, the implications of the uncertainty principle eliminate such
considerations. One must employ instead a treatment based on
the properties of the potential energy function over noninfini-
tesimal distances from the above hypersurface. In this case,
hqwever, the problem of separability of the equation of motion
arises.

3 For example, the angular momentum of the complex gives
rise to a centrifugal potential whose influence on the vibrational
motion is usually, and justifiably, ignored. There are some in-
stances, such as in bimolecular reactions of negligible activation
energy, where it should be and has been included in literature
calculations, as well as in those on the reverse unimolecular dis-
sociation.

and equilibrium between reactants and activated com-
plexes has been assumed.4

In the present paper and in a companion one® on the
classical-mechanical formulation, this activated com-
plex theory is generalized by extending it to curvilinear
reaction coordinates and, within certain limitations,®
by including the effect of the constants of the motion on
the internal motion of the activated complex. The as-
sumption of separability is made in the quantum
formulation. It now has somewhat wider applicability
than before, partly because of the availability of a local
approximation method for nonseparable surfaces.?
Separability is not assumed in the classical-mechanical
formulation, however.5

The desirability of extending activated complex
theory to include curvilinear reaction coordinates is
clear from an examination of the local topography of
the potential energy surface near the saddle point,
when that saddle point occurs: The path of steepest
ascent to this point, the “reaction path,” is almost in-

. *In some problems, as in the unimolecular reaction of vibra-
tionally excited molecules, a local equilibrium between a hot
molecule and the activated complex for its reaction is assumed
instead. [For example, R. A. Marcus and O. K. Rice, J. Phys.
Colloid Chem. 55, 894 (1951); R. A. Marcus, J. Chem, Phys. 20,
359 (1952).]

§R. A. Marcus (to be published).

¢ The vibrational angular momentum is neglected. (The in-
ternal coordinates are chosen to satisfy the Eckart conditions,
however.) See Footnote 15, Ref. 7.

?R. A, Marcus, J. Chem. Phys. 41, 610 (1964). The features
which are matched are the tangent, the first curvature vector, the
first curvature, and the force constant along each extremal path
of ascent or descent to the saddle-point. Currently, the writer is
extending these results by employing approximate separability
over a larger region of coordinate space, to supplement the

“almost exact” separability over the smaller region described in
this reference.
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variably a curve in mass-weighted configuration space,
rather than a straight line. In some major topographical
respects this surface can be matched locally by one
permitting separation of variables” The reaction co-
ordinate is then found to be curvilinear, This coordinate
is this approximately separable one near the saddle
point, a coordinate which leads from the “reactants’
region” of mass-weighted configuration space to the
products’ region in that neighborhood.

Except in computer calculations® or in early discus-
sions based on the motion of balls on surfaces?® the
dynamical effects of the curvature of the reaction path
have been ignored in the literature. The curvilinear
character gives rise dynamically to a centrifugal effect,
an effect smaller at the saddle point than at a short
distance from it, where the kinetic energy is greater.
As discussed in detail elsewhere? the net result is to
make the reaction coordinate in mass-weighted con-
figuration space have a smaller curvature than the
reaction path. The centrifugal effect introduces a cou-
pling between the reaction coordinate and the vibrations
of the complex, just as the rotation of a molecule as a
whole can influence the latter’s vibration by a centrif-
ugal potential. The above effect occurs in classical
mechanics and, phrased in terms of probabilities, in
quantum mechanics when the system has enough energy
to surmount the barrier. At low energies nuclear tun-
neling occurs and, the formulas suggest, so does a
nonclassical centrifugal effect, negative in nature.

We consider first the case where the dependence of
the properties of the activated complex on the rota-
tional constants of the motion can be neglected. In a
later section the effect of the rotational state on the
behavior of the activated complex is considered.

The basic equation, Eq. (21) below, reduces to the
usual activated complex expression when the reaction
coordinate is treated as a Cartesian one. Equation (21)
may be used to consider several nonseparable #-dimen-
sional problems by introducing into it the local approxi-
mation method mentioned earlier.® Comparison with
computer calculations then permit an assessment of the
useful range of that local approximation and should
also facilitate the physical interpretation of such
calculations.

SCHRODINGER EQUATION AND SEPARATED
EQUATIONS

Certain curvilinear coordinate systems will serve as
better starting points for finding separable approxima-
tions to the nonseparable potential-energy function.

8 Quantum calculations: E. M. Mortensen and K. S. Pitzer,
Chem. Soc. (London) Spec. Publ. 16, 57 (1962). Classical calcu-
lations: F. T. Wall, L. A. Hiller, Jr., and J. Mazur, J. Chem.
Phys. 29, 255 (1958), 35, 1284 (1961); N. C. Blais and D. L.
Bunker, bd. 39, 315 (1963) and references cited therein; M.
Ka?lus (to be published).

9 S. Glasstone, K. J. Laidler, and H. Eyring, Theory of Rale
Processes (McGraw-Hill Book Company, Inc., New York, 1940).
; o Calzculations are in progress by J. Lane and R. A. Marcus
or n=2,

THEORY OF REACTION RATES

We suppose that a coordinate in one of these has
been selected as the reaction coordinate; a process of
making the selection has been briefly discussed else-
where.” For example, in the case of a three-center-atom-
transfer reaction involving a linear activated complex
(A4+BC—AB+-C) the reaction path in mass-weighted
configuration space leading from reactants to products
is a curved one. For such paths in the vicinity of the
saddle-point region, circular cylinder, parabolic cyl-
inder, elliptic cylinder, or other curvilinear coordinates
are more appropriate than the usual Cartesian ones.
Should both the vibrational path of steepest ascent
from the critical point and the reaction path both be
curved in this space, and should one wish to include
this feature, elliptic cylinder coordinates would be more
appropriate than circular cylinder ones.”

In curvilinear coordinates ¢', +++, ¢" the Schrédinger
equation has the form!

HYy=a, (1)
where H is the Hamiltonian operator, a; the total
energy, and ¥ the wavefunction of the entire system:

-1 9 ]
H=— > — —ggt— 4 U. 2
3 .'Hg,aq,gg'aqﬁU (2)
The ¢* are generalized coordinates, and U is the po-

tential energy; g* is a contravariant tensor'? conjugate
to the metric tensor g, appearing in the line element

~ ds in mass-weighted space; g is the determinant of the

Bat?
5 1 d¢* dg 5 9xf 9xt
=S L1, = —
L W R 2 2 ogog &
ds*= 3. gudgdg’; 2gug"=d/, (4)

where ¥ is a Cartesian coordinate of an atom of mass
m*; the coordinates of the kth atom are given by i=23k,
3k+1, 3k+2. Both g,, and g** are symmetric tensors.
Under certain conditions on U and on g*, Eq. (1)
can be separated into m individual equations, each de-
pending on its own set of variables.3:% The wavefunc-

U For example, W. Pauli, Jr., Handbuch der Physik, edited by
S. Fliigge (Springer-Verlag, Berlin, 1958), Vol. 5, p. 39. One
sometimes sees Eq. (2) written instead with the right-hand side
multiplied by g on the left and by g on the right. The y of the
new equation exactly eguals the original ¢ multiplied by gb.
Both equations have identical eigenvalues and transmission
coeflicients.

12 For example, A. J. McConnell, 4 pplications of Tensor Cal-
culus (Dover Publications, Inc., New York, 1957).

BR. A. Marcus, J. Chem. Phys. 41, 603 (1964). Appendix
IT there shows how the formalism embodied in the equations of
the present paper, (5) to (13), includes the influence of rotation
in the case of a diatomic rotating-vibrating molecule.

s Note added in proof: The present derivation of Egs. (21) and
(22) employs an extension® of the Stickel-Robertson formalism
for separation of variables, embodied in Eqgs. (5) to (13). The
writer has since derived Eq. (22) without explicit introduction
of the Stéckel-Robertson formalism but with retention of the
basic assumption of an approximately separable reaction co-
ordinate. This modified derivation will be summarized in Part ITI.
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tion ¢ then becomes

v=I1v., (5)
prv]

where ¢, is the wavefunction for the uth set. As a
particular case of this separation one could select one
set of variables to consist of a single variable, the re-
action coordinate, ¢7, and select a second set to consist
of all remaining coordinates. That is, m=2 then.
Under the assumed conditions® g** vanishes when s
and ¢ belong to different sets. '

As a result of the separation the Hamiltonian opera-
tor has the form (6).3

H= El(tb“‘/fp)Hn+U. (6)
-]

where H, is a Hermitian differential operator (7). The

potential energy U is of the form (8), and ¢#! and f, are

defined later by Egs. (11) and (13). (f, is the factor

in gb/¢ depending only on the coordinates belonging to

the set p.)

~5 s 9 9
T T O
U= ¢X,. (8)
pow=]
The separated equations are
(Hp‘i‘prp)\l’p: Zlar‘ﬁmfn\bn' (9)

¢* is the 7th coordinate in Set u (there are k, such co-
ordinates), and f##i is defined by (12). The quantities
$u» and f#i#i depend only on the properties of the metric.
They are functions of the coordinates in the uth set
only and are independent of the potential-energy func-
tion; X, also depends only on the coordinates of Set .
The ¢,, are conjugate to the ¢* and may be called the
Stickel coefficients!

i'ﬁ"’d’nl: o (10)
-]
@ = (detgriri) ks, (11)
where 4 and j=1 to &,.
Sosui= grinif, [ (detgring) Uha, (12)

The determinant of the ¢, ¢, is related to g and to
the f,:
g=¢]I/. (13)
el

WP, G. Stickel, Habilitationsschrift, Halle, Germany (1891);
Ann, Mat. Pure Appl. Ser. 2A 25, 55 (1897). '
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Various coordinate systems for which the Stiickel-
Robertson separation of variables can be made have
been described by Eisenhart'®!® for the case where
k=1 for all u. He has given the corresponding ¢,,’s
and f,’s and his results can be at least partly adapted
to the present case where k, need not be unity. Typical
approximations in the literature of molecular dynamics
correspond, incidentally, to setting many of the ¢,,’s
equal to zero and many of the g™ equal to zero or to
constants.

LOCAL APPROXIMATION

As mentioned earlier it is supposed that it has been
possible to describe a coordinate system such that one
of the coordinates is approximately dynamically sepa-
rable from all remaining coordinates in the activated
complex region and tends to lead in this. vicinity from
the reactants’ “region” to the products’ one. This co-
ordinate is then the “reaction coordinate.” The poten-
tial energy surface is thereby approximated by one
which permits separation of variables.” The reaction
coordinate forms one of the sets x mentioned earlier.
It is described by setting u equal to r. Since only the
nonseparable potential energy surface in the vicinity
of the activated complex region is being approximated
by a separable surface, the properties in the separated
system for the degrees of freedom other than ¢" are
those of the activated complex rather than of the
reactants.

Parenthetically, it may be noted that this matching
of the two energy surfaces will normally be poorer for
configurations far from the activated complex region.
However, if most of the scattering of the incident
wave along the reaction coordinate occurs near the
activated complex region, this poor fit for configura-
tions remote from those of the complex is only of minor
concern. Since the wavelength (more precisely, the
reciprocal of the component of the wave vector along
g") is large in the activated complex region because of
the low kinetic energy there, and since the potential
energy changes rapidly there, most of the scattering
may in fact occurs in that region. Indeed, the phase
integral expression'® for tunneling points up this local
scattering characteristic.

B 1. P. Eisenhart, Ann. Math. 35, 284 (1934).

1 For example, P. M. Morse and H. Feshbach, Methods of
Theoretical Phystcs (McGraw-Hill Book Company, Inc., New
York, 1953), p. 655 .

17 This procedure is a generalization of the customary one of
introducing the nic approximation for the potential-energy
surface. The latter approximation corresponds in fact to the reac-
tion coordinate curve being a straight line in n-dimensional space
and to the remaining coordinate curves lying in a hyperplane.
Normal to this hyperplane is the reaction path in this mass-
weighted configuration space, a path which is distinct from the
reaction coordinate. They are cotangential at the saddle-point.

18 For example, WBK expression, such as that used by R. P.
lﬁ:lfl,zlgroc. Roy. Soc. (London) Al48, 241 (1935) ar that in
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The coordinate curves for separable systems are of
two types, open and closed, the former extending to
infinity. Examples of the closed type are circles and
ellipses. Such a curve would provide a convenient co-
ordinate only if most of the scattering occurred over a
relatively small portion of the arc. Then, the error of
replacing an actual open path by an arc of a closed one
becomes minor. We consider an example later.

PROBABILITY DISTRIBUTION

Near any point sufficiently far from the saddle-
point region, along the reaction coordinate ¢" in the
separable potential energy surface, the potential energy
varies relatively little with distance and the component
of the momentum along this coordinate is real and rela-
tively large. Classical statistics may then be used for
¢ there but not necessarily for the other coordinates.
The wavefunction of all degrees of freedom but ¢" is
denoted by ¢¥":

V= Hd’u(qms ) q“h")- (14)
pedr

For any given value of ¢" and of the conjugate mo-
mentum p, the state of the remaining degrees of freedom
can be regarded as describable by a (discrete) quantum
number A: In the case of an isolated gaseous activated
complex molecule confined in a volume, even the
translational state can be regarded as quantized. In the
case of any activated complex in solution, a macro-
scopic subsystem can be regarded as the complex. It
can be placed in a box and the n—1 degrees of freedom
regarded as given rise to discrete eigenvalues, char-
acterized by the quantum number X\, for purposes of
the present discussion.

Inspection of the separated equations (9) and (A4)
(Appendix I) shows that ¢/ depends on the separation
constants ay, ***, am, and that for any given value of
¢ these constants determine A and p., and conversely.
Unlike p, and ¢" the o’s are constants of the motion,
however.

The probability of the system being in a quantum
state described by A and of being in any small element
Ag"Ap, is denoted by P(}, ¢, pr, T) Ag"Ap,. We suppose
that the reactants are in statistical equilibrium with
this system. Since the probabilities of the system being
in Ag"Ap, and of having any given value of A are inde-
pendent and since the number of quantum states in
AgAp, is Ag"Ap,/k, one obtains

P()‘s g, T) = exP[‘al()\, Pr)/kT:VhQI;

where the given values of #,, ¢", and A automatically fix
the total energy a; and where exp(—a/kT) is the
Boltzmann factor. Q, is the partition function of the
reactants.

In any one of these quantum states we may take
Ag™ so small that none of the quantities ¢,», g/ or g

(15)

THEORY OF REACTION RATES

vary over it. When a system is in any one of these
quantum states its probability of being in any volume
element

g]Idg*

t=]
can be written as
| PA(g )g‘Hldq",
where A (g") is a normalizing factor for this state. In
this classical approximation for the ¢* coordinate, 4 (g")

can be treated as a constant over Ag". Integration over
all ¢* shows that 4 (¢") equals

1
— /2 <
— f v g L1dg"
Thus, the probability of find the system in the range

dp.J [ dg*

s=1

and in the state A is
P (P)(A) ?n Q) d?fIIldqu

where
P (P)()" 23 q)
—expl-auh p)/6T1 1V 9 [ 10uf 14 P TLee’
(16)
and q denotes the totality of coordinates (g, *++, ¢").
For each (discrete) value of A, any of the a; depends

continuously on ,, except as noted below. The prob-
ability of finding the system in -

7
dak I I dqi
s=]

and in the state A is obtained by replacing dp, above
by (8p+/dax)ades. Upon denoting this probability by

P(an, ), @)dac] ¢
and evaluating (8p,/a:)» in Appendix I we find
P, M\, q)
= exp(—er/kT) |v' 18} / [ 1 o TTeg'
(17)

With the aid of (17) it is possible to express the reaction
rate in a form invelving summation and integration
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over the constants of the motion. This step was not
possible from (15) or (16).

The above transformation from the (p,, A) space to
the (ax, A) space is permissible only for those ax’s for
which the denominator does not vanish, i.e., for which
¢*£0. The vanishing of ¢™ implies, as one can see
from Eq. (A10) of Appendix I, that a; does not de-
pend on p, when A is held constant. An example is
cited later.

It is convenient to introduce the notation

2o / ¢rkg} <
@)=t f 1V IEE T (9
From Eq. (13) one has
¢gd/fr= oI I (19)
pir

Since ¢¢™ is the cofactor of ¢ in the determinant ¢
[cf. Eq. (10)], it does not contain the rth row ¢,, and
so does not depend on ¢"; neither does II,,#, fu and, so,
neither does (', ¥')n. If the wavefunction in the »-
dimensional system were normalized so that (¥, ¢')n
equalled unity, the wavefunction would be normalized
to unit incident probability current.®

CALCULATION OF THE REACTION RATE

When the potential energy is measured relative to
the potential energy of the most stable configuration
of the activated complex, Q; denotes the partition
function of the reactants measured relative to this
energy zero. We let Q denote the usual partition func-
tion of the reactants, i.e., measured relative to the
potential energy of their most stable configuration.
If AU is the potential energy of the most stable con-
figuration of the activated complex minus that of
the most stable one of the reactants then @ equals
Q exp(AU/ET).

To obtain ki from (17), one notes that (17) is to
be multiplied by the velocity ¢", by I s«dg* and by
the transmission coefficient x(az, A), then summed
over all A and integrated over all values of a; and over
all ¢*(i#r). Upon observing® that ¢ equals ¢™p, the

15 The kinetic energy in classical mechanics is
.3
i
t;hgaqq,
so that the momentum conjugate to ¢*, ps, is

n

2 g’

=
In the systems being considered g/ vanishes when ¢ and j belong
to different sets. Since the reaction coordinate is a one-dimen-
sional separable set giv vanishes when is¢7. It then follows that
gir also vanishes for i7r and g. equals 1/g™. Hence, pr equals
gr/g™. Eq. (11) then shows that p,=¢"/¢" since k=1 and there
is only one gré"/, namely g=.
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final expression for k.. is found to be

Eexp(—AU/kT)

kmte= I Q o ;K(ah A)
_ o\, ¥)adan -1 ...
xexp( kT)( i, G=Lem) (0)

where a; is a function of a; and A.

For any preassigned value of a, the remaining ao’s
take on discrete values, reflected by the quantum num-
bers A. Accordingly, Eq. (20) can be rewritten in a
slightly more symmetrical form:

Eexp(—AU/kT) o
P ngﬁx( )
@\, ) da
xe""(' kT)(w', V) BT

where a denotes totality of a’s, (a1, **+, am) and where
each ¢, is a function of (g#, -+, ¢, ay, ***, am).
When o is taken to be a;, one finds

(22)

krae=

(21)

The lower limit on ¢; is —AU, though in practice the
exact value of the lower limit hardly affects £, since
most of the contribution to the integral comes from
values of a; near the top of the barrier, i.e., values near
zero.

In calculations of the rate constant itself, Eq. (22)
appears to be the most useful form of (21), at least
when most of the activated complexes are formed in
low vibrational states for coordinates interacting with
the reaction coordinate: Its use avoids the calculation
of (¥, ¥)a and (¢, ¥')n and also permits a direct
comparison to be made of the values of x exp(—a/kT)
for the curvilinear and for the usual Cartesian approxi-
mation. The comparison can be made as a function of
oy for each vibrational state of the activated complex.
On the other hand, for an examination of the manner
in which the curvilinear formula for k. approaches
the Cartesian one, Eq. (21) with some % other than 1
is useful, as shown in some examples described later.

TRANSMISSION COEFFICIENT

The transmission coefficient x(a) is the ratio of
transmitted to incident probability currents for the
given value of the constants of the motion, a. To
calculate « an expression for the probability current
in curvilinear coordinates must be used. This expres-
sion has been given elsewhere in terms of the wave-
function along this coordinate.’? The phase integral
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method can be ‘used for a semiclassical estimate of «,
incidentally, since the Schridinger-type equation for
the reaction coordinate [Eq. (9) with u=r] can
readily be adapted to this calculation. An improved
formula for the semiclassical estimate, one which takes
cognizance of the proximity of the two transition points
for the case of energies below the top of the barrier,
is available and is discussed elsewhere.®

APPLICATION OF EQ. (21)

By way of example, we consider a three-center
reaction, A+BC—AB-C, proceeding via a linear
collision complex. In mass-weighted configuration
space the reaction path is curved®® As mentioned
earlier, this path can be matched in the local approxi-
mation by the corresponding path for a surface which
permits separation of variables. Some of the matching
has been discussed previously’ and, in the following
discussion, is regarded as having been performed.

The plane defined in mass-weighted configuration
space by the tangent and principal normal to the re-
action path, the osculating plane of this path, can be
called the “plane of reaction.” In many diagrams in the
literature?® one assumes for simplicity that the reac-
tion coordinate lies in a plane determined only by the
AB and BC interatomic distances, mass-weighted as in
Eq. (3). The remaining degrees of freedom are taken
to be dynamically uncoupled from these two in those
discussions. We consider this special case first.

In terms of the properties of a suitable coordinate
system for matching of the potential-energy functions,
the latter assumption leads to a choice of a cylindrical
coordinate system: The Z axis, which is normal to the
plane of reaction, represents the set of all degrees of
freedom but the AB and BC distances. The latter two
coordinates can be used to describe any point in the
plane. In Eq. (6) one has then three sets, m=3. With
proper choice of coordinates one can diagonalize the
kinetic energy contribution of the coordinates in the
plane of reaction and normalize their coefficients such
that for two Cartesian coordinates in this plane the g*
are unity. One can choose a scaling factor for the re-
maining coordinates (represented metrically by the Z
axis) so that

det ghiFi
(s=t)
is unity.

When the reaction coordinate is arbitrarily assumed
to be a straight line, as in the usual treatment in the
literature,!% it suffices to consider only two sets of co-
ordinates, as in Example 1 below, instead of three sets.

2R, A. Marcus (to be published). The discussion is based on
some results contained in a recent book by J. Heading, A#n Iniro-
duction to Phase-Integral Meihods (Methuen & Company, Ltd.,
London, 1961).
( ;sl;gr example, R. E. Weston, Jr., J. Chem. Phys. 31, 892
1 .

THEORY OF REACTION RATES

It is shown there that this neglect of reaction coordinate
curvature permits one to obtain the standard literature
rate expression from Eq. (21). The effect of curvature
is then discussed in Example 2 using a circular cylinder
metric and in Examples 3 and 4, more briefly, using
elliptic cylinder and parabolic cylinder metrics. When
the reaction is symmetrical, e.g., when A+BA—AB+
A, the vibration of the activated complex in the plane
of reaction is rectilinear and Examples 2 and 3 apply.
However, when the vibrational coordinate curve in the
plane of reaction is not a straight line, and when one
wishes to describe this curvature, one of the coordinate
systems in Examples 3 or 4 may be used. The various
®ur's, fu's, and g*¥’s are known for a variety of coordinate
systems, 818

Cylinder coordinate systems can also be used to
represent a more general picture of the three-center
reaction in which additional coordinates besides the
two bond distances are permitted to contribute to
the plane of reaction. If one considers the #-dimensional
curve describing the reaction path in mass-weighted
configuration space, the osculating plane of the path
would be taken to be the plane normal to the Z axis.
One then proceeds as before.

Some applications of Eq. (22) to the calculation of
the rate constant using some of the following coordinate
systems and reaction coordinates will be reported
elsewhere.l The present discussion is concerned instead
with an amplification of the preceding discussion, with
showing in Example 1 how the usual activated complex
theory equation in the literature is a special case of
Eq. (21), and with discussing in Examples 2 and 3 the
approach of the curvilinear formulas embodied in (21)
to the Cartesian one. A suitable choice of % for the
latter purpose is described. Curvilinear coordinate sys-
tems other than those discussed in the following exam-
ples might be used instead, when one avoids the
Stiickel-Robertson formalism.

Example 1. Cartesian Metric

With m equal to 2 the ¢,,’s for the Cartesian metric

are given by
én o 1/

One must first determine which ¢™'s in Eq. (21)
vanish. Since ¢¢*/ is the cofactor of ¢¢; in ¢, it is seen
from (23) that only ¢ is zero. Thus, if ¢' is selected
as the reaction coordinate, the continuous variable a;
in Eq. (21) should not be taken to be az. Otherwise, it
makes no difference whether ¢* or ¢ is selected. We
choose ¢* to be ¢” and ax to be ;. The . equation for
the reaction coordinate then depends only on as, so «
depends only on as. The ¢, equation for the other

(23)
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degrees of freedom depends only on (ai—as), which
thereby takes on discrete values. They are denoted
below by ). Since a; equals (a;—az)+as, Eq. (21)
then reduces to (24):

kT Q%

dox
b=y [eanem2, @8

where Q* is the partition function of the activated
complex, o exp(—ai’/kT). When tunneling is
neglected, x(as) vanishes for a;<0. In the same classical
approximation it is unity for a;2>0, as one sees at once
from the ¥, equation.

Equation (24) is equivalent to the standard equa-
tion in the literature for the activated complex
theory.! 2

Exzample 2. Circular Cylindrical Coordinates

We take ¢'=r and ¢*=cosf, when r and 6 are the
usual polar coordinates. The ¢,,’s are given by®:

¢u b1 ¢u 1 (-1/¢) -1
dn ¢u ¢u |=| 0 1/(1—¢) 0 ] (25
da bz Pa3 0 0 1

The reaction coordinate is taken to be along the arc of
a circle and, therefore, to be ¢%. Use of this coordinate
system implies that the potential-energy surface,
plotted in mass-weighted coordinates, is symmetrical
along ¢" about the saddle-point region.

From (25) ¢¢*, ¢¢®2, and ¢¢* are found to be
1/¢% 1, and 0, respecnvely Hence, oy or ay, but not a3,
may be plcked as oy to avoid a singular transformation.
‘To show the approach of Eg. (21) to a Cartesian
formula in this case we select ay, since the ¥, equation
(and hence x) depends only on a3 The ;3 equation de-
pends only on a3, which takes on discrete values. The
V1 equation depends on ay—az—az/(g*)2. For any pre-
assigned value of oy, ay—as then takes on discrete
values. Let o’=a;—a;. Noting that ey=ay+ao’, E

(21) becomes
ol 3

kT
(26)

Braee= Te-wm
where Qs* denotes D ., exp(—as/kT), the partition
function for all coordinates of the activated complex
other than ¢' and ¢% and where ( ) denotes an average

‘B A, B. Grieve, Analytical Geomelry (G. Bell and Sons, Ltd.,
London, 1948), p. 8S.

8 For example, O. Schreier and E. Sperner, Imtroduction to
Modern Algebra and Matrix T (Chelsea Publishing Com-
pany, New York, 1959), 2nd ed., p. 101, 98.
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value:
(L)=/ | LI f.L g’ / f v l’gfpgdq‘. (27)

The average depends on the subscripts indicated in
(26), o’ and as, because ¥’ depends on them.

The vibrational motion in the plane of reaction (co-
ordinate ¢') is coupled to that along the reaction co-
ordinate ¢® via a constant of the motion, a3 The re-
maining motions of the complex, described by the ;3
equation, are dynamically uncoupled from these two.

The resemblance of Eq. (26) to the Cartesian result
(24) is increased by introducing &/, &', and «’:

o' =0n—a3—aa/go", (28)
ag' = ag/ q°12, (29)
K (ar') =(as), (30)

where go' is the value of ¢' at the saddle point. Equation
(26) becomes
kT 0Ot [ ( >] !
Y W DT (e
Xexp(—ai'/kT) (dos'/kT). (31)

The transition of (31) to (24) may be seen by study-
ing the behavior of the former in the region where the
curvature of each coordinate curve near the saddle
point is small. The curvature of the ¢! coordinate curve
is already zero. The curvature of the ¢* curve passing
through the saddle point is equal to the reciprocal of
the radius vector there, i.e., to the value of 1/¢' for
that curve. When ¢' is very large, ¢! undergoes only
small fractional variations during any typical motion
of the activated complex, and may be replaced in (31)
by its value at the saddle point, g!. Slmxla.rly, in the
1 equation, the as/g"* becomes az/Qo Then, o’ be-
comes an eigenvalue of the ¥, equation and, also, the
sum in (31) becomes independent of as. One obtains

L2} Q_ AUIT f "oy’ ( )d“’
knh;: A € (o )exp 2T/ kT’ (32)
where Q? equals 033D ay exp(—ay/kT). It is the
partition function of the activated complex for all co-
ordinates but the reaction coordinate. Equation (32)
is in fact identical with (24).

In Appendix II it is also shown that the separated
wave equations become those for the Cartesian case.
This reduction and that given below for Example 3
can presumably also be used to suggest physically
motivated approximations in (31) to simplify the
mtegratmn—summatxon when the curvature conse-
quences of the metric in the vicinity of the saddle point
are slight,
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We conclude this section with some remarks on the
use of Eq. (22) to calculate kme. For this calculation
it is convenient to introduce ;' defined above (it
equals a;—as) and to note that da; can be replaced by
day'. Equation (22) may then be summed over the
discrete values of a3, yielding

/\day"
L(es) exp( RT/RT

)/ ag

k,m—kTTr“”"‘TQ; / (33)
Noting that for any given value of oy’ the solution of
the ¢ equation yields the allowed values of as, « may
be calculated for these ap’s, summed as in (33), and
finally the latter may be integrated. For systems in
which almost all of the activated complexes are formed
in their lowest ¢* vibrational states the first term in the
sum suffices.

Exzample 3. Elliptic Cylindei' Coordinates

This coordinate system contains an added param-
eter d and therefore offers a somewhat more flexible
choice in matching the separable and nonseparable
energy surfaces over a larger distance from the saddle-
point. When 2d, the distance between the foci of the
confocal ellipses vanishes, the coordinate curves de-
generate into those for the circular cylinder system
and (34) and (35) become identical with (25) and
(26). Coordinates ¢! and ¢* are introduced. They equal
(r1+7:)/2 and (r1—ry)/2d, where r, and r; are the
distances of a point in the plane to the two foci.

The matrix of ¢,,’s is® .

1 —1/(¢"-a) -1
& 1Y(l-¢) - (34)
0 0 1

As a reaction coordinate one may select a hyperbola
or the arc of ellipse; ¢" then becomes ¢! and ¢*, respec-
tively. We consider the r=2 case first.

a. Reaction Coordinale Along Arc of Ellipse

When the potential-energy surface, plotted in mass-
weighted coordinates, is symmetrical about the acti-
vated complex region, the saddle point will occur on
the major or minor axis of the ellipse, i.e., at ¢==1
or 0 respectively. The quantities ¢¢*, ¢¢”, ¢¢* equal
(¢ —d’)“1 1, and 0, respectwely Accordingly, only
the choice of ax=ay is forbidden in Eq. (21). We take
az=as to show the approach of (21) to the Cartesian
formula.

The 3 equation depends only on a3, which therefore
has discrete values. In the 1 equation, > aw, equals
a1—az—az(g*—d?)~.. For a preassigned as, ai—a
therefore has discrete values. The ¥, equation is to be
solved to obtain «x It contains > ,ams, ie.,
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(a1—ag)dP+as(1—¢**)~L. « is seen to depend on ay—ay

-and on a,.

Introducing o'=oy—a; the espression for Eeae
becomes

knh=_e_w’w 2 f Zx(az,a)

doy
-3/ kT’

where Qs*= Y ., exp(—as/kT) and where the average,
( ), is defined in Eq. (27).

The approach of expression (35) to (24) can be
seen by examining the behavior or (35) when the
curvilinear effects of the metric are small near the
saddle point.

XG—G'IkT

(35)

b. Reaction Coordinate along a Hyperbola

For a symmetrical potential energy surface the
saddle point occurs on the transverse axis® of the
hyperbola, i.e., at ¢g'=d. Since ¢¢", ¢¢'2, and ¢
equal (1—¢*)~1, —a® and 0, respectively, only the
choice of ay=ay is forbidden in (21). When the ap-
proach to the Cartesian case is investigated it is noted
in Appendix II that d tends to zero. Thus, only the
choice of ap=ay is permissible for investigating the ap-
proach. For calculation of k. in general, however,
ay=ay or az can be used. For brevity, a detailed in-
vestigation of the approach is omitted.

Example 4. Parabolic Cylinder Coordinates

Because the symmetry of the two parabolic coordi-
nates, it makes no difference which of the two is selected
as reaction coordinate. If the potential-energy surface
is symmetrical about the activated complex region, the
saddle point occurs on the axis of the confocal parabolas,

EFFECT OF ROTATIONAL MOTION ON k...

In calculations of reaction rate constants rotation-
vibration interactions are normally neglected. They
were omitted in the derivation of (21) and (22) by
making some of the g™ constant and, thereby, some of
the ¢,, constant or zero. The influence of the interac-
tions will now be considered for completeness. Although
this neglect is normally quite justified, there are a
number of related problems where their inclusion is a
matter of some importance. For example, the rates of
unimolecular dissociation are influenced by the cen-
trifugal potential in the molecule. Calculations of the
dependence of the dissociation rate on the energy of a
decomposing molecule should allow for it.

In the first approximation a ‘“‘diatomic approxima-
tion” may suffice. In the latter only the rotational-
vibrational interaction associated with a rotation in-
volving the two largest moments of inertia is considered
and one may proceed as follows.
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In this ‘“diatomic approximation,” the Schrédinger
equation has a form permitting separation of variables'
according to the formalism described earlier. The
wave equation is first separated into equations for the
translational (center of mass), rotational and internal
motions using this formalism. The equation for internal
motion now contains a rotational constant of the mo-
tion, which appears in a centrifugal potential term. The
sum of the potential energy and of this centrifugal po-
tential has a saddle point when the original potential
energy function has one and when the centrifugal dis-
tortion is not too large. A suitable system of internal
coordinates is then introduced to permit this effective
potential energy surface to be approximated by a sur-
face permitting separation of variables, as described
previously. Thereby, the choice of the reaction co-
ordinate now depends on the rotational state of the
activated complex. With this qualification in mind,
Eqs. (21) and (22) again apply, but now the summa-
tion over the rotational a should be made only after
the other summations and the integration have been
performed.

A slightly more general approach would be to neglect
the vibrational angular momentum as before and to
treat the activated complex as a symmetric top.
Although separation of rotational from internal mo-
tion does not fall within the previously described
formalism, one can easily effect the separation in a
standard way. The separated equation for the internal
motion contains rotational constants of the motion
and can be treated as in the preceding paragraph.
Once again, the summation over the rotational a’s in
Equations (21) and (22) would be performed last.

APPENDIX 1. EVALUATION OF (p:/daih
We first note that when a set p contains a single co-
ordinate ¢" Eq. (9) reduces to:

r‘l’r Zaﬁr#r (Al)

The semiclassical approximation for ¥, is then derived
in the standard way by lettmg v equal exp(iST/h),
with S expanded in a power series in #:

St= S+ (#/1) S+ (%/i)*S:

Retention of only the leading term yields the classical
expression

(A2)

$(850/8¢")*+X,= f;a¢... - (A3)

So is a function of ¢" and of the a’s, and 3.5,/d¢" is the
momentum p, conjugate to ¢". Hence, we have

WX ()= '):a»"(q'). (A4)
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We also need (A5), obtained by multiplying (9) by
¥,.* and integrating over dq®*, a symbol for the product

ﬁdq"‘,

fo=]

‘/-4’#* (Hﬂ+Xﬂ fll) \l’#d(r‘: Zm;av (I’pvfp‘l’p"l'ﬁdqp- (AS)

Continuous variation of p, at constant discrete
quantum number A will cause a continuous variation
in some of the a,’s, and zero variation in the others.
Since the a,’s enter the separated equations, some of
the y,’s are continuously altered, with no change in
number of nodes, while others are unaffected. On
letting the @, and ¢, in each of these m—1 equations
(A5) (with ws%r) undergo their variations resulting
from a change in ,, 8¢, and noting that the differential
operator is Hermitian? one finds

f & *(Hy X, fu— Za'd’n'f w¥udq*
+f5'4‘#(Hn+Xﬂfn_ Eaﬂsw.fn) %"‘dQ“

= ilaav bw [ VudqX.

Because of Eq. (9), the left-hand side vanishes for
the exact wavefunction. Hence,

2te, [ b fabu™udq=0  pitr.  (A6)
From Eq. (A4) one also obtains:
21811 yDry= Prapr- ( A72_

On solving Egs. (A6) and (A7) for éa in terms of
5p. by means of Cramer’s rule® one finds

pap], T (<O IL for 44 e [ -
o= .

E;;(— 1)*[£I, f bur S | Wi lquv]w..

(A8)

where P represents an even or odd permutation of the
vy (3=1 to m) from the standard order 1, -+, m. By
interchanging the order of operanons in the denomi-
nator of (A8), it can also be written as

DRI | (CRR AT ONRVL)
P i
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If ¢ denotes the determinant of the ¢,,, this integral
becomes

f‘r”nfn | ¥ Pdq~.
B

Similarly, the numerator of (A8) becomes p,5p, mul-
tiplied by such an integral with ¢ replaced by an
m—1Xm—1 cofactor, namely, the cofactor of ¢ in ¢.
Because of (10) this cofactor equals ¢¢™. One thus
finds, with the aid of (18),

doi= .80, (V', ¥ )i / f |’ ]%H f,,;gdq-'. (A10)
We may thus conclude that (8p,/dax)» equals the
value used in the text.

APPENDIX II. APPROACH TO THE CARTESIAN CASE

The curvature of a g*-coordinate curve in the plane
of reaction, x5, for any of the cylinder coordinate
systems in Examples 1 to 4 equals | (3 log g:i/9¢7) /2g; |,
where ¢7is the other'coordinate in the plane of reaction.
Since the element of arc length along the gi-coordinate
curve is ds;, where

dsj=g;dg’, (Al1)

one can also write:

xw=4% | (3 log/ds;)gu |.

The ¢1 equation, Eq. (A1) with r replaced by i, can
be converted to a form more suited to the present
proof. We first write g! as (gi:g;;g.)}, where g, is the
determinant of the g, s in the set u=3. In the case of
no dynamic coupling between the set u=3 on the one
hand, and the other two coordinates ¢* and ¢’ on the
other, g, is independent of ¢ and ¢7, In the numerator

(A12)

% This expression is deduced from the equation for the curva-
ture in generalized coordinates. See, for example, Egs. (16), (18),
and (19b) of Ref. 7, with N and  replaced now by § and j, re-
spectively. The cited value of «(;) follows at once from these
equations, when one notes that all components of the curvature
vector vanish except those in the plane of reaction,
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of (A1) f;is now multiplied by
(E*H.fn) (K’H_fn)“-
T 11 Py

Equations (13) and (All) are next used. One then
notes from (11) that g* and g% equal ¢® and ¢, since
i and j are one-dimensional sets. Since g., |].=ifs,
and ¢¢® commute with d/dg* one finally obtains

(@i/ds?)Fre' (efdss) — (2/72) 62 (X }f“,lam.)w.-

=0, (A13)

where k(' equals 39 log g;:/ds;, and so has the same
magnitude as x¢;. An equation similar to (A13) ob-
tains for ¥;, with ¢ and § merely interchanged.

For the curvilinear case to approach the Cartesian
one several conditions must be fulfilled. (a) The curva-
tures k() and k¢ must become negligible in (A13).
(b) ¢"X; in (Al13) must tend to become a function
of ¢* alone. (c) D_,¢"$ia, in (A13) must become ap-
proximately constant over the relevant region of con-
figuration space near the saddle point.

We consider Examples 2 and 3 individually.

i. Example 2. From (A11), (A12), and the known!®
gi's the limiting case of vanishing curvatures of the
curves passing through a point occurs when ¢! tends to
infinity. The term ¢"),a,¢;, is given by (28) and
(29) for =1 and 2, respectively, with g replaced by
¢'. When ¢' has some large value, g', this term becomes
essentially a constant and so condition (c) above is
fulfilled. Condition (b) is also fulfilled. Finally, the
ay’ in (29) is the same as the one in (32) and the proof
is complete.

1i. Example 3. From Eqs. (All), (A12), and the
known g:’s one may find the conditions under which
Conditions (a) to (c) above are fulfilled. They corre-
spond to large ¢! and relatively small d. This case then
reduces to the circular cylinder case, namely, Example
2, and is not considered further. If the reaction co-
ordinate is that in Example 3b, the choice ay=ay is
forbidden when d tends to zero. Thus, in that case ox
must be chosen as o if one wishes to investigate the
approach to the Cartesian case.



