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INTRODUCTION

One of the active areas in reaction kinetics during the post-war years has
been that of electron-transfer reactions. These reactions constitute one type
of oxidation-reduction process and include both chemical and electro-
chemical systems. Many rate constants have now been measured (1-8) and
they have stimulated a variety of theoretical studies (9-37). The field has
been characterized by a strong interplay of theory and experiment, which
now includes the testing of theoretically predicted quantitative correlations
(34). Because of a certain unique feature of the purely electron-transfer
reactions—the absence of bond rupture in the reaction step—these corre-
lations are unusual. They do not have the arbitrary parameters that occur
in theoretical studies of most other reactions in chemical kinetics. This re-
view will be limited to purely electron transfer reactions.

A variety of factors have contributed to the growth of this research, The
ready availability of isotopes after the war facilitated the extensive study of
isotopic exchange reactions. Some of these exchanges proceed via electron-
transfer mechanisms and, in this case, form the simplest group of all electron-
transfer reactions. Their study permitted a concentration on the major
structural feature of the inorganic reactants—the composition and nature of
their inner coordination shells (14, 15, 17, 23, 32, 34). The interpretation of
the data is free from the added complexity of the effect of relative stability
of reactants and products. In a simple electron transfer between two species
differing only in their oxidation states there is no difference in stability of
products compared with reactants.? Then again, but with notable exceptions,
many simple electron-transfer reactions are rapid since they do not involve
bond rupture. The increasing popularity of electronic instrumentation after
the war permitted the study of these fast reactions in electrochemistry, and
also in chemistry. Whereas the study of electrochemical reaction mechanisms
was once largely confined to hydrogen overvoltage, where the reactions are
relatively slow, or to diffusion-controlled processes, many electron-transfer
rate constants at electrodes have now been measured and some mechanisms
analyzed in detail.

Most of the oxidation-reduction reactions that are of interest here in-

1 The survey of literature pertaining to this review was completed on December 15,
1963. Reference is also made to a number of papers appearing in 1964.

? Present address: Department of Chemistry, University of Illinois.

3 In conformity with common usage (1) an electron-transfer reaction in which
the products are chemically indistinguishable from the reactants will be called an
electron-exchange reaction.
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volve inorganic reactants. Detailed mechanistic investigations have been
made, particularly of homogeneous reactions, primarily with kinetic and
isotopic tracer techniques. In turn, the spread of interest in reaction mecha-
nisms from organic to inorganic chemistry has promoted the investigation of
electron transfers and of related problems on the stability of inorganic
complexes.

Several investigators in this electron-transfer field are physicists (26, 33)
—with backgrounds quite different from the chemists, electrochemists, or
electroanalytical chemists who dominate it. The problem of electron trans-
fers in solution has much in common with the theory of the *polaron,” which
is defined as an electron moving in a medium and carrying with it a slightly
or extensively polarized atmosphere of the medium. These polarons have
been intensively studied, both theoretically (e.g., 38—45) and experimentally,
as a quick survey of the entries in Chemical Abstracts amply shows. The
polaron has been discussed in terms of its role in electron and hole conduction
in semiconductors and ionic crystals, in terms of its role in F— and other
centers in alkali halides, in liquid ammonia, and in the theory of interactions
of an electron with a quantized field (in this case a dielectric polarization
field). Some recent theoretical investigations of the polaron include studies
on the mechanism of conduction of small and large polarons. These studies
take cognizance of the role of vibrations of molecules and of the medium, and
may also find application in studies of organic semiconductors and intra-
molecular electron transfers.

SUMMARY OF RECENT DEVELOPMENTS*

Several excellent reviews of experimental studies on chemical and electro-
chemical electron-transfer reactions have been published recently (1-8).
Some of the theoretical work was summarized in these. It is the purpose of
the present review to assess the current status of the theoretical studies, their
relation to each other and to current experimental research, and to bring up
to date the survey of the immediately pertinent experimental investigations.
We begin with a brief historical sketch of the recent theoretical contributions.

In 1952, Libby (9) suggested that the rate of electron-exchange reactions
was strongly influenced by the Franck-Condon principle: the more similar
the inner coordination shells of the donor and acceptor atom, the less difficult
would be the electron transfer. The slowness of the Co(NHj)gt2— Co(NH,;)st?
exchange reaction supported this interpretation (46) because of the large
difference in the Co—N bond lengths in the two valence states of the cobalt.
Independently, in 1952, Randles (10) discussed the mechanism of electron
transfers at electrodes in terms of the Franck-Condon principle and of poten-

4 In this review, the original arguments have occasionally been slightly recast
and simplified, where they were not clear to this reviewer. Some notation also has
been modified, to emphasize the relations between the various treatments. For the
same reason, more general symbols have sometimes been employed than those used
by the authors cited.




ELECTRON TRANSFER 157

tial energy curves. In 1954, R. J. Marcus, Zwolinski & Eyring (12) computed
electron tunneling rates from one reactant to the other using estimated
barrier heights. Weiss (11) investigated electron tunneling and other aspects
about the same time. Much of the subsequent theoretical work has been
concerned with assessing the role of the Franck-Condon principle in terms
of adiabatic and nonadiabatic mechanisms and with devising a quantitative
method for calculating the reaction rate.

The emphasis on differences in bond lengths in the inner coordination
shell of a molecule as a reactant and as a product promoted the application
of ligand field theory in an attempt to decide, on the basis of number and
distribution of d-electrons in transition metal complexes, the magnitude of
these differences in bond length (17, 23, 32). An expression was obtained by
George & Griffith (23) for the activation energy of electron-exchange re-
actions in terms of bond force constants and bond length differences, using
potential energy curves and neglecting the role of solvation outside the inner
coordination shell.

The first calculation of the contribution of the re-orientation of solvent

molecules outside the inner coordination shell was given by Marcus in 1956
(16). He used the dielectric continuum theory, reworked in order to permit
the calculation of the free energy of systems having a nonequilibrium di-
electric polarization (47), and computed the polarization function for the
activated state by minimizing the free energy subject to the constraint im-
posed by the Franck-Condon principle. Subsequently, he used a similar
treatment in calculations of electron transfer rates at electrodes and com-
puted exchange currents and transfer coefficients (18). In 1960, the earlier
results were extended to include the contribution from the inner coordination
shell. Discussion of the mechanism was in terms of potential energy surfaces
and statistical mechanics (30). A series of quantitative correlations between
the homogeneous rate constants and between the homogeneous and electro-
chemical rates were predicted (30, 34). Subsequent work was devoted to
seeing how general was the theoretical basis of these correlations (36).

In 1957-1958, Hush (19) discussed electron transfers at electrodes in
terms of a charge density parameter and of arguments of a thermodynamic
nature. In 1961 numerical results for the rate constants of a number of
homogeneous and electrochemical electron transfers were obtained (32).
Both the reorganization of the inner coordination shell and that of the ex-
ternal dielectric were included, the former in terms of an ion-dipole, repulsive,
ligand field model and the latter in terms of dielectric continuum theory.
(In the earlier quantitative paper of Hush (19), repulsive forces were omitted
in the first term and electronic polarization in the second, unfortunately
making the numerical results invalid.) The numerical results of the revised
treatment may be compared with those obtained by Sutin (1), who examined
several potential energy functions to evaluate the force constants and bond
lengths appearing in Marcus’ formulae. The above treatments of the motions
of nuclei in the inner coordination shell of each reactant and in the solvent
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are classical. However, Sutin & Wolfsberg (1) have made some calculations of
nuclear tunneling effects in the inner coordination shell, and Levich &
Dogonadze (26) have made calculations of tunneling in the medium. Any
conclusions concerning the contribution of tunneling depended in a sensitive
way on the assumed values for the bond force constants and lengths in the
former case, properties on which data are now becoming available, and on
the assumed polarization frequency in the latter. In the field of polarons there
have been a variety of classical and quantum mechanical studies of media
having a nonequilibrium dielectric polarization around an electron (e.g.,
38, 39). In this work the dielectric polarization vector and its time derivative
were expressed in terms of their Fourier components and the sytem was then
quantized, which thereby offered a quantum macroscopic description of the
motion of the polarized molecules. This method was applied in 1959 by
Levich & Dogonadze (22) to the calculation of the rate constants of non-
adiabatic electron-transfer reactions in solution. In this paper and in several
others (26, 28) the two reactants were assumed to electronically interact
very weakly, so that perturbation theory could be applied. In the classical
limit to their equations there were marked similarities to the results obtained
by Marcus (16), as they pointed out. Their results differed from those of
Marcus in one respect since they assumed very weak interaction (cf., non-
adiabatic reactions, described later). In 1961, Dogonadze (31) also considered
the case of slightly stronger interaction, strong enough to cause an electron
transfer probability of about unity at the right nuclear configuration (see be-
low), but not strong enough to badly distort the ‘‘potential’’ energy surfaces.
He also used a classical treatment of the nuclei. Rather similar assumptions
have been made by Marcus (16) and made in a different way by Hush (32).

Dogonadze, Chizmadzhev and Levich (33, 35) later extended their treat-
ment to electron transfers at electrodes. As before, they assumed that a very
weak interaction of the reactants occurred; thus ordinary perturbation
theory could be employed. Meanwhile, Dewald (25) had applied Marcus’
continuum treatment to semiconductor electrodes; and Gerischer (27) had
outlined a formal theory of electrode reactions utilizing Gurney's model (48)
for ion-electrode systems and emphasizing the band nature of the electronic
energy levels. He made some comparisons with Dewald though he did not cal-
culate the various reorganization energies quantitatively.

The question of possible dielectric saturation effects on the interionic
interaction of Fet?—Fet® ions was examined by Laidler (20), who also
considered, with Sacher (37), effects on the reaction rate due to change in
ion size during reaction, Several errors, noted later in this review, did not
affect this part of the calculation but unfortunately rendered invalid the
calculated rates (20, 37).

During the course of these theoretical investigations a number of stimu-
lating qualitative proposals of a more chemical nature were made. One of
the major developments was the demonstration by Taube & Myers (15)—
and more recently by Halpern (49), Sutin (50) and their co-workers—that in
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certain cases electron-transfer reactions occur via bridged intermediates.
The bridging groups are sometimes atoms and sometimes groups of atoms;
the mechanism is sometimes an atom transfer and sometimes an electron
transfer. Again, Dodson & Davidson (51) have pointed out how an appar-
ently simple electron transfer between hydrated ions could involve instead a
hydrogen atom transfer between the inner coordination shells of these
hydrated ions. There has been some effort, therefore, to study redox reac-
tions between ions with inner coordination shells stable toward such atom
transfer; Fe(phen)st?— Fe(phen)s*? for example. In the realm of bridge inter-
mediates Halpern & Orgel (29) investigated theoretically the electronic
aspects of transfer of an electron from one part of the intermediate to the
other and discussed the role of conjugated bridging groups.

Intramolecular electron transfers have been discussed by McConnell
(52). Information about these transfers has been derived from spin reso-
nance studies of molecules on which an odd electron has two or more stable
sites. ,

There are a number of novel features in these purely electron-transfer re-
actions wherein the theoretical work on them differs from most previous work
on rate calculations for bond rupture reactions in electrochemical and chem-
ical processes: (i) In the former there is a large separation of charge in the
two ‘‘resonant’’ electronic configurations which form the activated complex.
This separation requires that the calculation of the free energy of the medium
be that of nonequilibrium polarization systems (16, 47, 63, 64). (#5) Although
in bond ruptures the reaction coordinate has been assumed to be intuitively
obvious, and to involve mainly a linear combination of the distances of the
bond being broken and the bond being formed, the reaction coordinate in the
purely electron transfer is more complex and has been more elusive. It in-
volves a combination of small changes in bond distances in the inner coordi-
nation shell of each reactant, reorientations of solvent molecules outside the
shell, changes in distance between the reactants or between the reactant
and electrode, and changes in position and bond lengths in the solvent mole-
cules outside of the reactants (16, 30). The many-dimensionality of the
system, which could be loosely treated in the bond rupture reaction, now
plays a central role and must be considered with more care. (i45) The usually
assumed weak electronic interaction in the activated complex of purely elec-
tron transfers leads to possible nonadiabatic effects, in contrast with the us-
ual bond rupture reaction which is almost invariably quantum mechanically
adiabatic. The problems associated with treating the coupled electronic and
nuclear motion causing electron transfer, together with the effect of charge
separation and the complexity of reaction coordinate mentioned above, has
led to a number of interesting questions in the theoretical literature on this
subject. They have also led to a large number of errors.

Before examining the individual theories in detail we consider first a

description of electron-transfer reactions in terms of potential energy
surfaces (30).
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POoTENTIAL ENERGY SURFACES AND ELECTRON-TRANSFER PROBABILITIES

In Figure 1 is given a profile of the potential energy surfaces of the react-
ants (curve R) and of the products (curve P), the dotted lines apply if there
was zero interaction of the electronic orbitals of the two reacting species (30).
The interaction causes the indicated splitting. The abscissa in Fig. 1 repre-
sents any line in many-dimensional configuration space, passing through a
stable nuclear® configuration (point 4) of the reactants and, elsewhere in the
space, through one of the products (point B). The R and P surfaces intersect
to form a surface S (of one less configurational dimension) indicated by a
point in Fig. 1. The corresponding diagram for electrode reactions is slightly
more complex (there are many accessible energy levels now) and we shall
return to it later. This many-dimensional configuration space involves the
positions of all the atoms in the system. Sometimes, however, the coordinates
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Fi1G. 1. Profile of potential energy surface of reactants (R) and that of products (P),
plotted versus nuclear configuration® of all the atoms in the system. - - - =surface for
zero electronic interaction of the reacting species. —=adiabatic surface (The curves

are given for a reaction accompanied by an increase in potential energy).

§ Throughout this paper, nuclear motion refers to the motion of the atoms, not
to that of their spins, e.g., the nuclear configuration is the totality of translational,
rotational and vibrational coordinates of all the molecules.
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are conveniently chosen to be bond lengths, bond angles, molecular orienta-
tions and positions of the reactants, of the solvent molecules, and of any
other species.

In accordance with well-known quantum mechanical deductions, the
classical or quasi-classical treatment of the motion of the nuclei in the vicin-
ity of the intersection in Fig. 1 leads to adiabatic and nonadiabatic
properties for the electron-transfer process, described qualitatively as fol-
lows: when the system passes the intersection with high velocity, there is
little time for electron transfer. When the velocity is low there is usually
time. In the first case, the system will usually ‘“jump” from the lower R
surface to the upper R surface on passing through the intersection region.
In the second case, the system will usually remain on the lower solid
‘“adiabatic” surface during this passage.

One may now distinguish in the literature two definitions of ‘‘nonadia-
batic.” One definition used by physicists (and many chemists) is as fol-
lows: when the system jumps from one solid “‘adiabatic” surface to the
other on passing through the intersection region (in Figure 1, for example)
the process of jumping is called a “‘nonadiabatic act” (evidently from Figure
1, a jump did not produce a chemical reaction). A second definition, now
standard in chemical literature (53) may be stated thusly: when, as a result of
nonadiabatic jumps in the intersection region the probability of chemical re-
action occurring is small per passage, for the typical velocity distribution,
the reaction itself is called a ‘“nonadiabatic chemical reaction.”” When the
probability of a chemical reaction occurring per passage is large (near unity)
the reaction is, of course, called ‘“‘adiabatic.’” In either case reaction can occur
only if a system starting on the lower surface R finally goes over to P on the
lower solid “‘adiabatic’ surface.

Expressions for the transition probability due to Landau & Zener (54)
and to Coulson & Zalewski (55) are summarized later. Only the former has
thus far been applied to nonadiabatic electron-transfer reactions. The fre-
quently-misconstrued role of electron tunneling will also be considered later.
The transition probability will be denoted by vy and its nuclear velocity-
weighted average by «.

Analogously to Fig. 1, one may consider the course of electrode reactions
in terms of potential energy surfaces. A simplified description, expressed in
terms of a mean electronic energy of the electrode, was described in Refer-
ence 24. With a view to including nonadiabatic possibilities, as well as to
extending the theory to semiconductors, it is better to do as Levich, Do-
gonadze and Chizmadzhev (33, 35) and as Gerischer (27), have done in dif-
ferent ways; that is, to take into explicit account all electronic levels of the
electrode. For this reason, we introduce Fig. 2, below.

For a metal piece of finite size there is a finite spacing between the energy
levels, which levels become a continuum when the metal piece becomes in-
finite (the average number of levels per unit concentration of electrons
remains finite). For a metal piece of finite size the analogue of Fig. 1 is, in
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the author’s view, given in Fig. 2. Each surface is a many-electron energy
level of the entire reacting system and is a function of the nuclear coordinates.
The different R surfaces differ only in the distribution of these electrons
among the “‘one-electron quantum states” in the metal piece. The different
P surfaces differ in a similar way from each other. The unperturbed surfaces
are drawn parallel since their energy differences are relatively unaffected by
many of the usual changes of nuclear coordinates (those related to bond
lengths of the reactant and solvent orientations).

Thus far, no analog of the Landau-Zener (54) or Coulson-Zalewski (55)
equations has been published for the case of many nearby potential energy
surfaces, at least not in the electrochemical electron-transfer literature,
which covers the entire range of low to high transition probabilities. A very
special case of the Landau-Zener equation has been used (33, 35) for this
system, namely the limiting form for very small transition probabilities
(equation 25 with ¥ replaced by v).8 In this limiting case the various final

POTENTIAL ENERGY

NUCLEAR CONFIGURATION

F16. 2. Same plot as in Fig. 1 but for an electrode reaction. The finite spacing
between levels, reflecting the finite size of the electrode, is enormously exaggerated.
Only three of the numerous electronic energy levels of this system are indicated. The
splitting differs from level to level, and the spacing decreases as the size of the metal
increases.

¢ More precisely, a perturbation method was used which in the high temperature
limit became equivalent to the weak interaction limit of the Landau-Zener equation,
and could in fact be derived from the latter (31). The high temperature limit was
the one used most by these authors.
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potential energy surfaces P are attained independently (perturbation the-
ory). Hence, for purposes of calculating the transition probability 7y from a
given R-surface, all R surfaces in Fig. 2 can be ignored except the one under
consideration. Dogonadze, Chizmadzhev and Levich (33, 35) and Gerischer
(27) have introduced assumptions which, in terms of Fig. 2, correspond to
very low electron-transfer probability at the crossing points.

At sufficiently large v, however, the above perturbation expression for ¢
must break down. Otherwise, as one can see from Eq. 25, v could become
infinitely large instead of becoming unity, its actual maximum. This error is
the usual one in first order perturbation theory: the differential equation
associated with the probability of finding the system in the initial state does
not correct for the effect of the decrease in this probability during the passage
through the intersection region on any subsequent decrease during this
passage.

In the case of large v, we presume, ¥ will be about unity or perhaps 0.5.
Such a case for Fig. 2 will be called an adiabatic electrode reaction, by
analogy with the corresponding case for Fig. 1.

For a “weak overlap” iniramolecular electron transfer reaction viewed
under the same approximations, Fig. 1 is applicable, as are the arguments
cited earlier. Under certain conditions, an electron transfer occurring via a
bridged intermediate can be treated as an intramolecular electron transfer
within the intermediate (assuming the population of the intermediates to
be an equilibrium one, a calculation of the overall rate constant would then
also entail a knowledge of the equilibrium constant for forming these inter-
mediates from the reactants).

CoMMON ASSUMPTIONS OF THE TREATMENTS AND SOME DIFFERENCES

Common to the principal treatments (26, 30-33, 56) which calculate re-
action rates have been three assumptions: (¢) The microscopic states or con-
figurations from which the system may undergo reaction (classically or
quantum mechanically) are assumed to be in thermal equilibrium with the
remaining states. Thus, for example, this assumption appears in the usual
equation for absolute reaction rates as well as in the distribution of the
polarization oscillators of Levich et al. (#) The interaction of the electronic
orbitals of the two reactants (or reactant and electrode) is weak. More pre-
cisely, it is assumed to be sufficiently weak that the potential energy surface”
of the reactants is hardly different from that for zero electronic interaction
except for the usual splitting when this surface intersects another potential
energy surface, that for which the electronic charge distribution is one which

7 Actually, the theory of Levich et al. is a macroscopic theory. The surfaces in
their case are those for the free energy of solvation, including ion-ion interaction, and
these are plotted versus the Fourier components of a polarization variable. (See
later.) The theory of Marcus is statistical mechanical and employs actual poten-
tial energy surfaces and actual atomic coordinates. Hush does not use potential
energy surfaces. [In an earlier article they were regarded as illusory (19).]
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is characteristic of the products. (#7%) A system having just undergone elec-
tron transfer goes on to form stable configurations of the products (rather
than do anything else, such as recross .S). For example, in classical calcula-
tions based on the crossing of some surface in phase space, the rate is equated
to the rate of ‘“‘first passages.”

Common to several treatments (26, 30, 31, 33, 56) is the discussion in
terms of potential energy surfaces” and the importance of the crossing-point
of the reactants’ surface with the products’ surface in determining the elec-
tron-transfer probability. In general, these are treatments for which the
quantum mechanical justification is at hand.

Regardless of whether the nuclear motion is treated classically or quan-
tum mechanically the major problem involves calculating the probability of
finding the system in various nuclear? configurations (or in various quantum
states of nuclear motion) and calculating the probability of electron transfer
from such configurations or states. Multiplying the two and suitably averag-
ing over all configurations (or states) one then obtains an expression for the
rate constant.

The differences among the treatments range from minor to major. Some
are developed from fundamental considerations, while others are less rigor-
ous. Levich & Dogonadze (26) treat the polarization dynamics macroscopi-
cally but in an elegant fashion. They ignore, for simplicity, dielectric disper-
sion, any changes in the inner coordination shell, and certain other things.
Hush (32) has formulated the problem in such a way so as to calculate from
ion-dipole and ligand field arguments the contribution of the inner coordina-
tion shell. In the statistical mechanical treatment of Marcus (30, 36, 56), a
surface integral in the expression has been expressed in terms of a volume
integral so as to cast some of the difficulties into the evaluation of part of
the Arrhenius frequency factor.

We shall begin with treatments based on a classical description of nuclear
motion. There is evidence in support of a classical treatment and we shall
return later to a brief discussion of the quantum description.

The treatments may be classified, in part, with respect to the effects they
include in their calculation (in whatever language they use) of the probability
of reaching the intersection surface S. The probability appears via a free
energy of reorganization term or via some equivalent term. These free energy
terms may have contributions from (7) energy (and entropy) changes in the
inner coordination shell due to changes in bond lengths and angles,® (47)
changes in ion size due to changes in bond lengths, causing thereby small

8 In a number of the cases only an energy of reorganization for contribution (£)
was calculated. That is, only the bond lengths which minimize the energy (actually,
the bond energy plus solvation free energy) on S are calculated. A large error would
normally be made here by thus omitting any discussion of all the neighboring points
on S associated with slightly differe t bond lengths, points through which the system
may pass to reach P. This error corresponds to a neglect of a part of the entropy of
the activated complex. It is almost cancelled by the simultaneous omission of the
corresponding entropy term for the stable configurations of the reactants themselves.




ELECTRON TRANSFER 165

changes in the solvation free energy of the medium outside the inner coordi-
nation shells, and (445) for any given size of the ions in the activated complex
a change in the vibration-orientation polarization at each point in the
medium.

With respect to their inclusion of these effects only, the various quantita-
tive treatments at different stages of their historical development took cog-
nizance of the above three contributions as follows: .

Chemical electron-transfer—Marcus, 1956 (16) (4iz); Hush, 1957-58 (19)
(¢ and 4i3)*; Levich and Dogonadze, 1959-61 (22, 26, 28, 31) (#4i); Laidler,
1959 (20) (none); George and Griffiths, 1959 (23) (4, for electron-exchange
reactions); Marcus, 1960 (30) (¢ and 4i:*); Hush, 1961 (32) (¢ and 4%);
Sacher and Laidler, 1963 (37) (¢ and ¢, for electron-exchange reactions);
Marcus, 1964 (56) (4, 45,* and 44*); where * =statistical mechanical instead
of continuum; t=neither correctly.

Electrochemical electron-transfer—Hush, 1957-58 (19) (¢ and m,)"‘ Mar-
cus, 1957 (18) (i%); Dogonadze and Chizmadzhev, 1961 (33) (ii:); Hush,
1961 (32) (i and 444); Marcus, 1964 (56) (3, 4%, and 44i*).

In essentially all treatments absolute values of reaction rate constants
have been calculated and extensive comparison with experiment has been
made by Hush (32) and by Sutin (1). In the case of Laidler (30, 37) and of
Levich and Dogonadze (22, 26, 28, 31) the actual numerical comparison has
been largely confined to the electron-exchange between Fe*? and F ets,
Dogonadze and Chizmadzhev (33) computed the transfer coefficient of an
electrode reaction.

In another type of comparison with experiment, Marcus (30) has de-

rived equations which predict quantitative correlations among the data.
This type of comparison is being investigated by several researchers, includ-
ing Sutin (57-60), Halpern (61), Taube (62) and their co-workers. We shall
later summarize the current status of such comparisons.

We turn now to a review of recent quantitative theoretical contributions.

TREATMENT OF N. S, Husu

Hush has considered chemical and electrochemical electron transfers
in several recent papers (19, 32). We shall consider only the last of these
papers (32), for the reason noted earlier.

Hush reasoned that the probability of the electron being on one of the
two reactants in the activated complex is intermediate between the values
it has in the initial and final states (0 and 1). The probability that the charge
dens1ty is that of the products was denoted by At. That is, if the reaction is

A% + B2 — BZ1-1 + BZst1

then in the activated complex the mean charge of 4 is Z;—At and that of
B is Z;-+-Xt. The free energy of the system was written as the sum of three
parts: (i) the electronic energy of the bare ions, (¢4) the intramolecular
energy of each inner coordination shell and (472) the free energy due to inter-
action of the ions with the medium and with each other (the last being
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assumed to be a purely coulombic interaction). Weak overlap was assumed.
The mean electronic energy in the activated complex was written as the sum
of the electronic energies in the initial and final states, weighted by the
factors 1 —A*+ and At, respectively.

By a thermodynamic argument, Hush then deduced that the free energy
of formation of the activated complex from the reactants AF{ is the work
required to bring the reactants together, w", plus a reorganization term de-
pending on A*:

AFt = w" + (PA'ueny — XA pony) + AYAF? 1.

(He used an electrostatic expression for w".) In Equation 1 pev is the en-
vironmental free energy, consisting of (47) and (44%) above; p denotes a state
where the ions are at a typical separation distance occurring in the activated
complex but where the system has the charge density of the reactants and is
in thermal equilibrium with it; ¢ denotes the transition state; < and f denote
the initial and final states (reacting particles far apart). AF" is the “stand
ard” free energy of reaction in the prevailing medium.®

The main problem now was to evaluate PA%ugy. There is a contribution
from the inner coordination shell and one from the solvation of these com-
plex ions by the medium outside. To calculate the second contribution Hush
reasoned as follows:

The free energy of solvation of an isolated ion of radius a (radius of the
ion plus inner coordination shell), computed by dielectric continuum theory,
is —g*(1—¢,1)/2a. Writing this as the sum of two terms

:f(l_l _i”(i_i) 2.
2a €op 2a\esp &

where €, and ¢, are the optical and static dielectric constants, he noted, in
effect, that one can imagine the solvation occurring in two steps: () the ion
is immersed in a medium which responds only via electronic polarization,
(43) the medium then comes to thermal equilibrium with the ionic charge.
Since the free energy change for the first step equals the first term in expres-
sion 2, that of the second step must equal the second term. Considering now
an isolated ion 4 having the probability 1 —A* of charge Z; and a probability
At of charge Z;—1, and solvating it in the above two steps, then noting that
the electronic polarization term depends on the charge, the mean value of the
first term in expression 2 would be obtained by replacing g2 by (1 —=\1) Z;2
+A+(Z1—1)2 Letting the nuclei of the medium adjust themselves, now, to a
mean charge of Z;—\*, Hush said (more rigorously he assumed, since the
situations are not entirely analogous) that the free energy change of the
second step is given by the second term in Eq. 2 with g equal to this mean
charge.

® Throughout this review this quantity AF" will appear and the terminology used
is that of the reviewer. It is the free energy of the two products, far apart, minus that
of the reactants, also far apart, in the prevailing medium, See footnote 4.
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He reasoned analogously for the case of two ions of charges Z; and Z; a
distance R apart. The answer ultimately obtained for this dielectric con-

tribution to
? Atﬂenv - XHAIlonv!
was!?
Ate?

—( = x+(1—x+)e2(———)+ (1 — Z— 1) 3.
2a, Zaz

where @, and @, are the ionic radii, R the separation distance, and ¢ is the
electronic charge. To compute the inner coordination shell energy contribu-
tion to PAteny —ANT A Ueny Hush employed an ion-dipole model for the attrac-
tive forces within the inner coordination shell and an inverse power term for
the repulsion (a term whose two parameters are assumed to be independent
of the valence state of the ion). When the ion is that of a transition metal,
and so contains d electrons, a crystal field term is included, varying inversely
as the sixth power of the distance and containing the number of de and dy
electrons. To calculate the contribution to pleny, the inner coordination shell
potential energy function used was that for the products, multiplied by A,
plus that for the reactants, multiplied by 1—X*, all evaluated at the equi-
librium distance for an ion of charge Z;—A* in the case of reactant 4, and,
in the case of B, for an ion of charge Z;+A*. The contributions to u?epy,
Wonv and ey were calculated in a straightforward manner.

The resulting expression for AF{ was next minimized with respect to At,
and an equation obtained for A* thereby, which could be used to calculate
AF}. In computing AF} for insertion into the activated complex rate equa-
tion, the loss in translational entropy in forming the activated complex was
not correctly taken into account (the Sackur-Tetrode equation could have
been used for example). However, the error introduced into the rate con-
stant was only about a factor of ten (the ratio of 2T/k to the collision number
in solution, 101 cc mole™! sec™?),

The features of Hush's treatment which are of particular interest, in this
reviewer's opinion, are the a priori calculation of the inner coordination shell
contribution to the energy barrier, the ligand field effects included thereby,
and the interpretation of the quantity A*. Assumptions or approximations
in Hush'’s treatment, in addition to the three common to all the treatments,
include (¢) an adiabatic mechanism (i.e., k=1), (#z) a specific model for the
inner coordination shell, linear in the charge of the ion and having other
specific attributes, (774) the treatment of the medium as an unsaturated
dielectric continuum, (¢v) the assumption already noted in the argument
leading to Equation 3, (v) neglect of the fact that electron transfers occur
over a range of separation distances, (vi) neglect of the detailed mechanics of
crossing the intersection surface S, and (viZ) the assumption (rather than
proof) that the activated complex can be characterized by a single parameter

10 This result may be deduced by comparing equations 18 and 54 of Reference 32.
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A*. There are several other approximations including omission of dielectric
. image effects and of part of the translational contribution to the entropy of
formation of the activated complex. The last two appear to be relatively
minor (but not negligible) from a numerical viewpoint as do (v) and (i)
which should primarily affect the pre-exponential factor. We shall consider
some of the other approximations, including the interpretation of A+, when
we later compare this treatment with others.

AspEcTs oF CONTINUUM THEORY

The treatment of Levich, Dogonadze and Chizmadzhev (26, 31, 33, 35) and
an approximation to the treatment of Marcus (16, 18, 30), make use of dielec-
tric continuum theory for systems whose orientational-vibrational polariza-
tion in the medium is not exactly dictated by the charge distribution (38, 39,
47). Hush (32) also makes use of these concepts but in a more intuitive, less
formal way. We review briefly the pertinent aspects of this nonequilibrium
dielectric continuum formalism. A particular case of this formalism has been
actively employed in treatments of polarons as well (e.g., 38, 39).

In these nonequilibrium polarization systems, two quantities character-
ize the continuum: () the field (47) D, directly due to the permanent charges
of the reactants (and of any external fields),!! (i) the polarization in the
medium P(r), i.e., the net macroscopic dipole moment of the medium per
unit volume at the point r. P(r) is due to the orientation of molecules in the
medium, the polarized vibrations of chemical bonds of species in the medium,
and the polarization of the electrons of those species.

In systems having equilibrium dielectric polarization P(r), the polariza-
tion is dictated by the permanent charge distribution. However, the set of
configurations (of the oriented and vibrationally polarized particles) occur-
ring in the vicinity of the intersection surface S in Fig. 1 corresponds to a
macroscopic polarization dictated neither by the charge distribution of the
reactants nor by that of the products but, normally, by some compromise
distribution. Particular care must be exerted in calculating the continuum
contributions to the free energy of such a system, taking the electronic
polarization correctly into account. A method of calculating the free energy
of nonequilibrium polarization systems, of which this is one, has been de-
rived and will be considered below (38, 39, 47, 63, 64).

In terms of a continuum picture, there is a free energy associated with the
work required to polarize the continuum and with the interaction of this
polarization with the permanent charge distribution. An expression for the
free energy has been given by Marcus, in the dielectric continuum formal-
ism (47, 63) and also in terms of statistical mechanics (64). When there are

1 The distinction between D, so defined and the dielectric displacement D(=E
+47P), where E is the electric field) does not arise in polaron theory where there
are usually no cavities of low dielectric constant. Levich et al. apply polaron theory
directly and so do not distinguish between D and D,. However, cavities are now
present, namely those occupied by the jons.
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no cavities in the medium this expression reduces to one derived earlier for
the polaron theory (38, 39). This second expression was used by Levich and
co-workers for electron-transfer reactions, though they did not note this
assumption. The error, which leads to a neglect of dielectric image effects
due to the cavities occupied by the ions, is not serious, but, also, not neg-
ligible. (These image effects were neglected in the application of the more
general expression in Refs. (16) and (34) also, but they need not have been.)

Marcus (63) has shown that the continuum expression can be expressed
in a form convenient for rapid calculation. The term F has been shown to be
equal to the algebraic sum of the free energies of several equilibrium polar-
ization systems (63). (F= Fo+ F,_¢°? — F1—, where the symbols 1 and 0 have
been defined elsewhere.) [A statistical mechanical expression for F can be
expressed similarly (64).]

When the polarization changes with time, as it always does, there is a
kinetic energy difference between the polarized and unpolarized system (38,
39). An expression for this kinetic energy has been derived for ionic crys-
tals (40), based on an analysis of the optical normal modes. As a first ap-
proximation, the same macroscopic expression was used for polar liquids
(26). In a classical mechanical treatment of the motions of the continuum,
this kinetic energy term plays a role of minor importance, affecting only the
Arrhenius frequency factor in the expression for the rate constant. In a
quantum treatment of these motions, the kinetic energy expression is needed
to formulate the Schrodinger equation. (However, in these chemical and
electrochemical systems such quantum effects appear to play a compara-
tively minor role. At very low temperatures the situation should be different,
but then the effects might appear first for the inner coordination shell where
the vibration frequency is higher than that for molecular reorientation in the
medium.)

Levich, Dogonadze and Chizmadzhev employed the kinetic energy ex-
pression used in polaron theory for the fluctuating polarization of the
medium. For all calculations based on the use of this kinetic energy, quanti-
ties closely related to orientation-vibrational polarization and its time de-
rivative, both continuous functions, are usually expressed in terms of their
Fourier components (38, 39). In this form the sum of this kinetic energy and
the ‘'static’ free energy is formally identical with the Hamiltonian for a
harmonic oscillator (38). The Fourier components in the one replace the
vibration coordinates of the other. The equilibrium value of any Fourier
component depends in a simple manner on the permanent charge distribution
in the system and differs, therefore, for reactants compared with the products.
The analogy to the vibrational coordinate is clear. In this case the equilib-
rium bond length differs in the initial and final valence states of a reacting
species. Some of the pertinent equations concerning these Fourier com-
ponents follows. They are given in this review for completeness only and
could more properly be placed in an appendix.

Dielectric continuum and Fourier components.—A function Py, is defined (26
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38, 39) such that P— P, is independent of the orientation-vibration polariza-
tion. (Electronic polarization contributes to both P; and P—P;,.) One may
then introduce a Fourier expansion, for example, in standing waves (38)11=,

R, k
P = /hvoe/or ; % x(r),

. R k
P, = \/hvo*mc Z Pk? x:(1),
k

where o, a characteristic frequency of the oscillators, is assumed to be inde-
pendent of %;

cis (;1— - -:— and xx(r) equals A/2/V cos k-r for b, < 0
7 73
and +/2/V sin k-1 for k. >0, V being the volume of the system. The expan-
sion is made in terms of longitudinal components (i.e., those parallel to k)
since the transverse ones do not interact with the charge distribution. The
k'sin the sum satisfy a periodic boundary condition in the system treated
as a cube of length v/7V.
If the dielectric displacement D(=E+4xrP) is similarly expanded,

E
D(r) = \/2xhvo/c ; dx 7 xx(r),

one can express in terms of Fourier components the classical kinetic energy
of the polarization plus the solvation free energy due to mutual ion-solvent
interactions, obtained from the corresponding expression!!® in continuous
functions. The part which depends on g% and g is

$hvo Zk: [£4* + @ — 2quds].

According as D refers to the reactants or products so does di, and, thereby,
so does this expression. The equilibrium values of the g;'s are those which
minimize g,?— 2qxdy. They therefore equal di. Thereby, the equilibrium values
of the g«’s and so of the function Py (r) depend on the charges on the re-
actants. The analogy to the harmonic oscillator is apparent.

The terms gx and hpr are found to be canonically conjugate and so
quantization is readily introduced (gx—qx, hpr—2hd/dgk). In the actual sys-
tem, the total Hamiltonian for the Schrédinger equation and the electronic-
nuclear wave function was introduced, rather than just the nuclear Hamil-
tonian given above, which refers to a system of specified electronic con-
figuration (that of reactants or that of products).

It should be noted that, consistent to some extent with the neglect of

s Levich & Dogonadze (26) used an expansion in traveling waves instead, but
introduced a second transformation later in the paper, which made the final expan-

sion the same as Pekar's.
Ub Cf the last three terms of Equation 10.1, Ref. 38, for the part depending on

P;.
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dielectric image effects, the Fourier expansion made was one in terms of
plane waves. If one wishes P;; to vanish inside each ionic cavity, the use of
many components of very small 2 would be required. The assumption of a
frequency »o independent of 2 would then be still more questionable. On the
other hand, expansion in the appropriate complete set of functions which
vanish inside the cavities and satisfy the appropriate differential equation
would be more complicated. In fact, a reformulation of the entire Hamil-
tonian so as to include dielectric image effects might then be desirable. In
virtue of the other approximations (neglect of dielectric dispersion, for
example) such refinements are perhaps unwarranted at this time.

TREATMENT OF LEVICH, DOGONADZE AND CHIZMADZHEV

In a series of very interesting papers these authors have treated chemical
and electrochemical electron transfers, both classically and quantum me-
chanically (22, 26, 28, 33, 35). The medium outside the inner coordination
shell of each reactant was treated as a dielectric continuum and the reactions
considered were those involving no changes in equilibrium bond lengths and
angles in the inner coordination shell. The overlap of the electronic orbitals
of the two reactants was assumed to be so weak that perturbation theory
could be used to calculate the transfer rate in chemical and electrochemical
electron transfers, by a nonadiabatic method. (The high temperature-limit-
ing form of their formula contained a weak-interaction form of the Landau-
Zener equation given by Equation 25, post.) The idea that perturbation
theory is inadequate to describe chemical electron transfers was discussed
by Dogonadze (31), whose results are described in a later section. The case
where perturbation theory is inapplicable to electrode processes has not yet
been discussed by them. The Hamiltonian for the motion of the polarization
was employed. Profiles of the R and P surfaces, plotted as a function of the
Fourier components were given and the importance of the intersection region
was recognized (26, 33). In this region the electronic wave function is sensi-
tive to nuclear configuration. A Schrédinger equation, written in a form
which takes cognizance of this sensitivity, was used in the one-electron ap-
proximation; the nuclear part of the Hamiltonian was described by Fourier
components. In the approximate solution of the equation the separation dis-
tance of the reactants was held fixed. Actually, one should consider the entire
Hamiltonian (including the R-kinetic energy). Otherwise, an error results.1?
However, appreciable simplification was achieved. The formal expression for
the rate was based on the quantum treatment of the polarization modes (and
the additional assumptions contained therein and already described). Be-
cause of the observed high activation energy for electron transfer, the classi-

2 One can show from Eq. 17 below that this step, together with the subsequent
use of Equation 6, is equivalent to the neglect of the contribution of R to the “reac-
tion coordinate,” i.e., to the coordinate leading to the crossing of S. The other ex-
treme is that made in simple collision theory, where the reaction coordinate is R itself.
(In that case S is a surface on which Ris a constant, equal to the collision diameter.)
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cal limit is the one of current interest, as pointed out by Levich & Dogonadze

(26).
For homogeneous reactions their expression for wi,, the probability of
electron transfer at a separation distance R between the reactants, can be

written with a notational change as (26):

(xK1) we = %‘ EI—: e UB~Totho)t [4AkT 4.
0
where % is h/2r and®
(Ae)? ( 1 1 1 (1 1
- wm Yo" w)\o— 5.
N UYRiLe v~y & Ut

where @, is the radius of ion 1, Ae is the charge transferred, and 2¢; is the
splitting term at the intersection of the R and P surfaces. I, is the value of
the solvation free energy plus electronic energy of the reactants for the
equilibrium solvation of the reactants at the separation distance R. Iz is the
corresponding term for the products. In terms of a notation used later,
Is—1, is AFRY the ‘‘standard free energy of reaction at the separation dis-
tance R4

It was then argued that the rate constant ki is related to wy, according
to Eq. 6 (26).

bi = f Wi KT IR 6.
1]

where w" denotes here Z1Z,¢?/¢, R, the work required to bring the two re-
actants together (infinite dilution assumed). In Eq. 6, w;; and ™ were re-
placed by their values at R, the R for which the integrand has a maximum.
The remainder of the expression was replaced by 4w R?R, because of the
Gaussian-like nature of the integrand (26a, 28), R being some narrow
width. In a later paper (28) an approximate estimate of e, was also made to
evaluate the various parameters.

For electrochemical electron transfers, an expression was obtained (33)
for the probability of transfer of an electron from an ion A+2 to energy level

of the electrode.

AP M — A% 4 M(e) 7.

13 Instead of Eq. 5, the value of A\ of Levich et al. was normally given in terms of
dielectric displacements. They calculated the latter for the Fet*—Fe*3 reaction. The
same method easily extends to nonequal radii, thereby yieldiug Equation 5.

4 This quantity, rather than AFY itself, is the important quantity affecting the
reorganization free energy at the separation distance R (21), since AFY is the free
energy of reaction when the reactants are infinitely far apart. AFz" appears, though
sometimes in a hidden way, in the first four quantitative treatments described in
this review. AFpY equals AFY+4w?—w" where the w's are the actual work terms,
géten approximated by an electrostatic calculation at infinite dilution, as in Reference
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It can be rewritten as in Eq. 8 for a given separation distance R between the
ion and the electrode.

KR ez;
kT)\

where 2ey is the splitting term for the R and P levels involved. I; and I; are
the term values appearing in an approximate one-electron Schrédinger equa-
tion for the equilibrium initial and final states. As in Eq. 4, they are each the
sum of the free energy of solvation and of the electronic energy of the system
in the two states. In terms of the number of energy levels in the electrode
per unit energy, ps, and of the probability of finding a level of energy E;
occupied, n(Es), (Fermi-Dirac distribution function) the rate constant for
transfer from ion 2 to the electrode was (33):

kK1) wy= e Txtho)HMRT 8.

® R
kK1) kes = cx(R) de'wﬂ(R) [1- n(E;)]p/dEf 9.
R-0 02(°°)
where cy( ) is the concentration for ion 2 at any point outside the electrical

double layer.

The rate constant for the reverse reaction, k., for electron transfer from

the electrode to ion 3 was (35):
(kK1) k= a® ir f wya(R)n(Es)psdEy 10.
R=0 63( )
where wy; equalled (by a thermodynamic argument) wy exp(ly—I,)/kT.
Denoting by Ry the position of the outer Helmholtz plane, the R-integrals
were replaced by ca(Ro)0R/ca( ) and c3(Ro)0R/cs( ), respectively, where
OR is an effective range of the R's contributing to the integrals.

Noting that wy,increased rapidly with Ey in the vicinity of the Fermi level
while #(Es) decreased rapidly (and conversely for wy; and [1—n(Ef)] in
Eq. 9) the integrands have sharp maxima in the vicinity of the Fermi level
and were evaluated by noting their d-like character there. The resulting
expression for the rate of transfer of an electron from ion 2 into the electrode
was (33b)16.18

15 The exponent has been recast in this review, with the introduction of the sym-
bols wr and w?, for example, so as to emphasize the similarity to other equations,
chemical and electrochemical. In the electrostatic approximation of the authors,
w" and w? equalled Z.eAp and Z,eAd, respectively, where A¢ is the potential in the
outer Helmholtz plane minus that in the bulk of the solution. Although the equation
was derived by the authors for reaction 7, it also applies to any one-electron transfer.

In Reference 35 a Gaussian method was used instead of the §-method to integrate
Eq. 9 over Ey, obtaining thereby a slightly different numerical constant.

18 (a) With the change of notation mentioned in Footnote 9 it becomes clear that
e(E—Ey) plays the same role in the electrode reaction that AF,’ does in the ho-
mogeneous reaction. () In Eq. 11 and 12, p; is proportional to V, the volume of the
electrode, but an “‘improper” eigenfunction ¢; appearing in the expressxon for ey is

normalized to V and so is inversely proportxonal to +/V. Hence pse? is independent
of V.
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kT 2 . — [wp—wr—e(E+Ed') 4 ]g
kK1) ky= r}\_ s _61;_ € TSR exp { [ 4)\0(/,31\ )+ E i
0
—[wr—wp—e(E— Eg) 422
(kK1) Bue ﬂplﬂf_e ~P TSR exp \3 [w 4:(kT E¢")+2d] ; 12.
0

where E is the metal-solution potential difference, E,’ being the cor-
responding term when ca(®)=c3(») and when there is electrochemical
equilibrium (the formal potential); w™ and w? are the work terms in
reaction 7 to bring ions 2 and 3, respectively, from any point in the bulk
of the solution to the outer Helmholtz plane. E—E,’ was subdivided
into the activation overpotential, 9(=E—E,) and a concentration term,
E,—Ey[=kT In ¢:(R,)/cs(Rw)], where E,is the equilibrium metal-solution
potential difference for the bulk concentrations c2(R,) and c3(R,).

Levich, Dogonadze and Chizmadzhev (33, 35) have also discussed the
application of these considerations to semiconductors and to metallized semi-
conductors. In this case it is useful to replace wP—w"—e(E—Ey) by the
quantity which it, in effect, originally replaced, namely the free energy of
reaction when the ions are each at the outer Helmholtz plane. This free
energy change was expressed in terms of the change in solvation free energy
of the ion, in terms of the changes in electronic energy of the ion and elec
trode, and in terms of the potential at the Helmholtz plane. In the case of
semiconductors, electron transfer with valence and conduction bands are
both possible (25, 27, 33) and are computed separately. In computing the
above free energy difference cognizance was taken of the fact that the bands
were bent near the semiconductor electrode surface.

For completeness, we note that at the other extreme the low temperature
limit of the quantum expression obtained for a homogeneous electron
transfer reaction is given by Eq. 13 (26).

e egte ol
RN 1779 2y, [
where v is the frequency associated with the polarization motion.

In this limit transitions occur from those lowest possible quantum states
of the reactants from which reaction is energetically possible. It would
appear, from a physical point of view, that Eq. 13 was designed for a reaction
for which Is—1, is positive. For the reverse process they found:
wa =2 exp(Ip—I.)/kT. The low temperature limit, Eq. 13, was also based
on perturbation theory and so presumably is appropriate at low temperatures
if the splitting is small.

For an electron-exchange reaction Is— I, vanishes and the above expres-
sion simplifies (0 !=1). The reaction rate in this low temperature limit would
have a negligible temperature coefficient and proceed at a low rate. The
equation for the wi of an electron-exchange reaction covering the entire
temperature range has also been given [cf. Equation 43 in (26b)].

In addition to the assumptions common to all treatments, the classical

- (No/ hwo) U g—Ta) Wog—Ug-Ta) KT 13.
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version of Levich, Dogonadze and Chizmadzhev's assumes (¢) a dielectrically
unsaturated continuum, (4%) no dispersion of frequencies of the motion of the
continuum, (#22) neglect of dielectric image effects, (iv) approximate treat-
ment of the relative motion of the reactants, (v) absence of a damping term
in the macroscopic equation of polarization in these liquids, (vf) neglect of
changes of bond length within the inner coordination shell, and (¥#Z) non-
adiabaticity and the assumptions involved in the weak interaction limit of
the Landau-Zener equation.

TREATMENT OF DOGONADZE

In addition to the method described above, Dogonadze (31) has also con-
sidered the possibility that k=21. He has also derived an expression for the
nonadiabaticity effect using the method of Zener (54). The remaining as-
sumptions are identical with those summarized earlier for the Levich, Dog-
onadze and Chizmadzhev treatment (7 to vz). He obtained Equation 14 for
the electron-transfer probability at the separation distance R, for the case of
an adiabatic electron-exchange reaction.

(K = 1) Wiz = voe‘)"’“"T 14,

where Ag given by Eq. 5 with a;=a,.
For completeness and for later comparison we note that Eq. 14 can easily
be generalized to adiabatic electron-transfer reactions:

(k=1) Wig = poe— g TatPo)/4MkT {s.
The rate constant %y, is again given by Eq. 6.

TREATMENT OF R. A. MARcCUS

Marcus used nonequilibrium dielectric polarization theory (47) to calcu-
late the free energy of activation for a system with rigid inner coordination
shells (16). These results for homogeneous electron transfers were extended
to electrochemical ones (18) and led eventually to prediction of correlations
among the data (30, 34).

A clearer insight into the actual mechanism of the electron transfer itself
was afforded (24, 30) by the introduction of the potential energy surface
described in Fig. 1. The treatment for homogeneous systems was extended
so as to include changes in bond length in the inner coordination shell (30).
The entire system was treated in terms of statistical mechanics (30). An
“equivalent equilibrium distribution,” described in more detail below, was
introduced to facilitate the calculation. In one of the last steps of derivation
the statistical mechanically derived contribution of the medium to the free
energy of activation was replaced by its dielectric continuum equivalent.

The predicted correlations have received some experimental support
(34, 57-62). The recent work of Marcus (56) has been concerned primarily
with generalizing the statistical mechanical treatment so as to place the cor-
relations on a relatively broad theoretical basis. We summarize below this
latest extension.
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Making the three assumptions common to all treatments described earlier
and the assumption of classical motion of the nuclei the resulting equation
for the rate constant was given by Eq. 16 when « is unity (56).

Brate = —kz:l—‘— —(F#Fr) IkT 16.
where F” is the configurational free energy of a system constrained to exist
on the intersection surface, and FT is that of the reactants. Eq. 16 was first
derived for chemical reactions by Eyring (65) using a special form of the
kinetic energy term (p?/2u--terms independent of p, where p is a constant
and p is the momentum conjugate to the reaction coordinate). It holds for
the general kinetic energy expression as well (56).

When the reaction is homogeneous and bimolecular in an isotropic me-
dium, integration over a number of coordinates may be performed because of
symmetry considerations. The resulting expression is given below in a form
which includes the presence of k, the velocity-weighted average of the transi-
tion probability, v, described later. Typically, however, a value of k21 was
assumed (i.e., adiabatic reaction).

Eeate = \/8aET f (B2 ~/m*) e TdS /Q 17.
S

where U is the potential energy for any configuration in the reacting system’
dS is the area element of the surface S to be crossed, R is the distance between
the mass centers of the two reactants, m* is the reduced mass for motion
normal to the surface S, and Q is the configurational partition function
of the reactants. Because of the integrations already performed in obtaining
Eq. 17, several coordinates in the equation are fixed.!” Both R and m* vary
on S, and a precise expression for m* can be given in terms of the properties
of S. (For a collision diameter R, incidentally, Z, the collision frequency of
uncharged species would be R?+/87kT/u for a reduced mass pu.)

The equation for a heterogeneous reaction at an interface, derived on the
same assumptions as Eq. 17 is:

Erate = \ET /27 f ) kU T (1//m*)dS /Q 18.

In obtaining Eq. 18, certain integrations have already been performed, and
so several coordinates in Eq. 18 are fixed'® (the collision frequency Z, with
unit area of the electrode is, incidentally, /2T /2wu for a reduced mass p).

In Eq. 18, « is again the velocity-weighted average of vy, but properly
weighted in accordance with the distribution of filled and unfilled states in
the electrode. For very weak-overlap, 1—< would be given by Eq. 23 (post)
if one used the Landau-Zener approximation.

17 In the numerator the fixed coordinates are five in number: the center of mass of
one reactant and the orientation of the line of centers of the two reactants. In Q
six are held fixed: the coordinates of the two centers of mass of two reactants.

18 In the numerator the two coordinates of the center of mass of the reactant
parallel to the electrode surface are held fixed. In Q, the center of mass of the
reactant is fixed.
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For intramolecular electron transfers kg, is now given by Eq. 18 (but now
with the center of mass of the reactant held fixed in the numerator), with
k given by the value for a homogeneous reaction.

A comparatively general expression was used for the potential energy of
the entire system and introduced into Eq. 17 and 18. It was based on a
“particle description” for molecular interaction (66). This description mini-
mizes the assumptions by treating each of the two reactants and the entire
medium outside it as individual “particles” having rather general properties.
It emphasizes the functional dependence of the potential energy on the
electronic charge distribution of the reactants (surface R) and on that of
the products (surface P).

To simplify the calculation of the surface integral appearing in Eq.17
and 18 (more precisely of an approximate form of this integral) the (n—1)-
dimensional surface integral was expressed in terms of an n-dimensional
volume integral and a one-dimensional partition function. The volume
integral had a Boltzmann distribution of configurations of the nuclei,
centered on the intersection surface S (the “‘equivalent equilibrium distri-
bution” of Ref. 30). The partition function described the motion away from
S in the latter distribution. The advantage of the volume integral was the
absence of the constraint present in the surface integral.

A number of previous (16, 30) limitations were removed (56): the ion-
dipole treatment of polar media (30) was replaced by a much more general
one (64, 66). The assumption of dielectric unsaturation of the medium out-
side the inner coordination shells was replaced by the milder one of partial
dielectric saturation (i.e., linear polarization response to the change of charge
distribution on going from reactants to products, rather than on going from
uncharged species to charged reactants or products) (63, 64).

The effect of the expansion or shrinkage of the inner coordination shell
on the medium’s contribution to the solvation free energy, noted by Sacher
& Laidler (37), was included in the above statistical mechanical treatment.
As in all treatments thus far, however, correlations between fluctuations of
bond lengths about their mean values in the activated state and configura-
tional fluctuations outside the inner coordination shell were neglected'®. The
fact that electron transfer could arise from a range of separation distances,
mentioned by Levich & Dogonadze (26) and by Laidler (20), was also in-
cluded (such a range automatically occurs in the surface integral of Eq. 17
and 18 and carries over to the volume integrals).

In the case of the inner coordination shell the harmonic approximation
was used for the intramolecular vibrations. Instead, the procedure in the
previous paper (30) could have been followed; namely that of using the
general intramolecular potential energy for this coordination shell. Later,
to attain the predicted correlations, an approximation milder than the
harmonic approximation might have been introduced. The present procedure
was used partly in the interests of simplicity and partly because calculations

18 This assumption has now been removed in (56).
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by Sutin (1) have indicated that over the usual bond length changes, the
harmonic approximation sufficed. To obtain the desired functional form for
the predicted correlations, it was then shown that only a minor error in the
rate constant was introduced when every force constant in the reactant K7
and the corresponding one in the product K? were replaced by a reduced
force constant 2K"K?/(K"+KP?). Introduction of these various quantities
into the expression for the rate constant for homogeneous electron transfers
had the form given by Eq. 19 (56).

Frate = KpZe AF* T 19,
where!®
wtw N AFY (AFY 4w — wr)?
AF* = — 20.
2 + 4 + 2 + 4

and where Z is approximately the number of collisions occurring between
two neutral species in unit volume of solution in unit time at the mean
separation distance in the activated complex.2? The symbol p is the ratio of
the root mean square fluctuations in separation distance in the activated
complex to the root mean square fluctuations of a coordinate for motion away
from the intersection surface in the volume integral mentioned earlier and
should have a value of the order of unity.

In Eq. 20, w" is the work required to bring the reactants to their mean
separation distance R, and —w? is the work required to separate the products
from R to infinity. It can include polar (e.g., electrostatic) and nonpolar
contributions. AFY is the ‘“standard free energy of reaction” for this ele-
mentary step in the prevailing medium (so AFY +w?—w" is the ‘“‘standard
free energy of reaction at the separation distance R’ in this medium)." The
term A is the sum of an “inner” contribution A; (from changes in coordinates
in each inner coordination shell) and an *outer contribution’ Ay (from the
medium outside). It was shown that A is essentially an additive function of
the two redox reagents.2! That is, it could be written as the sum of two other
terms, one of which depended only on the properties of one reaction species in
its initial (reactant) and final (product) equilibrium states, and the other
of which depended only on the initial and final equilibrium properties of the
second reactant.

For the electrochemical reaction rate an expression analogous to Eq. 19
can be derived in the following way: As Dogonadze, Chizmadzhev, Levich

19 The formal similarity of the exponents in Equations 4-6 and 19-20 becomes
clearer when AF* is rewritten as w™+(AFgY +\)?/4\ and Ig—I, as AFg". It may be
noted, however, that both A and the w's are more general in Eq. 19. Similar formal
similarity of the exponents occurs in Eq. 11, and 19 plus 21.

20 The detailed expression for Z is given in Reference 56.

 (a) However, the proof of the approximate additivity of the R-dependent part of
A was given by resorting to dielectric continuum theory, a limitation which probably
can be removed. (b) The proof of equality of the R-dependent parts of A and Ag'/2
was given similarly,
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(33, 35) and Gerischer (27) have emphasized, the contribution to electron
transfer for each initial electronic level of the system is calculated. Since one
of the reactants is an electrode there are many such levels occupied with
appreciable probability. Each electronic level of the system as a whole cor-
responds to a different distribution of the electrons among the energy levels
of the electrode. There is no need to introduce any very specific model of
the electrode for our immediate purposes and no need to introduce an approx-
imation of ‘““one-electron levels.”

In the case of a metal electrode most of the occupied electronic levels
of the system as a whole, which contribute to the rate, lie within k7" of each
other (compare with Fermi-Dirac distribution among one-electron levels).
Since the probability of electron transfer for a given electronic level of the
reactants varies very little over an energy range of the order of 2T, it can be
expressed in a manner relative to its mean value and the latter can be ex-
tracted from the integral. Integration over the distribution of electronic
levels of the system is then easily performed. In the case of a nonadiabatic
electron transfer, the x in Eq. 19 thereby becomes that for the Fermi level.

For these metal electrodes one obtains Eq. 19, but with the AF* given
below and with Z being approximately equal to the number of collisions of
an uncharged species with unit area of the electrode in unit time,?'*° one
obtains

w" - wp I At ne(E— E,) 5 (neE — neE,’ + wp — w)? "

AF* =
2 4 2 4ol

where E,’ is the formal electrode potential and E is the observed potential
(as defined earlier); w" is the work required to bring the reactant to the elec-
trode to the mean separation distance and —w? is the work to remove the
product. (As in Eq. 20, they can contain polar and non-polar terms. In the
statistical mechanical derivation, no specific assumption restricting the cal-
culation to an electrostatic work term was made.) The term A® is the sum
of two terms, an inner A;* and an outer A,?* contribution. The former is one
half that found for the corresponding homogeneous electron-exchange re-
action involving the same two valence states of this electrochemically active
ion. The latter (\,?) has one half the value for this homogeneous electron-
exchange reaction when the mean separation distance between the two re-
actants, R, is twice that between the reactant and the electrode.

The A; appearing in the above equations can be written as a scalar
product, in terms of the intramolecular coordinates g; of the inner coordi-
nation shell of one reactant in the electrode case and of the two reactants in
the homogeneous one. It is given in Eq. 22.

N = AqT-K-Agq/2 22.

where Ag is a column matrix whose elements are differences in equilibrium
values of g;, ¢#—¢;, and whose transpose is Ag”; K is the matrix whose
elements are the reduced force constants. For homogeneous electron transfers
A;is the sum of two terms, one for each reactant. When the off-diagonal force
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constants appearing in Eq. 22 are neglected it reduces to an expression,
Zsks(Ags)?/2, cited in an earlier paper (34).

When a dielectric continuum expression is used to determine A, its value
for a homogeneous reaction is given by Eq. 5 (and its value for the electrode
reaction is one-half that) if one assumes dielectric unsaturation, infinite
dilution, no dielectric i image effects, spherical reactants, and no difference in
sizes of an ion in its initial and final state (16, 30, 34). It is given by somewhat
more complicated expressions when any of these approximations are removed
(56). For example, it depends somewhat on the ion atmosphere. However, for
the correlations described later none of these approximations is necessary,
since it is the functional form of A for the homogeneous and electrochemical
reactions which is the essential feature.

Other than the three common assumptions and a classical treatment of
the nuclei, the principal assumptions on which Eq. 19 to Eq. 22 are based
are (4) partial dielectric unsaturation approximation outside the inner co-
ordination shells, (7) harmonic forces in the inner coordination shell, and
(43) negligible correlation of fluctuations of coordinates inside and outside
this shell in the activated complex.!® Some of the difficult problems were
shown to affect the pre-exponential factor, e.g., x and the evaluation of the
two terms appearing in p. Other problems were cast into a form in which
they could be considered separately, e.g., the evaluation of A,, of Ai(either
a priori or using data derived from vibrational spectra and X-ray diffraction),
and the evaluation of »" and w?,

NonNaDpIABATIC PROCESSES

When the nuclear motion for travelling from one many dimensional
potential energy surface to another is representable by a one-dimensional
Cartesian motion, and when certain other assumptions mentioned below are
introduced, one obtains the Landau-Zener equation (54) for a probability P
of a nonadiabatic jump per passage of the system through the intersection
region, e.g., from one solid (adiabatic) curve in Fig. 1 to the other one.

p= 2res? E
= exp g - —hv l 5 — s;'|'

2¢3 is the splitting in Fig. 1 at the intersection, v is the velocity with which
the system passes the intersection point and s; and s; are the slopes of the
two (unperturbed) curves at that point (in the derivation of Eq. 23 these
curves were approximated by straight lines in the vicinity of the inter-
section).

This formula and those of Coulson & Zalewski (55) below, apply to
processes in which nonadiabatic jumps from one potential energy surface to
the other may occur, processes such as excitation transfer, predissociation,
electron transfer, internal conversion, etc. Whenever the nonadiabatic jump
occurs, none of these processes can occur, as one may see from Fig. 1. Hence,

23.

2em
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the reaction probability per passage through the intersection region of the
two potential energy curves, v, equals 1—2P. )

The value for 7 is high at low velocities and low at high velocities. When
an equilibrium distribution function of velocities is assumed, the velocity
weighted average of 1, k, is obtained by averaging with respect to the veloci-
ty-weighted Boltzmann distribution 4v exp(—mv?/2kT)dv (for a Cartesian
coordinate), where 4 is a normalizing factor and m is the reduced mass for
this one-dimensional motion. One finds (in the second case by expanding the
exponential in Eq. 23 and retaining only the leading term):

Adiabatic: k1 (when + is high) 24.

K= —-21'3122—— (when (v} K1) 25.

hﬂl §1— Sz'
where 7 is the ordinary one-dimensional velocity, averaged with respect to
the non-velocity weighted Boltzmann distribution, A’ exp(—my?/2kT)dv,
namely +/2kT/mm.

Coulson & Zalewski (55) have recently described?* the assumptions
leading to the Landau-Zener Eq. 23 and have developed alternative expres-
sions. These approximations in the Landau-Zener equation include: (?) quasi-
classical treatment of the nuclear motion of the atoms, (#7) retention of only
quadratic terms in an expansion of the phase difference for initial and final
wave functions in the vicinity of the crossing-point, and (4%4) assumption
that the above phase difference, (fa1£1d% — fa3p2du)/k, varies rapidly in Az,

Nonadiabatic:

2 To obtain Eqgs. 23, 27 and others, Coulson and Zalewski considered, in terms of
Fig. 1, a system in a discrete nuclear (vibrational) state on surface R going over into a
continuum of nuclear states on surface P. They also considered a system in any given
initial state in a continuum of nuclear states on surface R going over into a continuum
of states on P, but in a less general way. If one writes the formula for the discrete-
continuum case as P=exp(—2x) then Egs. 23, 30 and 39 of Ref. 55 indicate that the
formula for the continuum-continuum case is P=exp[—2x/(1-x)], where P is now
the probability of remaining in the original state of the continuum on surface R.

Two interesting features warrant further analysis: (¢) for large x the second equa-
tion tends to 1/e? rather than to the intuitively expected adiabatic limit of zero. (47)
The second equation is not the limit of the first when the vibrational spacing is made
very small (x is independent of spacing at least in the cases of interest here, see below).
Perhaps there is a lower vibrational spacing limit beyond which the exp ( —2x) formula
is inapplicable, or perhaps the exp[—2x/(1+x)] expression is in error. The lower limit
of vibrational spacing was not given, it appears, but differences in the two formulae
are evident early in their derivations (cf. the two Egs. 13b and the three Egs. 13c of
Ref. 55). The value of x is, incidentally, welz’/hv[ Sl—Szl and

I f_:eu(u)dur / B2

in Eqgs. 23 and 27 of this review.

Predissociation (a ‘‘discrete” to the continuum transition) has also been consid-
ered by Harris, (81) who uses an experimentally-based choice of initial states, and
discusses the choice of Coulson and Zalewski.
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the effective range of € along the one-dimensional coordinate (the coordi-
nate % involves motion away from ).

Assumption (¢) did not lead to a serious limitation for the Landau-Zener
equation, but assumption (4¢) led to an upper limit for the effective range Ax,
and assumption (44%) led to a lower limit, as one can see. The conditions for
validity of the Landau-Zener equation were found to be (55):

3YE/m L au<K3A - 26.

where E is the kinetic energy of the system along this coordinate, at the
crossing point, in electron volts; m is the effective mass for the motion along
this coordinate (atomic weight units). The term 3+Y E/m is of the order of 0.6
A in electron-transfer reactions in solution or at electrodes.

One limiting alternative to the Landau-Zener equation was obtained by
replacing assumption (#47) by its converse. This alternative corresponded to
very high kinetic energies at the crossing-point, of the order of one electron
volt or more, and so not of interest to the electron-transfer reactions con-
sidered here (cf. Eq. 50 of Ref. 55).

Another limiting alternative to the Landau-Zener equation was valid if
Au<\/2m, where X is the wavelength for the one-dimensional motion, com-
puted at the crossing point. This limiting case was designed for low velocities.
The probability of a nonadiabatic jump P from a one ‘‘adiabatic’’ curve to
another (e.g., from one solid curve in Fig. 1 to the other) was given by Eq. 27,

-2 © 2
P = €xp gh—%" f_wen(u)du ; 27.
The limits of validity of Eq. 27 were:
0.054/ F*/m < E < 0.2/m(Au)? 28.

where E is the kinetic energy at the crossing-point (in electron volts), F is
typical slope of the potential energy curve at the crossing point in units of
10~ dynes, and Ax is now in units of 0.14.

In order to determine which of the one-dimensional formulae is the most
useful for the electron-transfer reactions of interest here, and to then apply
that formula, considerable knowledge about the one-dimensional motion is
needed (no many-dimensional calculation of v, based on all coordinates
rather than just the polarization ones, has been given).

The one-dimensional treatment presumes that a coordinate system may
be found in which the equation of motion is separable into one for a coordi-
nate for motion away from the intersection surface S and into one for all
other motions; i.e., it presumes that a partial differential equation, namely
the Schrédinger equation—or in classical mechanics the Hamilton-Jacobi
equation—can be so separated into two ordinary differential equations.
Normally, such a separation will not be feasible, although conditions for the
separation have been derived (67-69).

If one assumes that such a separation is made, at least in some approxi-
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mate sense, the one-dimensional motion will, in general, be a complicated
one, containing a number of contributions: relative motion of the two re-
actants, change of orientation-vibration polarization, and change of bond
coordinates in the inner coordination shells. In the treatment of Levich,
Dogonadze and Chizmadzhev the motion was assumed (tacitly in part) to
be of the second type only. Because of the quadratic nature of the Schrédinger
equation for the Fourier components of the polarization, rotation of co-
ordinates in this component space then permitted Dogonadze (31) to achieve
separability. He then made assumptions of the type embodied in the
Landau-Zener expression.

A detailed analysis of the one-dimensional motion for electron transfers
in these liquid media is needed but has not been made yet, If it were a vibra-
tion, either of the polarization or in the inner coordination shell, &2 would
vary relatively little with the one-dimensional motion and so Ax would be
relatively large, perhaps consistent with the conditions in Eq. 26, therefore.
If, on the other hand, the motion was found to be largely a relative motion
of the two reactants, Az would be less. Using uncertain electron tunneling
calculations to estimate the dependence of €2 on the separation distance, Axn
would roughly be of the order of 0.3 to 1A for this case and so perhaps con-
sistent with Eq. 26. A more detailed analysis in this nonabiabatic realm is
evidently desirable. If the nonadiabaticity proves to be relatively small
(i.e., if v is between 0.1 and 1, say) all such considerations may be ignored
in calculations of the reaction rate.

RoLE oF ELECTRON TUNNELING

Electron tunneling calculations have often appeared in the electron-
transfer literature (11, 12, 20, 37, 70),23 but their relation to the solution of
the Schrédinger equation for the electronic and nuclear motion was not dis-
cussed, apparently. As a consequence a misunderstanding has often arisen
concerning the relation between nonadiabatic transfers, electron tunneling
and nuclear tunneling, as occurred recently in a review article (70).

Nonadiabatic transitions should be treated by solving the Schrédinger
equation for electronic-nuclear motion, regardless of whether the transitions
involve excitation transfer, internal conversion, predissociation or, as in the
present case, electron transfer. The discussion thereby involves potential
energy surfaces of the type given in Fig. 1.

In electron tunneling calculations a barrier for electron tunneling is esti-
mated in some way (it is not the barrier in Fig. 1, of course) and all nuclei
are held fixed. A tunneling formula is then used to compute a tunneling prob-
ability, p. This p is usually (and erroneously) used as a ‘‘transmission co-
efficient” in the Eyring rate equation. The question arises as to where this
calculated $ can be made to fit into a method based on the solution of the
complete Schriédinger equation for electronic-nuclear motion. A fitting can

2 Dr. John Bockris kindly sent the writer a portion of his forthcoming volume of
Modern Aspects of Elecirochemistry.
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be performed as follows: If », is the number of times the electron in its orbit
“strikes' the above barrier per second (v, is the classical frequency of elec-
tronic motion, about 10 sec™), then the final electronic configuration is
formed from the first pw, times a second. Consider now, instead, the solution
of the time-dependent Schridinger equation for electronic motion at any fixed
nuclear configuration on the intersection surface .S (‘“‘exact resonance'’). A
system with a nonstationary state electronic wave function initially having
the R electronic configuration forms a system in the P electronic configura-
tion ep/wh times a second (71). Equating these two frequencies it follows
that ep/w% equals pv, (in the approximation of electron tunneling calcu-
lations).

Hence, an electron tunneling calculation actually serves as a crude
method for evaluating e, an €2 which can be introduced into the Landau-
Zener equation (although it is better to evaluate e directly). Sometimes
the computed ¢, will be large and the system will remain on the lower solid
(“adiabatic’) surface in Fig. 1 on passing through the intersection region.
Thus, the mere use of an electron tunneling calculation (here to evaluate e)
does not imply, as is occasionally presumed in the literature (37, 70), that
one is assuming the chemical reaction to be a nonadiabatic one. Such calcu-
lations are more properly regarded as the way for evaluating €. The error
of simply regarding p as a ‘‘transmission coefficient’’ can amount, inciden-
tally, to a factor of the order of 10% in the rate constant (16).

An instructive interpretation of the Landau-Zener formula in terms of
the mean time required to change the electronic configuration compared
with that to pass through the intersection region has been given by Kauz-
mann (Ref. 71, pp. 539-41).

COMPARISON OF THE TREATMENTS

The individual assumptions of the various quantitative treatments have
been summarized above. The treatments are based on closely related ideas
about the qualitative nature of the free energy barriers for electron transfers.
They differ in their generality, accuracy, interpretation and application.

There are similarities and differences with regard to adiabaticity. The
treatment of Hush (19, 32) is adiabatic. That of Levich, Dogonadze and
Chizmadzhev (26, 28, 33, 35) is nonadiabatic, while the paper by Dogonadze
(31) uses the Landau-Zener (54) equation to bridge the gap for homogeneous
reactions. That of Marcus (56) leaves the decision for the final step where for
x one might use an assumed adiabatic value (x=1) or a calculated value (the
former is usually used in the absence of any evidence to the contrary).

There are similarities and differences in the calculation of the reorganiza-
tion free energy and of other aspects. Hush (32) used a specific model for the
inner coordination shell and a continuum model for the medium. His numeri-
cal comparison with the data was of particular interest, though the fine de-
tails present in the more rigorous derivatioris were simply absent. These
details affected the Arrhenius frequency factor principally. Any specific
molecular model of the coordination shell itself, Hush’s (32) or Sutin’s (1)
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for example, can be tested directly as more information on force constants
and bond lengths become available. The latter data can also be fed directly
into Eq. 22 of the Marcus treatment, thereby avoiding the use of any specific
molecular model. On the other hand, Levich and co-workers have employed
a more idealized model for the system than Hush’s, a nondispersive con-
tinuum containing reactants which undergo no changes in inner coordination
shell properties, and developed it in a more rigorous and elegant manner.
Two limitations, aside from those imposed by the original model, are (¢) the
tacit neglect of the fact that the coordinate normal to the intersection sur-
face is not a pure polarization mode (the separation distance of the reactants
also contributes) and (47) the neglect of dielectric image effects.

As mentioned earlier, some of the difficult problems have been recast in
the classical statistical mechanical treatment of Marcus (30, 56) so as to
appear in various terms in the final rate expression. The latter is based, there-
fore, on relatively few assumptions. Should absolute rates rather than data
correlations be an immediate aim, specific assumptions can then be intro-
duced. In fact, we may use.this circumstance to illustrate more clearly the
relation of the various treatments (72). For example, Hush’s equation (32) in
the harmonic approximation can be obtained if one introduces in Marcus’
Eq. 19, the following; () Hush’s ion-dipole model for the inner coordination
shell, (#2) a dielectrically unsaturated continuum model for the medium out-
side, with dielectric image effects neglected, (¢i%) spherical reactants, (év) an
electrostatic calculation of the work terms, (v) k=1, and (vi) neglect of a
number of factors omitted by Hush, factors appearing in the Arrhenius
frequency factor and which include some partition functions and a term for
the loss of translational entropy on forming the activated complex.

Eqgs. 4, 6, and 11 of Levich, Dogonadze and Chizmadzhev (26, 33) would
be obtained if, instead, one introduced in Eq. 19 the following; () no changes
in equilibrium coordinates in the inner coordination shell, () Fourier com-
ponent treatment of the medium, treated as a dielectrically unsaturated
continuum with dielectric image effects neglected, (444) a polarization motion
for the reaction coordinate (i.e., no contribution of the separation distance
to this coordinate), (iv) spherical reactants, (v) electrostatic calculation of
the work terms and (vi) Landau-Zener equation for nonadiabatic reactions.
If (vi) were replaced by the adiabatic assumption of x=1, then Egs. 6 and 14
of Dogonadze (and Eq. 15) would be obtained instead.

The treatments of Hush, of Dogonadze, and (in its classical limit) that
of Levich, Dogonadze and Chizmadzhev can therefore be regarded as rather
different particular cases of a more general formulation.

The quantum aspect of the nonadiabatic treatment of Levich and co-
workers is of interest. The high temperature, classical limit shows the usual
exponential dependence of the rate on 1/T. At the low temperature limit the
rate depends but slightly on T, for the calculated rate is then entirely due to
nuclear tunneling. Before any quantitative application is made to any data
(should they become available at sufficiently low temperatures where quan-
tum effects would be large), a modification of the Levich-Dogonadze treat-
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ment (26) would appear to be desirable, even aside from the limitation due
to the contribution of the separation distance to the reaction coordinate
mentioned earlier. At least one additional vibration frequency should be
introduced. Much of the free energy barrier in the continuum model is due
to orientation polarization, a motion of low frequency (and so also of rela-
tively thick barriers). Hence, quantum effects due to it alone might be rela-
tively small. Larger quantum effects would probably arise from the vibra-
tional polarization of the medium and from the inner coordination shell
motions. Levich and co-workers have already noted the calculational dif-
ficulties of including additional frequencies in their nonadiabatic treatment,
however.

Turning next to the validity of Hush’s interpretation of the parameter
At (Marcus’ —m), it may have been noted that Hush introduces a viewpoint
apparently different from that which might be deduced from the other
treatments. We explore this difference further. Hush assumes that At de-
scribes the actual charge distribution of the reactants in the activated com-
plex, and uses an ionic charge model for both inner coordination shell and
medium to compute the energy. Yet, on the intersection surface S—and this
is the “activated complex’ in the other treatments (30, 31)—the charge
density has only a minor effect on the energy. The maximum change it can
produce is 2ej5, the splitting term in Fig. 1. This term is negligible, by as-
sumption of all the treatments, Hush’s included.

Although the charge distribution is unimportant on S, the Boltzmann dis-
tribution of configurations of the atoms on S is important. Here, then, we
have an alternative interpretation of A*. One can show that A* characterizes
the “equivalent equilibrium distribution’ of Marcus’ treatment (for it equals
—m, and m has the latter property). Because of the “equivalence” it there-
fore characterizes the Boltzmann distribution on .S. We conclude, therefore,
that Hush's intuitive interpretation of At is not correct but that it may be
replaced by the alternative interpretation given above. (Hush has intui-
tively used, in fact, a particular type of equivalent equilibrium distribution,
one which is expressible in terms of a charge density parameter, being
based on an electrostatic calculation inside the coordination shell and out-
side.)

One might perhaps call A* a ‘“virtual charge density” for the reactants,
as Sutin has suggested to the writer, or a ‘‘virtual’”’ probability distribution
for the initial and final electronic configurations of the reacting species.
It describes the electronic distribution of the reacting species to which the
nuclear coordinates of the entire system adjust in the activated complex.
It need not describe their actual electronic distribution there, however.

SEVERAL OTHER TREATMENTS
The treatments of R. J. Marcus, Zwolinski and Eyring (12, 13) and the

treatments of Laidler (20) and of Laidler and Sacher (37, 70) are summarized
and’discussed below.
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R. J. Marcus, Zwolinski and Eyring—These authors estimated an
electron-tunneling factor p, as mentioned earlier. In their first paper they
wrote the rate constant as a product of this p-factor (regarded as a “‘trans-
mission coefficient’’) and an Eyring rate expression involving the sum of two
terms in the free energy of activation: the coulombic repulsion (#’) and a
free energy of reorganization. They assumed for simplicity that the free
energy of reorganization was independent of the nature of the reactants and
selected a value empirically which best fitted the data. In their second paper
the error of using p as a transmission coefficient was recognized and a more
acceptable (but still inaccurate) procedure was used: rp», was regarded as
the transmission coefficient, 7 being the collision time for the ions, perhaps
of the order of 10713 sec.

This paper represented one of the interesting first steps toward quanti-
tative calculation of the rate constant, though it is clear in retrospect that
the reorganization free energy is the principal factor responsible for the large
differences of electron-exchange rates of different systems rather than being
a constant. They estimated from the data upon which the analyses is based
an empirical mean reorganization free energy. The major task of the four
treatments, described in detail earlier, has been to calculate this free energy
of reorganization a priori.

Laidler and Sacher—In his first paper on electron-exchange reactions
Laidler (20) wrote the rate as a product of three terms: a diffusion-controlled
rate constant, the electron tunneling factor p, and a coulombic repulsion
term, exp (—w/kT). w" was calculated by electrostatic methods and was
based on a rough estimate of dielectric saturation effects.

The rate expression was criticized on several grounds. (s) One cannot use
a hybrid-diffusion controlled-activation controlled-rate expression given
by a simple product of the two terms. One must solve the diffusion equation
instead and one then finds that for the reaction considered, Fet?— Fe*? ex-
change, no diffusion term should have appeared; the reaction was much
too slow (81). (i) There was no free energy of reorganization term in this
expression, so the reaction mechanism postulated was actually impossible
(81), and (442) (by prior criticism) (16) it was incorrect to use P as a trans-
mission coefficient.

Laidler and Sacher subsequently modified the above expression to take
cognizance of two criticisms that were made (¢ and 1): p was once more
regarded as a transmission coefficient (as in the first paper of R. J. Marcus,
Zwolinski and Eyring) but the remaining two factors were replaced by an
Eyring rate expression in which the free energy of activation was taken to
be the sum of three terms: (i) v, calculated as before, (i) an energy of re-
organization in the inner coordination shell and (44%) a change in free energy
of solvation due to a change in ion size. In addition, electron-transfer re-
actions were classified into three groups (a) those for which the splitting
term e is large (“adiabatic”), (b) those for which e is small and (c) those
for which the mechanism is one of electron tunneling (“nonadiabatic”).
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Although this new paper no longer had the diffusion error nor the absence
of a reorganization term, there remained several errors: (7) p was still re-
garded as a transmission coefficient, which it is not, for reasons discussed in
the electron-tunneling section, (#¢) the major contribution to the free energy
of reorganization of the medium outside the inner coordination shell was
still neglected, and (477) the third class of reactions above should be omitted
as a separate class, for reasons discussed in the electron-tunneling section.

The neglected contribution to the free energy of reorganization of the
medium is included in each of the four treatments described in detail in this
review and, we conclude with several final remarks to show explicitly what
was neglected in the papers of Laidler and of Laidler and Sacher.

We have seen from the detailed discussion in the review that the contri-
butions to the total free energy barrier include (z) the work required to bring
the reactants together w", (24) the free energy of reorganization term at the
separation distance R permitting the system to reach .S, and (¢4) any non-
adiabaticity factor, x, When an activated complex is formed there are several
contributions to the free energy of reorganization, (z) those from changes
in bond lengths and angles in the inner coordination shell, (42) those from
the change in solvation free energy due to the resulting change in ion size,
small though it may be, and finally (#4¢) those on which the nonequilibrium
polarization section was based: for these given bond lengths, bond angles
and ion size, there are fluctuations in the vibration-orientation polarization
of the medium at any point outside the coordination shell, and the most
favorable value of this polarization depends (in the Fet?—Fe™? case, for
example) on whether the ion has a charge of +2, 4+3 or (on the average in
the activated complex) +2.5. The third contribution to the free energy of
reorganization, then, is that which is associated with this particular change
of polarization of the medium on forming the activated complex. This is the
one neglected by Sacher and Laidler. Because of the electronic polarization
problem one cannot use ordinary electrostatics to calculate it. One can either
use the intuitive approach of Hush or the more formal approach of Levich
or of Marcus. The latter (34) is the most general.

COMPARISON WITH EXPERIMENT

In comparisons made with experiments the principal application of the
treatment of Levich and co-workers has been in the computation of the
electrochemical transfer coefficient and in the calculation of the electron-
exchange rate for the ferrous-ferric reaction.”® In the former case it was
shown that a value of 0.5 would be expected for metallic electrodes (when
any necessary corrections for the work terms are made) and that a quite

24 Tn Refs. 26 and 28, the exponent in Eq. 6 (i.e., Eq. 4 plus 6) was interpreted as
the activation energy. However, the latter is always defined operationally as a slope,
—%0 In krate/d(1/T). One then finds that only part of the exponent serves as the
activation energy, and part of it serves as an activation entropy, which thereby
appears in the value of the Arrhenius frequency factor.
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different value would be expected, typically, for semiconductors (because of
the effect of the large energy gap on the equivalent of the free energy change).
One may correctly object to the calculation of the Fet?—Fe*? rate since the
inner coordination contribution has been ignored. For this system, the con-
tribution is large (1, 32, 73b).

The principal application of Hush's treatment has been in the calculation
of the rate constants of a wide variety of electron-exchange reactions (32).
The agreement is encouraging. An independent test of some assumptions
made for properties of the inner coordination shell can be made when exten-
sive data on force constants and bond lengths in the inner coordination shell
become available. In such cases, incidentally, one can directly substitute the
latter data into theoretical equations (34, 56) for the rate constants them-
selves, when such equations are based on a general potential energy ex-
pression, rather than on a specific model for the inner coordination shell.

The principal application of the writer’s treatment, in comparisons with
experiment, has been via predicted correlations among the experimental
data. Application has also been made to the calculation of the rate constants
(1, 73). The correlations expected on the basis of Egs. 19, 20 and 21, if x and
p are unity (or, less strongly, are either constant in a series, or have a geo-
metric mean property, etc., depending on the correlation) are given below
(30, 34).

(¢) The rate constant of a homogeneous ‘‘cross-reaction,” ks, is related
to that of the two electron-exchange reactions, ki and k3, and to the equilib-
rium constant Kj; in the prevailing medium by Eq. 30, when the work terms
are small (or cancel).

Ot1 + Reds 2* Reds + Om 29.
ki1a = vV knkuKiaf 30.

where
lnf = (ln K12)2/4 In (kuknz/zz) 31.

(b) The electrochemical transfer coefficient at metal electrodes is 0.5
for small activation overpotentials (i.e., if I nFn| < IAFo*I , where AFy* is the
free energy of activation for the exchange current), when the work terms are
negligible.

(¢) When a substituent in the coordination shell of a reactant is remote
from the central metal atom and is varied in a series, a plot of the free energy
of activation A F* versus the ‘‘standard’’ free energy of reaction in the prevail-
ing medium AF°’ will have a slope of 0.5, if AF”’ is not too large (i.e., if
|AF*'| is less than the intercept of the plot at AF*’ =0). When the work terms
are small or cancel this relation would be a special case of Eq. 30, but this
smallness or cancellation is not needed for its fufillment. The slope of the
AF* versus AF” plot has been termed the chemical transfer coefficient
(34), by analogy with the electrochemical terminology.

(d). When a series of reactants is oxidized (reduced) by two different re-
agents the ratio of the two rate constants is the same for all members of the
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series in the region of chemical transfer coefficients equal to 0.5 (i.e., in the
region where ,AF”I <(AF*)ar°=0 in each case).

(e) When the series of reactants in (d) is oxidized (reduced) electro-
chemically at a given metal-solution potential difference the ratio of the
electrochemical rate constant to either of the chemical rate constants in
(d) is the same for all members of the series, in the region where the chemical
and (work-corrected) electrochemical transfer coefficient is 0.5.

(f) The rate constant of a (chemical) electron-exchange reaction, k., is
related to the electrochemical rate constant at zero activation overpotential,
koy, for this redox system, according to Eq. 32 when the work terms are
negligible.

‘\/ke:/zaohl = kd/zdl 32.

where Z,,im and Z,; are collision frequencies, namely about 10" cc mole™ sec™
and 104 cm sec™! (56).

When the work terms are not negligible, or do not cancel in the compari-
son, the deductions which depend on this condition refer to rate constants,
to K, and to an electrochemical transfer coefficient corrected for these
terms (19).

There is a growing body of experiments, principally by Sutin (57-60),
Halpern (61), Taube (62), and their co-workers in the chemical reaction
field, by Vlcek (74) and a number of other contributors in the electrochemical
field [cf survey in (5, 6, 34)], with which the above deductions may be com-
pared.

Sutin and co-workers (58, 60) have described data for about a dozen
reactions which may be used to test deduction (@). In some cases the electron-
exchange rates are not yet known, so ratios of rate constants were compared
to permit cancellation of the unknown constants. A value was then assigned
on the basis of one reaction to see if that for the others could be predicted. In
some other cases, only upper or lower limits for the constants were known.
In every case but two the results were in good agreement with Eq. 30, or in
the case of the upper or lower limits, consistent with it. The exceptions were
the Cot3—Fet? and Cot?—Fe(phen);t? reactions (58, 60) the calculated
rates being too high by a factor of 105. When one reactant had inorganic
ligands and the other had highly organic ones, there was a consistent effect
which suggested a work term for bringing these two species together, in
excess of the mean work for bringing two inorganic ones and two organic
ones together, of about 2 kcal mole™ (60).

Endicott & Taube (62) have obtained results consistent with (a) for a
few reactions involving the Ru(INH;)st213 system. However, in reactions in-
volving a cobalt system, Co(NHj;)st23, the exchange rate constant predicted
from Eq. 30 was too high by a factor of at least 10° for one case and by a fac-
tor of at least 100 for the second. Although an error of a factor of 100 might be
due to errors in the harmonic approximation (the Co—N bond has a very dif-
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ferent length in the two valence states), a discrepancy of 10¢ could not be due
to such a source. One possible explanation of this large discrepancy (and that
in the Cot3 reactions mentioned earlier) might invoke the participation of
excited electronic states for at least one of the reactions or of the influence of
spin selection rules for one of them (58).

A substantial number of electrochemical transfer coefficient have been
measured, usually at high salt concentration to minimize the work terms.
With a few exceptions they are close to 0.5, as noted in a recent survey (34),
in agreement with deduction (b).

Sutinand co-workers (60) havestudied fourseries of reactions to investigate
the dependence of AF* on AF°": Fe(phen);t3+Fet?, Ce(IV)+Fe(phen)st?,
Mn(III)+Fe(phen)s*?, and Co(11I)+Fe(phen)s*2 In the first three reac-
tion series the f correction factors in Eq. 31 were uninfluential and the chem-
ical transfer coefficient was close to 0.5, in agreement with deduction (b).
In the fourth case the f factor was considerably different from unity and the
slope was only 0.27. However, the appropriate plot, namely AF*40.5
RT In f versus AF®, had the predicted slope, in agreement with deduction
(¢) (the slopes for these plots were 0.56, 0.48, 0.49 and 0.51 in the four reac-
tion series, and the predicted one is 0.50).

Several series of studies bear on deductions (d) and (e). Halpern and
co-workers (61) have studied the reduction of a series of reactants
Co(NH,)s X(III) of varying X. They used Cr*2, Eu*?, V*2 and Cr(dipy)s+2.
Endicott and Taube (62) have made similar studies using Ru(N H;)et2,
Finally, Vicek (74) has studied the electrochemical reduction of the series
at a dropping mercury electrode. Of these reagents, Cr*? is known to react
via an inner sphere activated complex. Ru(NH;)¢t? has a stable coordination
shell and should react via an outer sphere complex, as Endicott and Taube
point out. The theoretical equation applies only to outer sphere activated
complexes, and so not to Cr*2 The results obtained for Crt2? were consider-
ably different from the remaining ones, being considerably more sensitive
to the nature of X.

The chemical results for V*+2, Cr(dipy)s*?, Ru(NHs)s™2 and the electro-
chemical results all fell substantially on the same plot, consistent thereby
with a supposition that all reactions proceed via an outer sphere mechanism
(but, a few points for V+? were scattered). The comparison between
Ru(NH,)st? and the electrochemical data support deduction (e). If one pre-
sumes that both V*2 and Cr(dipy)st? proceed via an outer sphere mechanism,
their mutual agreement and the agreement with the Ru(NHj)s*2 data sup-
port deduction (d). In the case of Eu*?, where there were some differences,
it has been suggested that the reaction occurs via an inner sphere mecha-
nism (61). The electron-exchange rate in the Eut?—Eu*?'in aqueous HCI
systems becomes negligible, incidentally, when the chloride concentration
becomes negligible (75) (unlike the Fet?—Fe*3 exchange) and could con-
ceivably reflect an inner sphere mechanism.

e
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Rate constants of homogeneous exchange reactions and of electrode re-
actions have been summarized recently. In a recent test of (f) for a variety of
systems care was taken to compare rates measured in the same electrolyte
medium (34). The agreement with deduction (f) was encouraging. The least
favorable agreement occurred for the case of the system having the most
high charged reactants, Fe(CN)¢ 34 where the two sides of Eq. 32 differed by
a factor of 100. The discrepancy could be due to the presence of work terms
which could not be ignored, to the long extrapolation of some isotopic ex-
change data from one electrolyte concentration to the medium used in the
electrochemical experiments, or to the presence of specific effects.

Entropies of activation for electron transfer reactions are of considerable
interest. A number of trends have been found, and these have been reviewed
by Sutin (1) and Halpern (2). No major developments on this subect appear
to have occurred since then, however.

Finally, no attempt has been made in this review to discuss the experi-
mental data in the closely related field of 3d electron and hole conduction
in the transition metal oxides and in related semiconductors (76, 77). The
activation energy observed for such conduction provides evidence for local
electron transfers between adjacent sites, (76, 77) and the results have been
interpreted in chemical terms (76). Further correlation of these studies with
those in homogeneous and electrochemical electron transfers would of course
be desirable. ,

On the whole, the agreement between theory and experiment in chemi-
cal and electrochemical electron transfer reactions may be considered
encouraging.

Relation of Data to Several Theoretical Problems.—There are a variety of
theoretical questions which could be explored and several where further ele-
gance and precision of treatment would be desirable. The possibility of
testing such refinements experimentally is uncertain at present. Suitable
data would permit some tests.

The work of Levich and co-workers describes quantum effects and the
treatments of the other investigators could be placed on a quantum basis.
However, there are no data in the field of homogeneous and electrochemical
electron transfers which clearly show the presence of quantum effects®* due
to the nuclear motion, other than measurements of relative rates in water
and in heavy water (in that case, unfortunately, there are several possible

% Nevertheless, when the bond length changes required in the reorganization are
so small that they became comparable with zero-point fluctuations in bond lengths,
any accurate calculation of this reorganization free energy would have to bea quantum
one. The reorganization free energy for small bond length changes is small, however.

It may be noted that the rate constants of electron-exchange reactions vary by 16
orders of magnitude or more (e.g., 1, 34). Quantum effects of a factor of 10 or so
would play only a relatively minor role, considering the various errors in absolute
calculations. They would also be expected to largely cancel in their effect on the pre-
dicted correlations.
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explanations). Low temperature measurements of the rates are needed, and
these are experimentally impractical in aqueous systems (for measure-
ments in ice see Ref. 78). In other solvents, an alcohol for example, measure-
ments at lower temperatures can be made (79), but precautions are needed
in the interpretation because of ion pairing, etc.

There are essentially no data which unambigously provide information
about adiabatic versus nonadiabatic electron transfers in these media. The
main source of such information would be the magnitudes of the Arrhenius
frequency factors in the rate constants of homogeneous and electrochemical
reactions. There are a number of other factors influencing these frequency
factors and corrections for these must be made first. For example, unless the
work terms are small they can cause large entropies of activation, and so
affect the frequency factors. If the homogeneous reaction is not an electron-
exchange the standard entropy of reaction AS° will not be zero and this will
also normally contribute to the entropy of activation (typically, but not
always, AS°/2) If the electrochemical reaction is not proceeding at zero
activation overpotential, i.e., if the rate constant is not that corresponding to
the electrochemical exchange current, a similar remark would apply to it.

In summary, to obtain fairly direct information about the nonadiabatic-
ity or adiabaticity it is desirable; (z) to study electron-exchange reactions or
exchange currents, at least until there is experimental support in the
homogeneous case for the predicted contribution of AS°, and (#) to study
systems where the work terms are small.

In the case of the MnO,~*— MnO, 2 reaction the ionic charges and, hence,
the coulombic repulsion are relatively small. The experimental frequency
factor (80) in that case is close to the value of Z. This value is the expected
one when the reaction is adiabatic. In the case of electrochemical exchange
currents at high salt concentrations the values of the Arrhenius frequency
factor 103—105 cm sec™* are close to the value of Zg (~10¢ cm sec™). In
both cases, however, specific salt effects remain so these results should be in-
terpreted with some reserve. Further experimental measurements on slightly
charged systems would be desirable.

Among the theoretical refinements which can be made, many of these
would amount to obtaining better expressions for the Arrhenius frequency
factors or, in terms of the writer’s theory, be equivalent ot the evaluation of
some of the terms appearing there (x and p in particular). However, the
measurements do not distinguish between a k-contribution to the frequency
factor and some of the others (there is reason to believe, incidentally, that
p will be close to unity).

Ultimately, with the testing of correlations and estimation of the work
terms, one may be able to interpret more reliably the significance to be
ascribed to any deviations of Arrhenius factors from any picture based on
k= p = 1. The correlations should also serve to isolate the exceptional cases,
where major differences in the mechanism seem to be operative, and several
examples apparently of this type, all involving cobalt ions, have been cited.
Further theoretical work could then profitably include such cases also.




194

8a.

8b.

10.
11.

12,

13.

14.

MARCUS

ACKNOWLEDGMENT

The writer is pleased to acknowledge the support provided by an Alfred P.
Sloan Foundation Fellowship. He is also indebted to Dr. Norman Sutin for
helpful suggestions with regard to this manuscript.

LITERATURE CITED

. Sutin, N., Ann. Rev. Nuclear Sci., 12,

285 (1962)

. Halpern, J., Quart. Revs. (London), 15,

207 (1961)

. Taube, H., Advances Inorg. Chem,

Radiochem., 1, 1 (1959)

. Gerischer, H., Ann. Rev. Phys. Chem.,

12, 227 (1961)

. Tanaka, N.,and Tamamushi, R., Kinetic

Parameters of Electrode Reactions,
(a report presented to the Commission
on Electrochemical Data of the Sec-
tion of Amnalytical Chemistry of
I.UP.A.C., at the International
Congress of Pure and Applied
Chemistry, Montreal, 1961) Copies
are obtainable from H. Fischer, De-
partment of Electrochemistry, In-
stitute of Technology, Karlsruhe,
Germany

. Jordan, J., and Stalica, N. R., Handbook

of Amnalytical Chemistry, 38-46
(Meites, L., Ed., McGraw-Hill
Book Co., New York 1963)

. Bockris, J. O'M., Modern Aspects of

Electrochemistry, Vol. 1, 180-276
(Bockris, J. O'M,, Ed., Butter-
worths Scientific Publications, Lon-
don, 1954)

Stranks, D. R., Modern Coordination
Chemistry, 148-73 (Lewis, J. and
Wilkins, R, G., Eds., Interscience
Publishers Inc., New York, 1960)

Krishnamurty, K. V., Maltscience Re-
port 12, (Inst. Math, Sci.,, Madras,
India, circa 1963)

. Libby, W. F., J. Phys. Chem., 56, 863

(1952)

Randles, J. E. B., Trans. Faraday Soc.,
48, 828 (1952)

Weiss, J., Proc. Roy. Soc. (Londomn),
A222, 128 (1954)

Marcus, R. J., Zwolinski, B. J., and
Eyring, H., J. Phys. Chem., 58, 432
(1954)

Zwolinski, B. J., Marcus, R. J., and
Eyring, H., Chem. Revs., 55, 157
(1955)

Vicek, A. A., Collection Cgechoslov.
Chem. Commauns., 20, 894 (1955);
ibid., 25, 2089 (1960) and earlier

15.
16.

17.

18.

19.

20.
21,

22.

23.

24,

25.

26.

27.

28.

papers of the series; Discussions
Faraday Soc., 26, 164 (1958)

Taube, H., and Myers, H., J. Am.
Chem. Soc., 76, 4053 (1954)

Marcus, R. A., J. Chem. Phys., 24, 966
(1956)

Orgel, L. E., Inst. Intern. Chim. Solvay,
Conseil Chim., Brussels, 10, 289,
(1956)

Marcus, R. A,, O. N. R, Technical Rept.
No. 12 Project NR 051-331 (1957);
of. Ref, 21,

Hush, N. S., J. Chem. Phys., 28, 962
(1958); ¢f Z. Elekirochem. 61, 734
(1957). .

Laidler, K. J. Canadian J. Chem. 37,
138 (1959)

Marcus, R. A., Canadien J. Chem. 37,
155 (1959)

Levich, V. G., and Dogonadze, R. R.,
Doklady Akad. Nauk SSSR., 124,
123 (1959); Proc. Acad. Sci. USSR,
Phys. Chem. Sect., English Transl.
124, 9 (1959)

George, P., and Griffith, J. S., The
Enzymes, 1, Chap. 8, 347 (Boyer,
P. D., Lardy, H., and Myrback, K.,
Eds., Academic Press, New York,
1959)

Marcus, R. A., Trans. Symp. Electrode
Processes, 239-45, 1959 (Yeager, E.,
Ed., John Wiley and Sons, New
York, N. Y., 1961)

Dewald, J. F., Semiconductors, 727-52
(Hannay, N. B., Ed.,, Reinhold
Publ. Co., New York, N. Y., 1959)

(a) Levich, V. G. and Dogonadze, R. R.
Doklady Akad. Nauk SSSR, 133,
158 (1960); Proc. Acad. Sci. USSR,
Phys. Chem. Sect., English Transl.
133, 591 (1960); (b) Collection
Czechoslov. Chem. Communs., 20,
193 (1961); Transl.,, Boshko, O.,
Univ. of Ottawa, Ontario

Gerischer, H., Z. Physik. Chem,
(Frankfurt), 26, 223 (1960); 26,
325 (1960); 27, 48 (1961)

Dogonadze, R. R., Doklady Acad.
Nouk. SSSR, 133, 1368 (1960);
Proc. Acad. Sci. USSR, Phys.

e e s s et s e e e T e

e et e e T —— e e

A e+ e mage s A

— e




29,

30.
3L

32.

33.

34,
35.

36.

37.

38.

39.
40.

41.

42,
43.

45,

46.
47.
48,
49.

50.

ELECTRON TRANSFER

Chem, Sect., English Transl. 133,
765 (1960)

Halpern, J., and Orgel, L. E., Discus-
sions Feraday Soc., 29, 32 (1960)

Marcus, R. A., Discussions Faraday
Soc., 29, 21 (1960)

Dogonadze, R. R., Doklady Acad.
Nauk SSSR, 142, 1108 (1961);
Transl. Proc. Acad. Sci. USSR,
Phys. Chem. Sect., English Transl.
142, 156 (1961)

Hush, N. S., Trans. Faradey Soc., 57,
557 (1961)

Dogonadze, R. R., and Chizmadzhev.
Y. A., Doklady Acad. Nauk.

SSSR; (a) 144, 1077 (1962), (b)

145, 848 (1962); Proc.-Acad. Sci.
USSR, Phys. Chem. Sect., English
Transl, 144, 463 (1962); 145, 563
(1962)

Marcus, R. A., J. Phys. Chem., 67, 853,
2889 (1963)

Levich, V. G., and Dogonadze, R. R.,
Intern. Comm. Electrochem., Ther-
modyn. Kinel., 14th Meeting, Mos-
cow (1963), preprints

Marcus, R. A., Intern. Comm. Electro-
chem. Thermodynam. and Kinel.,
14th Meeting, Moscow (1963),
preprints

Sacher, E., and Laidler, K. J., Trans.
Faraday Soc., 59, 396 (1963)

Pekar, S. 1., Untersuchungen uber die
Electronentheorie  der Kristalle
(Akademie Verlag, Berlin, 1954)

Frohlich, H., Advan. Phys., 3, 325
(1954)

Born, M., and Huang, K., Dynamical
Theory of Crystal Lattices (Oxford
University Press, London, 1954)

Allcock, G. R., Advan. Phys., 5, 412
(1956)

Sewell, G. L., Phil. Mag., 3, 1361 (1958)

Schultz, T. D., Phys. Rev., 116, 526
(1959)

. Holstein, T., Ann. Phys.,N. Y., 8, 325,

343 (1959)

Dogonadze, R. R., and Chizmadzhev,
Y. A., Fiz. Tver. Tela, 3, 3712, 3720
(1961); Transl. Soviet Phys. Solid
State, 3, 2693, 2698 (1962)

Brown, H. C., J. Phys. Chem., 56, 868
(1952)

Marcus, R. A., J. Chem. Phys., 24, 979
(1956)

Gurney, R. W., Proc. Roy. Soc. (Lon-
don) A134, 137 (1931)

Candlin, J. P., Halpern, J., and Naka-
mura, S., J. Am. Chem. Soc., 85,
2517 (1963)

Conocchioli, T. J., Nancollas, G. H.,

51,
52,

53.

54.

55.

56.

57.
58.
59.
60.

61.

62.
63.
64.
65.
66.
67.

68.
69.

70.

71,

72.

195

and Sutin, N., J. Am. Chem. Soc.
(in press)

Dodson, R. W., and Davidson, N., J.
Phys. Chem., 56, 866 (1952)

McConnell, H. M., J. Chem. Phys., 35,
508 (1961)

Glasstone, S., Laidler, K. J., and Eyr-
ing, H. The Theory of Rate
Processes, 149 (McGraw-Hill, Book
Co., Inc., New York, N. Y., 1941)

Zener, C., Proc. Roy. Soc., Al137, 696
(1932); A140, 660 (1933); cf., Lan-
dau, L., Phys. Z. Sowjet., 1, 89
(1932); 2, 46 (1932)

Coulson, C. A., and Zalewski, K.,
Proc. Roy. Soc. (London) A268, 437
(1962)

Marcus, R. A., J. Chem. Phys., paper
presented ot 146th meeting Am.
Chem. Soc., Denver, 1964, An Ex-
tension of Absolute Reaction Rate
Theory, with Application lo Electron
Transfer Reactions, to be submitted

Ford-Smith, M. H,, and Sutin, N, J.
Am, Chem. Soc., 83, 1830 (1961)

Dulz, G. and Sutin, N., Inorg. Chem.,
2, 917 (1963)

Diebler, H., and Sutin, N., J. Phys.
Chem., 68, 174 (1964)

Campion, R. J., Purdie, N., and Sutin,
N., Inorg. Chem. (in press)

Candlin, J. P., Halpern, J., and Trimm,
D. L., J. Am. Chem. Soc. 86, 1019
(1964)

Endicott, J. F., and Taube, H., J. Am.
Chem. Soc., 86, 1686 (1964)

Marcus, R. A., J. Chem. Phys., 38, 1858
(1963)

Marcus, R. A., J. Chem. Phys., 39, 1734
(1963)

Eyring, H., J. Chem. Phys., 3, 107
(1935)

Marcus, R. A., J. Chem. Phys., 38, 1335
(1963); of. ibid., 39, 460 (1963)
Stackel, P. Habilitationsschrift, Halle
(1891); Ann. Mat. Pura. Appl., 25,

Ser. 24, 55 (1897)

Robertson, H. P., Math, Ann., 98, 749
(1927)

Marcus, R. A,, J. Chem. Phys. 41,
(1964)

Laidler, K. J., and Sacher, E., Modern
Aspecis of Electrochemistry, Vol. 3,
142 (Bockris, J.O'M., Ed., Butter-
worths  Scientific Publications,
London, 1964)

Kauzmann, W., Quantum Chemistry,
535 (Academic Press, New York,
N. V., 1957)

Marcus, R: A., J. Chem. Phys. (to be
submitted).




196 MARCUS

73. Marcus, R. A., (a) J. Chem. Phys., 26,
867, 872 (1957); (b)) Trans. N. Y.
Acad. Sci., 19, 423 (1957); (o)
Stranks, D. R., Discussions Faraday
Soc., 29, 73 (1960); (d) Hale, J.
M. and Parsons, R., Trans. Fara-
day Soc., 59, 1429 (1963)

74, Vicek, A. A., Sixth Internationel Con-

. Jerence on Coordination Chemisiry,

§90-603 (Kirschner, S., Ed., The
Macmillan Co., New York, N. Y.
1961)

75. Meier, D. J.,and Garner, C.S., J. Phys.
Chem., 56, 853 (1952)

76. Morin, F. J., Semiconductors, 600-33
(Hannay, N. B.,, Ed.,, Reinhold
Publishing Corp., New York, N. Y.,

14

1959)

77. Joffe, A. F. Fiz, Tver. Tela, 1, 157,
160 (1959); Transl. Soviet Phys.
Solid State, 1, 139, 141 (1959). See
also Ref, 45 ‘

78. Horne, R. A., J. Inorg. Nucl. Chem.,
25, 1139 (1963)

79. Sutin, N., J. Phys. Chem., 64, 1766
(1960)

80. Sheppard, J. C., and Wahl, A. C,, J.
Am. Chem, Soc., 79, 1020 (1957);
Gjertsen, L., and Wahl, A. C.,
ibid., 81, 1572 (1959)

81, Harris, R. A., J. Chem. Phys., 39, 978
(1963)

82. Marcus, R. A., Discussions Faoraday
Soc., 29, 129, 250 (1960)

\p——

N



