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In the immediate vicinity of a potential-energy minimum or of a saddle point, it is shown that major
topographical features of a “nonseparable” potential-energy surface can be imitated by those of a surface
permitting separation of variables. For each extremal path of descent or ascent to the cited critical point
of the surface, there is an exact match of the tangent, the first curvature vector in configuration space,
and the force constant along that path provided that the known curvature vector satisfies an equation
containing the metric tensor of the selected coordinate system and known force constants. Because of the
wide choice of coordinate systems available for selection, it is anticipated that this relation may be fulfilled
for each extremal path, partly by choice of the coordinate system and partly by subsequent choice of the

curvilinear coordinates of the critical point.

There are several possible applications of this local approximation, including those to problems involving
anharmonic coupling of normal modes and those involving #-dimensional tunneling and other calculations
in reaction-rate theory. Use will be made of the formalism to extend the activated complex theory in chemical
kinetics. As a preliminary test of the local-approximation concept, literature data on n- and one-dimensional
tunneling rates are compared. They are found to be fairly similar when proper cognizance is taken of zero-

point energies,

INTRODUCTION

SEPARATION of variables can be made in the
Schrédinger equation and in its classical counter-

part, the Hamilton-Jacobi equation, for certain condi-
tions on the potential-energy function and on the metric
tensor.!—® In the present paper it will be shown that in
the immediate vicinity of a potential-energy minimum
or saddle-point, major topographical features of a
(“nonseparable”) potential-energy surface can be
matched by those of ones permitting separation of
variables. These features involve (a) the direction of
the tangent, and the direction and magnitude of the
principal normal (the “first curvature vector”) in mass-
weighted configuration space of some or all extremal
paths? of ascent or descent to the cited critical point,®
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4By definition, each such path passes through the critical
point® and has a tangent vector * (in mass-weighted configuration
space) codirectional with the gradient of the potential-energy func-
tion. (Hence, this path is normal to every potential-energy contour
that it crosses.) When there are two extremal paths and when
the critical point is a saddle point, one path is the path of steepest
ascent to the point, and the other is the path of steepest ascent
from it. When the critical point is a minimum instead, one ex-
tremal path is again the path of steepest ascent from it, and the
other is that of least steep ascent,

® Since the critical point of a surface f (g!, +-+ ¢") plotted vs
(g, «+-, q':) is any point where V f vanishes, critical points include
local maxima of f also. The present derivation applies equally
yvc:ll tot such points, but they do not appear to be of physical
interest.

and (b) the force constants (positive or negative) for
such paths at the critical point.

The usual harmonic approximation for vibrational
potential-energy functions in the vicinity of a critical
point corresponds, in fact, to paths which have zero
curvature in mass-weighted configuration space. An-
harmonic coupling between normal modes then causes
a curvature. There is a variety of problems where
this anharmonic coupling plays a major role and
where there is potential application for the present
results. Another application lies in #z-dimensional
tunneling and other rate calculations in reaction-rate
theory® and in the generalization of activated-complex
theory.?

There is now available an increasing number of
numerical studies, made with high-speed computers,
of intramolecular energy transfer,®? unimolecular® and
bimolecular!® reaction rates, and nuclear tunneling.!®®
Comparison of the results obtained from such studies
with those obtainable by the local-approximation
technique should serve to test the useful range of the.

¢ J. Lane and R. A, Marcus (ungublished results for n=2).

7 R. A. Marcus (to be published). L.

8 E. Fermi, J. Pasta, and S. Ulam, Los Alamos Scientific Lab.
Rept. LA-1940 (1955); J. Ford, (T Math Phys. 2, 387 (1961);
E. A, Jﬁ%‘;‘?n’ ibid., 4, 551, 686 (1963); J. Ford and J. Waters,
thid. p. .

$ DI:) L. Bunker, J. Chem. Phys. 40, 1946 (1964); D. L. Bunker,
bid. 37, 393 (1962); N. C. Hung and D. J. Wilson, ibid. 38,
828 (1963), and references cited therein. Comparison would
be restricted initially to relatively low amplitudes of vibration
and to intramolecular energy transfer.

 (a) E. M, Mortensen and K., S. Pitzer, Chem. Soc. (London)
Spec. Publ. 16, 57 (1962). (b) F. T. Wall, L. A. Hiller, Jr., and
J. Mazur, J. Chem. Phys. 29, 255 (1958); 35, 1284 (1961)..(c)
N. C. Blais and D. L. Bunker bid. 39, 315 (1963). Comparison
would be restricted, initially at least, to reactions which have an
activation energy (or, more precisely, to those for which a saddle
point is well-defined).

610




611

latter. The limitations will arise from its local nature.!
At the same time, the comparison could provide further
physical insight into the numerical results in terms of
topographical features of the potential-energy surface
and in terms of approximate constants of the motion.

In the derivation, we characterize the geometry of the
extremal paths of ascent and descent to a critical point®
of the potential-energy surface, obtaining Eq. (14).
The properties of the associated curvilinear coordinate
system which permits separation of variables are then
given by Eq. (19). A method of application to some
problems is then outlined in subsequent sections. The
usual definitions, techniques, and symbols in tensor
calculus will be employed,'** including absolute differ-
entiation, first curvature, tangent, principal normal,
and Christoffel symbols.

PRELIMINARY REMARKS

We let 2%, a8+ 2+2 denote the three Cartesian
coordinates of an atom r of mass m, and let ¢* denote
the 4’th generalized coordinate. Let there be #’ coordi-
nates in all. The line element ds in a mass-weighted
space is given by

dst= 2 gidg'dg’, (1)

1, jw=l

where

3 9xmdxr
8ii= ;ﬁlra_q" a—q:, o

(2)
The metric tensor gi; can be a function of all coordi-
nates. (Accordingly, if the ¢* are Cartesian coordinates,
xi, gijequals &;m;. If they are mass-weighted Cartesians,
ie, if ¢*=mdx’, g;; equals &y, etc.)

The tensor conjugate to g;; is denoted by g¥/

Zl:g"'g,-k= 8, 3)
=

. 2L 1 3q* a7
gi=2 — == (4)

=) My dxT 9x" )

The g;j and g¥/ are both symmetric in 7 and 7, of course.
The former varies covariantly and the latter contra-
variantly in any coordinate transformation.2:3

The arc length along any curve will be denoted by s.
The tangent vector t along any curve has contravariant
components dg*/ds. The ith contravariant component
of the principal normal p, p%, is 8/%/8s. The latter is the
ith component of §t/8s, the intrinsic derivative of t

1 No attempt is made here to match properties which only
;ﬂ?ctz g:hSe higher-order terms in Eq. (15). FFor further detail, see
ef. 28,
2 For example, C. E. Weatherburn, Riemannian Geomeiry and
Tensor Calculus (Cambridge University Press, London, 1957).
BE.g., A. J. McConnell, Applications of Tensor Calculus
(Dover Publications Inc., New York, 1957).
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with respect to the arc length!®

p=Z =L S fmlen (5)
8 ds &m
where {i's} is a Christoffel symbol of the second kind.4®
The first curvature « of any curve is a scalar and is
given by
k= (2 git'p)) (6)
%,

HAMILTONIAN

The total kinetic energy of the system is §(ds/dt)2
Using (1), this becomes

3 2 gid'd.

i,5=1

In terms of the conjugate momenta P;, it is'®

n’
1" gHPP;.
i, 7=1

The #’ coordinates can be those of a single molecule in
the case of a unimolecular gas reaction, a pair of mole-
cules in a bimolecular reaction, and so forth. Transla-
tional, rotational, and vibrational coordinates may be
introduced, the g;; being given by (2). Initially, non-
rotating molecules will be considered, the approximate
inclusion of rotation being given in a subsequent section.

When the vibrational angular momentum!® is ne-
glected, the kinetic energy becomes the sum of three
terms: translational, rotational, and vibrational.!®
When the angular momentum is zero, the kinetic
energy is given by (7), aside from the irrelevant trans-
lational term. The vibrational space is Euclidean,
because the Eckart conditions used to select the »
vibrational coordinates are linear.!: Since this subspace
is Euclidean, curvilinear coordinate systems exist in it
which permit the kinetic energy to be written in the
diagonal form (g*=0 for i#5), as in Eq. (7).

T=%Z%g"‘P.’=%Zg;.-q". (N

t=1

1 Reference 12: (a) p. 72 (cf. p. 95 for the notation 8#'/ss). (b)
See p. 55. (c) See p. 43.

15 (a) See, for example, Wilson, Decius, and Cross (Ref. 29,
Chap. 11). (b) Ibid. p. 278, Eq. (5). The rotational term con-
tains vibrational coordinates in the coefficients of angular mo-
menta and angular velocities, i.e., in the u.s of the cited equation
and in the o of Eq. 14, p. 278. The rotational term thereby gives
rise to a centrifugal potential, which vanishes for the nonrotating
molecule. (c) The vibrational coordinates are chosen so as to
satisfy the Eckart conditions (Ref. 29). These conditions can be
used to eliminate all but the first # of the dx¥'s appearing in the
line element ds in mass-weighted space

n'
ds?=2 mdx®,
=1
Since the Eckart conditions are linear, the coefficient of each dxf

dxi (i, j=1 to ») in this subspace is a constant. Hence, the n-di-
mensional subspace is Euclidean.
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When the kinetic energy is diagonal, the results of
Stéckel' and Robertson and Eisenhart? can be applied.s
For separation of variables, the metric tensor g;; must
satisfy certain conditions described by Stickel® for the
Hamilton-Jacobi equation and by Robertson? for the
Schrédinger equation. Robertson obtained one condi-
tion in addition to those found by Stickel. The geo-
metric significance of this extra condition has been
discussed by Eisenhart.? It is automatically satisfied
for Euclidean (i.e. flat) spaces and for those with
constant curvature.?

One of the necessary and sufficient conditions for
separation of variables in the diagonalized T system
is that V be of the form!®

V= igiiX‘,(qi)’ (8)

=1
where X;(g*) is a function of ¢ alone.

In the neighborhood of any point, the space having
the fundamental form of (1) with # instead of #’, can
be described in terms of local Cartesian coordinates?”
(constant gy, and g;;=0 if 5%7). Almost invariably,
the physical systems considered are those for which the
expansion of the potential energy in local Cartesians
about the critical point has leading quadratic terms
rather than leading cubic or higher ones.® In the
present paper, we limit our considerations to such
systems.

In such an expansion in local Cartesians, these
normal coordinates diagonalize the potential and
kinetic energy. They define orthogonal directions at
the critical point when they are nondegenerate. When
there is degeneracy, normal coordinates which are
orthogonal can be defined. We wish to introduce
orthogonal curvilinear coordinates (g#=0 for i)
whose curves are tangential to these orthogonal normal
coordinates at the critical point and which have other
properties given by Eq. (19) below. The » extremal
paths of descent or ascent (#, because the leading terms
were quadratic) are cotangential with these normal

18 Somewhat weaker conditions than diagonal g;; for all £, j and
weaker than Condition (8) suffice when only separation into sets
of variables is required [cf. Refs. 1(b) and 3].

7J. L. Synge and A. Schild, Tensor Calculus (University of
Toronto Press, Toronto, Canada, 1962), p. 58. Since ‘the vibra-
tional space was seen to be Euclidean,’s the term “local” can be
omitted. It is included, however, in case the Eckart conditions?®
are ever replaced by nonlinear conditions, in which case the vi-
brational space need not be Euclidean.

18 When the leading terms are cubic and the critical point is
a saddle point, one o%tains a “monkey saddle” [cf. E. Kreysig,
Differential Geomelry (University of Toronto Press, Toronto,
1959), pp. 137-138]. Monkey saddles have apparently not been
considered in the literature of activated-complex theory. One case
where they would occur is in the reaction A+4A;—Az+A if the
activated complex were triangular: Considering the two-dimen-
sional subspace formed by the two antisymmetrical stretching
modes, leading to dissociation, there are three paths of steepest
descent corresponding to three modes of dissociation. That is, the
saddle point in this subspace is a monkey saddle. Higher saddle
points can also occur (see reference cited above). However, most
saddle (ﬁ?‘ints are the conventional ones, namely those for which
the leading terms in the potential-energy expansion are quadratic.
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coordinate curves at the critical point, and hence,
with the % curvilinear coordinate curves there.
EQUATIONS OF EXTREMAL PATHS OF ASCENT OR
DESCENT

The plot of V is considered in the vicinity of a critical
point of the potential-energy surface or, more specifi-
cally, in the vicinity of a saddle-point or a minimum.
Recalling the definition of the extremal paths* passing
through the critical point these paths satisfy the
equations

dq! o, IV de? /& 0V g /& 9V
ke 1 Zgu_‘—_—_ Zgh___: R ng__.' ,
ds 1 0¢7 ds/ ‘= o¢ ds/ ‘= 9¢

)

since t has contravariant components £i(=dg?/ds), and
since VV has contravariant components,!4¢

i 4
f=1g ag*’

We note that for the selected coordinate systems,
g equals 0 if i5%j. The » extremal paths of ascent
(descent) are denoted by Cgy, *++, Cny, the displace-
ments by Ag*, and the critical point (¢!, « + -, go") by P:
Ag*=gi—gp*. By means of a coordinate transformation,
it will be supposed that one can avoid singularities and
zeros in the metric tensor at the critical point.® We
may expand the displacements Ag® in powers of the
arc length along C, for sufficiently smooth curves?;
dg*/ds for curve Cqy) at P equals that for the g¥-co-
ordinate curve at P, since the two curves are cotan-
gential there. It is therefore zero for iN and is
1/(gnn)? for i=N." We thus write Eq. (10), where
gnw is evaluated at P and

AgV=gnn¥s+0(s?)

Agi=0(s?) (i)

where O denotes ‘“‘order of”’. From Eq. (10), Agf is
seen to be of the order of (Ag¥)? near P for i=N.

We choose the zero of the X;(¢%) so as to occur at
the critical point P. It then follows from the fact that
dV/adq* vanishes there, that dX,/dg* also vanishes at
P .2 Expanding each dV/d¢* in (9) about its value at P

¥ For example, in the case of circular cylinder coordinates,
the metric tensor for the coordinate system (g%, ¢% ¢°) equal to
(r, cosg, 2) is singular at $=0, and g2 then vanishes there, How-
ever, for the coordinate system (r, ¢, 3) none of the diagonal
elements of the metric tensor is singular or zero.

% For validity of the Taylor’s expansion in (10), it suffices to
have continuity of the ¢gi’s and of their first derivatives with re-
spect to s, together with the existence of the second derivative;
cf. A. E. Taylor, Advanced Calcudus (Ginn and Company, New
York, 1955), p. 112

31 Along the g¥-coordinate curve all dg* vanish, except for i=N,
ds*=gyndg™! on it. Hence, d¢*/ds=0 for i=N. dg¥/ds=1/

EnN)t.
9V /d¢* equals ZX;8g77/9¢*+g¥d X, /dg’. By suitable choice of
the coordinate system (no singularity or zero in the gg's at the
critical point), g% does not vanish at P, and dg///dg* does not
become infinite. Since X; vanishes at P, dV/8¢' then equals
g"dX:/dg' there. Since all 8V /dg* vanish at P, so do all dX;/dg’.

along Cu, (10)
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and retaining only leading terms of the same order of
magnitude, one finds

Xv'A | /XA 1 Xy(AM)28 1
o B L 1 1
(gvw) (g) 2 gii  0¢'gnwn

on Cav(i#N), (11)
where X’ denotes d*X;(¢*)/dgq? evaluated at P and
where the gy;, gvw, and dgnn/9¢* are also evaluated there.

It can be shown that the force constant %; along
path C, at the critical point is®

ki=X!"/(gu)% (12)

On multiplying numerator and denominator of the
left-hand side of (11) by Ag¢", so that it becomes
1d(Aq¥)*/ky(AgY)?, and introducing (12), a linear
equation is obtained:

2d(Ag") _kiAg' 1 dgaw
dy kvy  2gi o¢

(13)

where y equals (Ag¥)? and where g;; and dgwn/dg* are
again evaluated at P. On solving (13), using the fact
that the desired curve is the one passing through P,
Eq. (14) is obtained,? except when k;=2kx.
: {nv}
Agi= I (AgM)2-+ O (Ag)°]
T2 1 !

on Cavy, (i%N), a>2. (14)

1 Along any curve, the second derivative of V with respect to
arc length is:

@BV o FV a AV d¥
—= 3 LY — —.
ds? i<l ggiggi 1 agt ds

The second sum vanishes at P since dV/d¢® vanishes. There
being no singularity in the metric tensor at P in the present case,
the only nonzero contributions to 3V /dg*dg’ are those which do
not contain any X; or dX;/dg* for both these vanish® at P. In fact
the only nonzero term occurs when i=j. It is g"X"'. Using the
value of # for Curve Cy at P2 it then follows that at P on Curve
Cy, @*V /ds equals X "' /gna*.

% When k;2ky, the solution of (13) is of the form x=
by(1—a)~'+cy®, where z is Ag®, a is ki/2kn, b is —(4ga)"9gnn/3¢",
and ¢ is an arbitrary constant. When a is greater than one, the
y° term can be ignored, since only leading terms are being con-
sidered here. When a is less than one, ¢ must be set equal to zero
in order that the curve pass through P. Emphasizing the fact
that only leading terms are considered, as in (10), the term
0[(Ag¥)=] is included in (14). When k;=2ky, the solution of
(13) is of the form x=1y(b Iny+c)2yb Iny, since Iny dominates
¢ at small y. Since y equals Ag¥?, and since Ag¥ Ing¥ vanishes as
Ag¥ tends to zero, the point (x=0, Ag¥=0) lies on this curve,
i.e., the curve passes through P. However, we have not explored
the possible implications of the logarithmic dependence and its
behavior when higher order terms are included in Eq. (13).
Therefore, we simply shall omit the case k;=2ky in the present

aper. When this cited function Ag® of Ag¥ is expressed as a
unction of s, it can be shown that although d?¢*/ds? does not
exist, and so one cannot write Agf=0(s?) as in Eq. (10), the
first derivative of Agf in the cited function does satisfy a Lipschitz
condition: Ag*=0(s*"), O0<a<l.

POTENTIAL-ENERGY SURFACES

Using (10), we can rewrite Eq. (14) as

i {~in} st ) 1
4 [2— (k:/kn) ] gow 0(s™m)
+ onCavy (15)
i1#=N,y>1
AgV=s/(gnn)}+0(s7) v>1.

When k; equals 2ky, it can be shown that d%¢'/ds?
does not exist®; the curve is still well-defined, with 52
in Eq. (10) replaced by s#(1<8<2), but the fitting of
the separable and nonseparable surfaces must be per-
formed via the equation relating Ag® to Ag" rather than
via the curvature properties in Eq. (19) below.

In (14) the Christoffel symbol {x‘y} reduces to (16)
for the case that 13N and that the g;s are diagonal:

(i#N; diagonal gi;). (16)

The properties of the path Cuv), e.g., Pavy and &),
are indicated below by a subscript (¥). The com-
ponent puvy¥ vanishes at P.%® The remaining pan’
follow from (14)%

| o 4— (ki/kn)

#=N), pan'={n'wlg"™ s
(i#N), pan'={n'nlg 2= (k/kw)l on Cay. (17)
pan=0

These equations hold for each Civy, N=1 to z.

The properties of the g¥-coordinate curve Cany’, co-
tangential to Cqvy at P, are denoted by a superscript 0.
Equation (18) follows from (5), since d¢/ds and &
vanish everywhere on this curve for ¢#N:

(i#£N), pani= {nin} g™
on Cayl. (18)

Pan¥=0

(If, in a reaction, the extremal path leading from
reactants to the saddle-point is denoted by C, the
“reaction coordinate” will be C(,° near P.)

Using (17) and (18), one finds that pw)?, the first
curvature vector of Cav)® at P, is related to the first

% Substitution of the formal series Ag*=gus-ars?+--- into
Eq. (9), expansion of the g% and the V in powers of the A¢*’s and,
thence, in powers of s, and the equating of coefficients of each
power of s shows that @i becomes infinite on Cy when k;=2%ky;
2049 is d3g*/ds®.

28 Noting that Zg;#'¢7/3s vanishes (cf. p. 157, Ref. 13, observ-
ing that tis a unit vector &), that for N each # vanishes on
path Cy at P since Cy is cotangential to the ¢¥-coordinate curve
!:here,Nang that gi; vanishes for i»44, it follows that §t¥/5s=0,
1e., pV=0.

To obtain p* along Cy for i>N, one notes that d¢*/ds is ob-
tained by twice differentiating Eq. (15) and that at P, #=0 for
i#=N. These results are then introduced into Eq. (5).
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curvature vector for Ciwvy at P by
pan®=pan*(2—ki/kn) / (4—kif ky)

n n
kan®=( D gapan®pant)y;  v=( 2 gupan'pand)’.
i,7=1 i,7=1

(19b)

(for all§), (19a)

Two dimensions only:
k)’ =k (2—ki/kn) [ (4— kif kenr). (20)

Equation (19) holds for each extremal path of ascent
(descent), Cavy, N=1, -+, n. The quantities pa, k),
ki, and ky are all known topographical properties of
the potential-energy surface. The second derivative of
the potential-energy function along each of these coordi-
nate curves at the critical point, &*V /ds?, can be shown?
to be equal to that of the cotangential path Cuy at P.

From the measured pun¥s, ks, and ky, Eq. (19a)
prescribes the value of each puv)% for the coordinate
curves of the system permitting separation of variables.
Noting Egs. (16) and (18), the metric tensor must be
such as to satisfy this value of puv)*. Since the condi-
tion pwy)*¥ =0 is satisfied automatically, there are n—1
conditions to be fulfilled for each Ce), and hence,
n(n—1) conditions in all. Since the g;; vary with posi-
tion, the process of attempting to satisfy these condi-
tions involves selecting the (curvilinear) coordinates
of the critical point, as well as selecting the coordinate
system. Because of the wide latitude in choice of sys-
tems permitting separation of variables [see, for
example, Eq. (3.14) of Ref. 2(a) for the g¥ and the
tabulation of the functions g* for the various coordinate
systems ], there is ample opportunity, we assume, for
fulfilling most or all of these #(%z—1) conditions. When
applicable, symmetry considerations simplify this
choice of the coordinate system. Our applications, thus
far, have been confined to systems of very few dimen-
sions (see post), where no difficulty has been en-
countered in satisfying Eq. (19). It may also be
possible to match higher curvatures of Cqyy than the
first, but we shall not attempt this matching here.?

7 Along Cy° the expression for the value of &*V/ds? in Ref. 23
reduces at P to the first sum, since 3V /dg* vanishes. Since the
tangent of the curve Cy® equals that of Cy at P, the value of
d*V/ds? also equals that of Cy at P. For the same reason, d2V /ds®
equals the value for the cotangential Cartesian coordinate (the
normal coordinate) curve in this vibrational space at P.

# No match was made of the torsions of Cy (i.e., the second
and higher curvatures) or of the derivatives of any curvatures or
of the terms in the expansion of V in powers of s higher than the
second. These properties would influence the higher order terms
in Eq. (15), listed as O(s'*7) and O(s”). To attempt such a match-
ing, formal-series expansions of the Ag® in powers of s could be
introduced into Eq. (9), and further terms could be included in
the expansion of ¥ and the gi’s in powers of the Ag¥’s, and thence,
in powers of s. Equating the coefficients of similar powers leads
to the evaluation of additional terms in the series Eq. (15), where
they exist. The torsions could then be calculated. [See, e.g., Ref.
12, p. 96 and J. C. H. Gerretsen, Lectures on Tensor Calculus and
Differential Geometry (P. Noordhoff, Ltd., Groningen, The
Netherlands, 1962), pp. 74-77.] One could then see if a system of
coordinate curves Cx? exists which permits separation of variables
and which permits the torsions, the first curvature, and the ap-
propriate powers in a potential-energy-function expansion to be

matched. It may be recalled that torsions do not occur for n=2
(the major application thus far$) or for plane curves.
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For purposes of atom-tunneling calculations for
which the tunneling energy is so low that the quadratic
expansion of V along the reaction coordinate curve
Cw® is inadequate, a somewhat-improved answer
might be obtained by choosing X,(g") along C¢,)° so
that X,” at P satisfies (12), and so that the potential
energy (8) along Cy° equals the actual potential
energy. Similar modifications could be made in each
Xw(g"¥), so that the potential energy (8) equals the
actual potential energy along all Cqy)®s.

ROTATING SYSTEMS

When the molecule is rotating, a choice of internal
coordinates to satisfy the Eckart condition minimizes
the importance of the vibrational angular momentum.®
When the residual, vibrational angular momentum is
then ignored, the remaining effect of the rotations on
the vibrational motion is to introduce a centrifugal
potential. In that approximation, the results described
in the preceding section apply if V is the effective
potential energy, the sum of the original potential
energy and of the centrifugal terms. All the properties
of the surface, including the position of the saddle
point, now depend on the rotational state of the mole-
cule. The normal coordinates mentioned earlier are now
replaced by those for this new effective Hamiltonian
for the vibrational motion.

Application to the Three-Center Reaction Problem

A chemical reaction which has received much theo-
retical and experimental attention is the three-center
one, A+BC—AB+-C. Often, in the specific examples
considered in the literature, the reaction is assumed to
proceed via a linear collision-complex. In that case, the
course of reaction is determined by two coordinates in
the activated complex region, 745 and 7s,. The potential-
energy surface is often plotted in mass-weighted coordi-
nates as a function of the two distances, and the
tunneling rate and other aspects of the reaction are
computed. In a typical approximation, the potential
energy is assumed to be such as to permit separation
of this pair of variables from the remaining ones.
Rotation-vibration interactions are also neglected.

In the local approximation described in this paper, the
reaction rate due to nonrotating linear complexes in
this nonseparable problem would be computed as
follows. Along the two paths of steepest ascent
(descent) to the saddle-point, one computes the two
force constants (one positive, one negative), as well as
the curvature of these paths in mass-weighted configura-
tion space. An orthogonal, curvilinear coordinate system
which permits separation of variables is then introduced.
Two-dimensional circular, elliptic, and parabolic sys-

# C. Eckart, Phys. Rev. 47, 552 (1935); A. Sayvetz, J. Chem.
Phys. 7, 383 (1939); S. M. Ferigle and A. Weber, Am. J. Phys.
21, 102 (1957); E. B. Wilson, Jr., J. C. Decius, and P. C. Cross,
Molecular Vibrations (McGraw-Hill Book Company, Inc., New
York, 1955), Chap. 11.
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tems are available.®® The origin (or foci) of the coordi-
nate system is selected in such a way that there exists
a pair of curvilinear coordinate curves intersecting at
the saddle point, cotangential with the two corre-
sponding paths of steepest ascent (descent) at the
saddle point and having curvatures related to the latter
paths by Eqs. (19) and (20). The separated equations
are then solved, and the results inserted into a statistical
expression for the reaction rate. The usual expression
in the literature was not designed for curvilinear re-
action paths, but a recent generalization and modi-
fication of it takes the curvilinear aspects into account.’”

A comparison of such a calculation can be made with
the usual reaction-rate calculations and with some
recent computer calculations involving a numerical
solution of the two-dimensional nonseparable Schrs-
dinger equation.®® Some work on this problem is in
progress at present, and only a few preliminary re-
marks are made here.?

Since one of the force constants in (20) is negative,
the curvature of the (separable) curvilinear reaction
coordinate is seen to be less than that of the path of
steepest ascent. That is, in classical mechanics a dy-
namical trajectory which passes through the saddle
point does not follow the path of steepest ascent but
rather follows one which proceeds along the sides of
the valley. Physically, this behavior is readily under-
stood. Because of path curvature there is a centrifugal
force which flings the particle outwards—the more so
the greater its velocity along the trajectory. Since this
velocity is least at the saddle point (most of the energy
is now potential energy), the centrifugal force is least
there.

A centrifugal effect occurs also in quantum me-
chanics, only now phrased in terms of probabilities, as
one may see from the behavior of the wavefunction of
the separated system. The effect is similar to the
classical one for energies sufficient to make the system
surmount the potential-energy barrier. Preliminary
calculations suggest that a nonclassical centrifugal
effect, negative in nature, appears to occur under
tunneling conditions.$

When the negative force constant along the reaction
coordinate curve C¢,? vanishes, the curvature of the
corresponding extremal path Ci) equals that of Cg,’,
as one may see from Eq. (20). Because of the centrif-
ugal-force argument just mentioned, this behavior is
understandable on physical grounds also.

In a calculation of atom-tunneling rates, Weston
computed the potential-energy function along the path
of steepest descent from the saddle point and neglected
the effect of path curvature in the formalism®—i.e., he
used the activated complex rate equation that had been
derived for rectilinear paths. The present study reveals
two additional effects whose importance is under
current investigation.

¥ P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(1\'[6(:5(5}ra.w~Hill Book Company, Inc., New York, 1953), Vol. 1,
p. 655.

# Compare R. E. Weston, Jr., J. Chem. Phys. 31, 892 (1959).

POTENTIAL-ENERGY SURFACES

(1) The activated-complex rate equation for curvi-
linear coordinates differs from that for rectilinear co-
ordinates (but reduces to it, of course, when path
curvatures vanish), because of a coupling of the sepa-
rated degrees of freedom via constants of the motion.
This coupling occurs, at least in part, in the form of the
centrifugal potential arising from path curvature.

(2) Although the second derivative of the potential
energy along C) equals that along C,)°, the potential
barrier along C,? is “thicker” because of the higher-
order of terms. (The barrier is “thinnest” along the
path of steepest ascent.) In solving the separated wave
equation for this coordinate, an effect of these higher-
order terms can be estimated by including them in the
separated equation.

Some preliminary evidence in support of a local
approximation is given later. It is shown there that
the numerical tunneling rates for one- and #-dimen-
sional calculations are fairly similar, at low energies
at least, when proper cognizance is taken of zero-
point energies.

In the three-center reaction A4+BC—AB+C, there
is also dynamical coupling not only between the two
degrees of freedom mentioned above but also with the
other motions. The effects are presumed to be small
for linear complexes. However, the effects of such
coupling on path curvature for the various extremal
paths can be included by using equations for as many
s and N’s as are involved. To obtain the separated
wave equations, one must know the Stickel coefficients
which appear in them. Eisenhart has given these
explicitly for a Euclidean space of three dimensions.®
He has also described the coordinate systems permitting
separation of variables in # dimensions, and one can
derive the Stickel coefficients from the metric tensor
for these coordinate systems.® The situation is simpli-
fied appreciably where only a few of the extremal paths
have appreciable curvature. Symmetry considerations
play a role here, of course.®

OTHER PROBLEMS

In some problems there are “hidden” approximate
constants of the motion. With each variable separated,
a new constant of the motion appears. Numerical calcu-
lations may help reveal them.

Upon examination of the results of some recent
quantum-mechanical computer calculations!® on the
three-center reaction-rate problem, for example, one
may note (with caution since very few results were
available) that in the case of elementary processes with
a fairly large probability, there was some tendency to

# For example, from the metric tensor, Eq. (1.8) in Ref. 2(b)
may be solvet? for a quantity P; and, with the aid of (2.1), one
thereupon obtains ¢%/¢. The determinant of the latter is 1 /d;"“,
and so ¢* may be obtained. Inversion yields the Stiickel coeffi-
cients ¢io. However, a much more direct method of obtaining
them may be available.

% For example, in a symmetrical reaction A+BA—AB--A, the
vibrational motion of the linear activated complex is Cartesian.
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TasLE 1. Calculated tunneling probabilities « for

H-H; reaction.
One-dimensional
€—9,

(kcal mole’)  (Bellx)  (Eckartx)  n-dimensional
—4.33 0.0060  0.0035 0.0059
—1.83 0.11 0.13; 0.14
—0.83 0.28 0.36 0.65
—0.33 0.41 0.51 0.90

0 0.50 0.60

preserve the vibrational quantum state.® These proc-
esses include reflection from or passage through the
saddel-point region. For such processes, the vibrational
motion would be approximately adiabatic and, pre-
sumably, a separation of variables would be appro-
priate as a first approximation. However, any detailed
conclusions should await further numerical results.
Another problem which has been the subject of recent
attention has been the problem of intramolecular energy
transfer among vibrational modes in a linear chain of
atoms, coupled by harmonic plus certain anharmonic
terms.® At least in certain cases, a pronounced type of
nonergodicity was observed when one ‘“normal” vibra-
tional mode was excited, the energy transferring into
the other modes and then, surprisingly, reaccumulating
almost entirely in the first mode followed by a repeti-
tion of the cycle. It would-be interesting to explore the
possible implications of this nonergodicity in terms of
the local approximation described in the present study.

APPENDIX 1. COMPARISON OF ONE- AND n-
DIMENSIONAL TRANSMISSION COEFFICIENTS

In the reaction H4+-H;—H,-+H, the vibrations used
for the activated complex were'%3t 2108, 877, 877, and
1918 7 cm™; that used for Hp was 4405 cm™. Let E
denote the total energy in the n-dimensional system,
€ some ‘“equivalent” total energy in a one-dimensional
calculation, and AU the potential energy of the #u-
dimensional activated complex minus that of the
reactants. Let £y and Ey* denote the zero-point energy
of H; and of the activated complex, respectively.

% From the rows of Table I of Ref. 10(a) for E=20, one sees
that a particle initially in a vibrational state v=2 (the first ex-
cited state) has a probability of reflection of 0.42 into v=2 and
of 0.07 into v=1. (The transmission probabilities were 0.36 and
0.15, respectively.) For a particle initially in the ground vibra-
tional state (v=1), the transmission probability was 0.76 for no
change in v and only 0.15 for forming a state with a higher v
(v=2). No such approximate conservation of v may be found in
the reflection probabilities, which are so low (0.0i, 0.07) as to
represent unimportant processes.

In the spirit of the local-approximation method, and
indeed of activated-complex theory, a comparison of
one- and #-dimensional calculations should be made at
equivalent values of the energy at the saddle point, i.e.,
at equal values of the total energy minus the potential
and zero-point energy at that point. This energy differ-
ence is E— (AU+ Eg+) for the #-dimensional computa-
tion. If vy is the saddle-point value of the potential
energy in the one-dimensional model, then the above
energy difference in the one-dimensional case is e—vy,
a common quantity in WKB%¥ calculations. One thus
has:

e—un=E— (AU+Egt),

AU was taken'® to be 8.81 kcal/mole™, i.e., the acti-
vation energy at 0°K, 8.03, plus the difference of zero-
point energies of activated complex and reactants. Two
cases may be distinguished in the #-dimensional calcu-
lations of Mortensen and Pitzer: (a) bending vibra-
tions included, Eyt being 5.52 kcal/mole™?, (b) bend-
ing vibrations neglected, Eg¢* being 3.02 kcal mole™.
Values of E of 10 and 15 kcal mole™ in Case (a) and
of 10 and 11 in Case (b) correspond to values of e—u
equal to —4.33, —0.33, —1.83, and —0.83 kcal mole™,
respectively. The corresponding values!® of « are given
in Table I. The corresponding one-dimensional «’s
calculated from Bell’s tunneling formula® for a para-
bolic barrier of imaginary frequency »=1918 cm™
depend only on e—v and on ». They are given in Table
I. The one-dimensional «’s calculated from Eckart’s
formula,® for which the top of the barrier is fitted to
the above imaginary frequency and for which the height
is 8.03 kcal mole™, are also given in Table I.

The one- and #n-dimensional values for the larger
| e—u |’s agree well with each other, though those for
the smaller | e—w |’s are surprisingly high in the #-
dimensional case. Indeed, the latter would be nearer
to those obtainable from the usual WBK tunneling
formula®* that does not take account of the proximity
of the two transition points near the top of the barrier
(0.0069, 0.12, 0.39, 0.69, and 1.0). Perhaps a closer
examination of the assumptions made in the numerical
n-dimensional calculation for energies near the top of
the barrier is in order.

The conclusions drawn here differ somewhat from
those in Ref. 10(a), where the incident energies of the
one- and #-dimensional systems were made equivalent
(rather than those at the saddle point).

# R. P. Bell, Proc. Roy. Soc. (London) A148, 241 (1935).

# R. P. Bell, Trans. Faraday Soc. 55, 1 (1959).
8 C. E. Eckart, Phys. Rev. 35, 1303 (1930).



