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A statistical mechanical treatment is given for homogeneous and electrochemical systems having non-
equilibrium dielectric polarization. A relation between the free energy of these systems and those of related
equilibrium ones is deduced, having first been derived in Part II by a dielectric continuum treatment. The
results can be applied to calculating polar contributions in the theory of electron transfers and in that of
shifts of electronic spectra in condensed media. The effect of differences in polarizability (of a light emitting
or absorbing molecule in its initial and final electronic states) on the polar term in the shift is included by a
detailed statistical analysis, thereby extending Part II. Throughout, the “particle” description of the
entities contributing to these phenomena is employed, so as to derive the results for rather general potential

energy functions,

INTRODUCTION

POLAR molecular interactions play a role not only
in the usual dielectric properties! but also in a
variety of other phenomena, such as solvent effects
on the spectra of polar solutes,? homogeneous and elec-
trochemical electron transfers,? intramolecular charge
transfers, and properties of polarons in semiconductors
and other materials.® These phenomena usually involve
systems with a ‘“nonequilibrium dielectric polariza-
tion.”s

In theories of these processes, the calculation of the
free energy of the system often plays a central role.
In Part II°it was shown by dielectric continuum theory
that the polar contribution to the free energy of a non-
equilibrium dielectric polarization system equaled the
sum of free energies of related equilibrium ones. Conse-
quently, literature calculations of the latter could be
immediately applied to the former. Several examples
of applications to the theory of electron transfer pro-
cesses and of spectral shifts were given. However, for
noncontinuum discussions a statistical-mechanical deri-
vation of this free energy relation would be desirable.
This derivation is given in the present paper. The
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analysis also provides some further insight into the
continuum description. Applications will be made in
subsequent papers.

POTENTIAL-ENERGY FUNCTION

To minimize the assumptions in the derivation we
use the description of a macrosystem given in a recent
paper™ and applied in Part II: The macrosystem may
be considered to be composed of particles, each of which
represents a single molecule or a collection of molecules,
an entire electrode for example. For some purposes, it
suffices to compute functions of the interparticle poten-
tial energy. Consequently, detailed assumptions about
intraparticle behavior are then unnecessary and can be
avoided.

We consider the behavior of the macrosystem at a
specified configuration of the nuclei of the “‘central
species,” the remainder of the system being called the
“medium.” Each of these central species s is treated as
a separate particle, and the medium is treated as one
giant particle M. Each central species consists of any
molecule of electrode undergoing a transformation in
the phenomenon under investigation. If the macrosys-
tem is analyzed at specified positions of the other ions,
the central species will be defined to include these ions
as well. The subscript ¢ will be used to denote both s
and M.

Examples of the central species are a pair of reacting
molecules, an electrochemically active ion, an electrode,
a fluorescing molecule, etc. When one of the central
species is an jon this ion plus its inner coordination
shell will be regarded as a single particle. When one of
the central species is an electrode, the electrode plus

7 (a) R. A. Marcus, J. Chem. Phys. 38, 1335 (1963); (b) The
polar contribution to U is given by Eq. (19) of this reference.
From Egs. (10), (12), (19), and (34) there, one can show that
this polar term depends only on the second powers of the p,%:
For example, if p;? is multiplied by a parameter » and the corre-
sponding &; are denoted by ®;”, one can show from these equa-
tions that the corresponding ®:"/» satisfy equations independent
of ». That is, &;* contains only first powers of the vp and so the
polar energy, 3Z; fvp®;" dr, contains only second powers of »

and hence only second powers of the pi’s (squares and crosg
products).
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any strongly bound adsorbed ions or molecules will
also be treated as one particle.

In this paper we are primarily concerned with the
nonequilibrium statistically distributed configurations
which can arise in a system. We explore in some detail
the behavior of the medium outside of these inner co-
ordination shells of the central species. The vibrational
motion inside the latter shells can be handled by more
standard methods. For this reason, we consider the
behavior of the system for any given value of the co-
ordinates in these coordination shells, as well as for any
given positional and orientational coordinates of the
central species, and for subsequent quantum mechanical
treatment, for any given values of the high-frequency
coordinates of the medium. Later, one can integrate
over these coordinates in accordance with whatever
statistical distribution is appropriate, as in Ref. 8. Let
</ denote the coordinates held fixed and « denote the
other coordinates. We treat the = coordinates classically.

For any given </ and = the electronic energy® Utot is
the sum of an intraparticle term and of an interparticle
one. The former is the total electronic energy when the
particles are isolated from each other and have the
intraparticle configuration contained in this value of
(«/, «). The second term is the change on bringing the
particles together, to the imterparticle configuration
specified by this (+/, ).

We may therefore write Uy as

Uwie=U+U/, (1)

where U is the sum of the intraparticle term for the
medium and of all interparticle terms. U7 is the intra-
particle term for the central species and is a function
of «/ alone.

The interparticle electronic energy itself will be taken
to be the sum of polar and “nonpolar’ or, more pre-
cisely, “electron correlation” terms, the latter including
repulsion and London dispersion energies of interactions
between the particles.”™ We then expand the infer-
particle energy in terms of the p%’s, the charge densities
on the isolated particles at the intraparticle configura-
tion given by (</, x), retaining terms up to second
powers in the p9’s.% These terms will contain only zero
and second powers of the p’s.” They may be con-
veniently classified further according as they contain
zero, first, or second powers of the p%’s of the central
species, p.%, namely as U(0), U(1), and U(2), respec-
tively:

U=U(0)+U(1)+U(2). (2)

8 R. A. Marcus, J. Chem. Phys. (to be published).

® This electronic energy serves, of course, as a potential-energy
function for nuclear motion, in the adiabatic approximation, in
the standard way.

98 Note added in proof: This type of expansion, with retention
of second powers of the permanent charge densities, neglects
“electronic dielectric saturation” and is common to practically
all existing calculations in the literature. The latter employ addi-
tional assumptions as well, and so represent special cases of Eq.

(1) [cf. Ref. 7(a)].

NONEQUILIBRIUM POLARIZATION SYSTEMS. III

U(2) must be independent of py’, U(1) must contain
first powers of pu® and hence vanish when either pa® or
ps? vanishes, and U(0) contains both zero and second
powers of pa®. The part of U(0) which has zero powers
of pu® consists of the intraparticle term for M and of
the interparticle nonpolar term. Each term in (2)
depends not only on = but also on «/.

STATISTICAL MECHANICS OF EQUILIBRIUM AND
NONEQUILIBRIUM POLARIZATION SYSTEMS

In the systems considered here the configurational
distribution of the “medium” may or may not be the
equilibrium one for the specified electronic state of the
central species. As in Parts I and II, these systems are
called equilibrium and nonequilibrium polarization sys-
tems, respectively.

For 2 medium having an equilibrium configurational
distribution, the configurational contribution of the
= coordinates to the free energy of the system at the
specified =/ is:

. -U
Fe=—kTIn f exp(-ﬁ)de,

where, for brevity, we have omitted the usual product
of factorials that takes care of indistinguishability of
like molecules. (This product cancels in all of the free-
energy differences in this paper.) The relation of F. to
the total configurational contribution to the free energy
is noted in Appendix I.

The polar contribution to F. is defined as F, minus
its value F.(0) when all p,° vanish. Denoting this polar
term by F we thus obtain from (2) and (3):

F=—kT

con(f exo(Z2)ie / [ o] 29 ). 8

We also require the configurational free energy of a
system in which the medium responds to the p,” of the
central species via an electronic polarizability rather
than via an adjustment of its nuclear configurational
distribution. The distribution function for the = coordi-
nates in this “equilibrium optical polarization system”
is the same as the one in which the p,° vanish, and so
is proportional to exp[— U(0)/kT]. The polar contri-
bution F°P to the free energy of this system is.the polar
energy of interaction of the central species with each
other and with the medium, U(1)+4U(2), averaged
with respect to this distribution

Fo= [[U(W)+U(2)]

X exp[_gr(‘O)]d-c / [ exp[-_Z—I@]de. (5)

Considering nonequilibrium polarization systems
next, those that we have investigated thus far have a
configurational distribution function appropriate to

(3)
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some charge distribution on the central species, but
not to the existing one. However, the electronic polari-
zation of the system, which has a very short relaxation
time, is that which is appropriate to the existing p,”’s
and to the existing orientation-atomic polarization of
the medium. We use a subscript 0 to denote the pro-
perties of the state for which the configurational dis-
tribution function of the noncentral species would be
the equilibrium one at the specified configuration of the
central species. This state was called the “equivalent
equilibrium system” (e.e.s.).®

An example of a nonequilibrium polarization system
is one in which a central species has just absorbed or
emitted light: the configurational distribution of the
surrounding molecules is appropriate to the molecular
state just before but not after the transition. Again, in
the activated complex of electron transfer processes,
the configurational distribution of molecules near the
reacting pair (or near a reacting ion and electrode) is
appropriate to some hypothetical charge distribution,
a compromise between that of the reactants and that
of the products, but not to the existing one.!?

The = contribution to the free-energy difference
Fpror—F,, between the nonequilibrium state and its
e.e.s. equals the energy difference, since both have the
same configurational distribution and, thereby, the
same entropy:

F jpon— F=o= f( U,— Un)

-~U -U
X exp( kT°)d1 / [ exp( kTo)de,

where U; and U, denote the potential energy U when
the p%s are those in the nonequilibrium polarization
system, p;°, say, and those in the e.e.s., p;?, respectively
(we note that par?=pu).

The relation of this = contribution to the total con-
figurational free energy difference of nonequilibrium
and equivalent equilibrium systems is described in
Appendix I.

Because of the assumed additivity of the inter-
particle polar and nonpolar terms, U;— U, in (6) can
be written as the sum of two differences, one due to
the difference in polar properties of the central species,
U1(1)+U1(2)'—U0(1)'—U(;(2), the other due to the
difference in their nonpolar properties, U;(0) — Uy(0).
We may define the polar contribution to (6) to be
given by (7), write it as Fro®— F, and thereby define
Fnon.

Fron _ F = (U1(1)+U1(2)—U0(1)—U0(2) >0: (7)

where

(o= [ f exp(_k—IU,o)dr / / exp(_kgo)de. (8)

In the polar term there occurs a generalized polariza-
10 R. A. Marcus, Discussions Faraday Soc. 29, 21 (1960).

(6)
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bility operator A; of the central species.” 4; may dilfer
in the non and [0] systems. For example, if the non-
equilibrium state is formed from an equilibrium one
[0] by light emission, the polarizability of the fluores-
cing molecule differs in the initial and final electronic
states. The rhs of Eq. (7) can be rewritten as

(U(p"lo) 4:)—U(pi, At'o) )0-

Accordingly, (7) can be re-expressed as the sum of two
terms, one at fixed p,° and the other at fixed 4;:

Fron— Fo= (U(pi)®, Ai) = U(ps% Ai) Do
+ (U(Pﬁo: Al‘o) - U(Pl‘oo, At'o) )0- (9)

The first difference on the rhs is calculated in one
of the concluding sections of this paper and is given
by Eq. (35). The second difference in (9) is the same
as the mean polar energy difference when the corre-
sponding 4/s in the nonequilibrium and equivalent
equilibrium systems are identical. It is computed first
for the case of a dielectrically unsaturated system.
Equation (14) is thereby derived. Equation (18) is
then derived for partially dielectrically saturated sys-
tems under an approximation milder than the one of
dielectric unsaturation.

In summary, the value of Fror— Fy will be given by
the sum of the rhs of Eqs. (14) or (18) and (35). For
the usual electron transfer reactions the contribution
of (35) may be ignored. Only if there is a large differ-
ence in polarizabilities in the initial and final states,
as in some spectral shifts, need it be considered. In the
following calculations we need to refer to four systems
in which the configurational distribution function is
the equilibrium one at the specified =/ and at the
cited p,0’s:

(i) System [0], the e.e.s. just described, p®= p.y,
(i) System [1], p'=ps",
(iii) System [1—0], p:"=pss—o’= pe,—psc’,

(iv) System [1—0, op], ps’=ps"—ps? and the medi-
um responds to these p,”’s only via its electronic polari-
zation.

If in the “non” system the interparticle nonpolar
forces are the same as those in the [0] system, U,(0)
and Uy(0) are equal, for the only other term in U(0)
is the same in both systems, being an intraparticle term
for M. In many electron-transfer systems of interest
the central species consist of an electrode and/or ions
plus inner coordination shells of configuration </. In
this case, we may take as a good approximation U,;(0) =
Uo(O) and A;o= A.'l.

On the other hand, if the interparticle nonpolar
forces and A, differ in the two systems, then the F;
which appears in the following discussion refers to a
hypothetical system [1] having the same medium, the
same 4,’s and the same U(0) as the [0] system, but
having p,%=p,°.
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DIELECTRICALLY UNSATURATED SYSTEMS

Dielectric unsaturation is characterized by a linear
response of the medium to the p,° of the central species.
If the coordinates of any ions in the medium are in-
cluded in «, then the introduction of a linear response
approximation will give rise not only to dielectric un-
saturation but also to a Debye—Hiickel approximation
for salt effects as well. To avoid the second of these we
hold the ionic coordinates fixed by including them
among the =/ (i.e., every ion is regarded as a central
species). This constraint need not be imposed in the
milder approximation of partial dielectric unsaturation.

Because of the linear response of the medium to the
p2’s the polar contribution to the free energy at given
</ is quadratic in the p,”’s. Accordingly, this approxi-
mation may be introduced by multiplying each p° by
a parameter A, then expanding the free energy in a
Taylor’s series in A about A=0 retaining terms up to
A%, and finally setting A=1. [In (2), the U(1) and U(2)
are therefore multiplied by A and A?, respectively.] In
this way, Eqs. (4) and (5) yield
F=(U1))+(U(2))— (/2D [{U1)*)—(U Q) }],

(10)
For=(U(1) }+-(U(2) ), (11)

where

()= f fexp[_:l(‘o)]d‘v / f exp[—gz(,o)]dc. (12)

In the same way we also obtain (13) from (7).
Fron— Fo= (Uy(1) — Uo(1) +U1(2) — Us(2) )
+(1/2kT) (Ux(1) — Ua(1) X(Us(1) )
—(1/2kT) (LUL(1) —Uo(1) JUs(1) ), (13)

where { ) is as defined in (12) with U(0) given by
Us(0).

We next introduce the two hypothetical dielectrically
unsaturated systems mentioned earlier, [1—07], [1—0,
op] whose polar contributions to the free energy are
given by (10) and (11) with appropriate subscripts; we
define U;(0) as Up(0) and A4,,—, as 4, Combining
these two equations with a corresponding equation for
F, we obtain (14).

Fron— F = F,_°P—Fy_,.

(14)

This equation has been applied to discussions of elec-
tron transfer processes.®® For spectral shifts, one needs
instead Foon— F,.

Fror— Fy= F1— Fo+ F1°"— F1,.
- PARTIAL DIELECTRIC SATURATION

(15)

Partial dielectric saturation associated with the co-
ordinates = can occur outside the inner coordination
shell of any highly charged ion. The inner coordination
shell itself is largely “saturated,” but it depends on
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</ and so is unaffected by any unsaturation approxi-
mation. When partial =-coordinate saturation occurs,
the expansions of the previous section are inadequate.
However, when the change in charge of each particle
on going from system [0] to [1] is small, as it typically
appears to be, we may expand F; about F, in powers
of the differences (p,°—p.,")’s. We retain terms up to
the second power in these differences. This expansion
may be performed by introducing a parameter A such
that p,° is replaced by ps2-+A(p:,?—ps?) Wherever p,°
appears. One then expands F; in a Taylor’s series in A
about A=0, retaining terms up to A and finally setting
A=1. We thereby obtain (16). Since we no longer as-
sume a linear response to the p,’s, it may often be
useful to regard all ions except those undergoing the
transformation to be noncentral species, i.e., to have
coordinates which are not held fixed and so belong to
the totality =8 Equation (16) applies regardless of
which of the two alternative ways for regarding these
atmospheric ions is adopted.

Fi—Fy= (Ul(l) - Uo(l) )o+ (U1(2) - UO(Z) )0
— (1/2T) {{LUL(1) — Uo(1) I )— (Ur,(1) —Uo(1) )*},

(16)
where

—Uo(0) 4+ Uos(1) 4+ Uo(2)
*P ( T )d"

(o= (17)

/exp(— Uo<0>+zkfoT(1)+Uo<2)) .

We again introduce two dielectrically unsaturated
systems [1—07 and [1—0, op]’, where U;(0) is now
defined as numerically equal to Uy(0)+ Uo(1) 4 Uy(2)
for every value of «.!! The dielectric unsaturation
approximation is introduced by multiplying the p,—"’s
in U1(1) and U1-0(2) by A and then proceeding as in
the previous section. From the resulting equations and
from (13) and (16) we then obtain (18):

Fron= B+ Fy_ "' —F . (18)

Equations (14) and (18) were derived in Part II using
the dielectric continuum approximation.® Several appli-
cations of (14) were made there, and application of
(18) may be found in Ref. 8.

In view of the fact that Eqs. (14) [and (18)] have
derived both on the basis of statistical mechanical and
continuum methods, it is of interest to compare two
approaches in their treatment of nonpolar and optical
polarization media, and to consider the possibility of

1t Within the approximation employed, one can show that (18)
would again be obtained if U (0{ were defined as U;(0)+
Ui (1)+U,(2), or as any function intermediate between this one
and Uy(0)+Uo(1)+Uq(2): We note from (10) and (11) that
Froo”—F o equals ((U(1)—(U(1)))/2 kT, and that this
average of a fluctuation term is, within the partial unsaturation
a?proximation, the same regardless of which of the above values
of Ui (0) is used in computing the average with Eq. (12).
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deriving (14) or (18) for the case where “op” denotes a
nonpolar mediuth rather than an optical polarization
one.

COMPARISON OF NONPOLAR AND OPTICAL
POLARIZATION MEDIA

A nonpolar medium is defined as one for which pa®
equals zero for all <. For such a medium, the polar term
in U reduces to U(2) and Eq. (10) for F becomes:

F=(U(2))* (19)

where ( )* denotes an average with respect to

=5/ [ el =5

the * indicating that in U*(0)px® vanishes. Equation
(19) may be compared with the F of an optical polari-
zation system, given by (20).

For=(U(1)+U(2)). (20)
These two F’s are equal when: (i) the medium is
treated as a dielectric continuum. {This treatment can
be regarded as 5 limiting case of the statistical me-
chanical one in Which the ratio of size of the central
species to that of each molecule composing the me-
dium becomes extremely large. In this case, the non-
polar forces between the central species and the mole-
cules of the medium do not orient the latter molecules
preferentially, and (U(1)) in Eq. (20) then vanishes.
If one chooses U°P(0)=U*(0) for all =, expressions
(19) and (20) are then equal. In this instance, the
[op] system in (14) or (18) could also be interpreted
as one having a nonpolar equilibrium polarization me-
dium.} or (ii) the molecules of the medium have an
appropriate symmetry property, namely one where
after a change of sign of the charge density on the
molecule, a subsequent suitable rotation restores the
molecule to its original geometry, its original p® and
its original 4;: Application of this symmetry operation
shows that to each configuration = there is one of equal
probability having the same magnitude of U(1) but
opposite in sign: (U(1)) in Eq. (20) then vanishes,
and the choice U*(0)=U°r(0) for all * then makes
(19) and (20) equal. Once again, the op in (14) or
(18) can be then interpreted as “nonpolar medium.”
Any actual molecule would satisfy such a symmetry
requirement in an approximate way at most. )
The foregoing arguments provide some further in-
sight into one aspect of the continuum and statistical
mechanical derivations of (14) [and (18)]. This equa-
tion was first derived in Part II using continuum the-
ory. However, the usual dielectric continuum method
does not distinguish between nonpolar and “optical
polarization” systems. The properties of both are char-
acterized only by an optical dielectric constant. In the
statistical mechanical treatment, on the other hand,
we saw that there is in general a difference in these
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two systems, and that Eq. (14) applied in that case
only when op denotes an optical polarization system.
When this statistical treatment was converted into a
continuum one, as described in Condition (i) or when
Conditions (ii) prevailed, “op” could denote a non-
polar system also.

“CHANGE OF POLARIZIIEXSIL(I'.EY" CONTRIBUTION TO
. (9

We compute the first term in the rhs of (9), to first-

order differences in 4,,— 4,,. We recall from a recent

particle description of the system™ that the polar con-
tribution to U can be written as

U= 3 [@()pd(r)ar, (21)

where ®;(r) is the potential at any point r in the sys-

tem, minus the self-potential of particle i. Equation

(22) represents a set of equations which may be solved
for the ®;’s.

3.) =3 f[orm+ 4 20 %] 2

The nonpolar contribution to U cancels in (9), it will
be recalled, because of the earlier decomposition of the
total change of U made in obtaining (2).

To perform the calculation we use the device em-
ployed earlier of introducing a parameter (y now) and
differentiating with respect to it. Let

A67=Al'o+7(Ai1—At‘o), (23)

where vy varies from 0 to 1. The desired first term in
the rhs of (9) becomes:

(Upa®, Ai) —U(pi?, Aso) o= (Ur1—Ur=0),, (24)

where ( ) is defined by (17), and in U™, U one
has p'=p,?. Expanding U~ in a Taylor’s series about
v=0, we have:

(63U“') 7 (25)

U’Y: U‘F’o_'.(a—w) —Y+ —+-...
97 /y=0 97 /42!
Differentiating (21) and (22) with respect to v after
introducing (23) and (25), we find

AU [6<I>.

—_—1 —_— .-odl‘ 2

oy 2 - Sy P ’ ( 6)
0P, . 04 a@j’)dl’
—— d.r A:y_ —_ 2
o ;f((,,7:+,67 e C))

Comparing (26) with (22), ®,7/dy is seen to be the
same as the potentials &+ of a system [+] in which
Aj*=4;v and p*=(34,/dy)®;>. We may convert
(26) to a more useful form using an equation proved
elsewhere’:

3 [vapar=3 [@apear,

(28)
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where [a¢] and [b] are any two systems such that
Ap=AP. We let ¢ denote the [+ ] system and & the
system described by v (both have 4;= 4,7.) Equations
(26) and (28) then yield (29), on noting that 94 x"/dy
equals zero.

am lzfqn qmdr (29)

Equation (29) is general for any system, regardless of
the value of p,? or of whether the system is an equilib-
rium or a nonequilibrium polarization system. We need
to evaluate (dU7/dy )o to compute (24):

6U1 <E/d>1 '<I>'vd>

To evaluate (30), we proceed indirectly. If F7 is the
polar contribution to an equilibrium polarization sys-
tem whose A; is 4,7, differentiation of (4) leads to

(D)l [l

Hence, from (29) and (31) we have

1 a4,
- .
(2; f ®, = tI>.7dr)
-y~ U
X exp( iT )de/fexp( o )d'c.

The evaluation of (30) would therefore be immediate
if the averaging in (30) had been with respect to
exp(— U7/kT) instead of with respect to exp(— Uo/kT).
Instead, we rewrite to Eq. (30) identically as

Co> =4[ @20 %E (@ ..,>dr>

13X oy faar),
+3K [ @2 %"

.where we have used the Hermitian property’™ of
dA7/dv, inherited from A,”, and where O denotes, as
before, a system having p0=p,° and 4,= 4,

At y=0, &,” refers to a system having the same p,
and 4, as the [1] system, or more precisely as the hy-
pothetical [1] system defined earlier, namely p,, and
A,,. Its other properties are denoted by a subscript 1,
so &,7 at y=0 equals ®,,. The &, of system [0] is P,,.
Subtracting Eq. (22) for ®,, from that for ®,, one can
see that &, — ®,, is the ®,(r) of a system having a non-
polar medium and having p,°=p,,—p.". We denote its
properties by 1—0 and #p subscripts or superscripts.
For example, &,,—®,, equals ®,,"*. The usual rota-
tional and translational flunctuations in a condensed

(30)

(32)

<I>.(.d > (33).
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nonpolar medium have relatively little effect on its &;,
so ®,,—P,, can be replaced by its average value. Again,
since the coordinates of s are held fixed when ( ) is
computed, d4,7/dy and ( ) commute. At y=0, Eq.
(33) now becomes (34), since ®,,,"? is insensitive to
the polar properties of the averaging function.

<(6U’v) Y‘ﬂ> —"Z < ]-@.M 04,

——-@.I_D"pdr>
1—0,np

+lE< f @,o—cp.

+Zf (‘bn—o”p )1—0 "paAa (‘I’ )o ar. (34)

Using (32) for both the [0] and [1—0, np | equilib-
rium polarization systems, we note that the first term
on the rhs of (34) equals (8F1-0,np"/97) =0 and the
second equals (9Fy?/dv) y=o. The third involves a typi-
cal average and we give an example of its calculation
later.

We have not yet introduced the approximation of
evaluating (Ur1'—Ur®) to first-order differences in
A,— A, To do so it suffices to neglect powers of 7*
and higher in the expansion of (24) and then to set
v=1. Calling Ur'— U9 AU and calling 4,—A4,,
AA, we finally obtain (35).

oF, P oF Y
son=("5) o)
(AU ) 3y -r=-0+ 3y ) omo

+ 3 [ @i hoampb A Bulr. (35)

In summary, we recall that the polar contribution
Fron—F, in Eq. (9) is given by the sum of the rhs of
Egs. (14) [or (18)] and (35).

In the next section we apply (35) to a common model
used in the literature, Eq. (14) having been applied
to the same model in Part II.

APPLICATION OF EQ. (35) TO A DIPOLAR SOLUTE IN
A CONTINUUM

We consider the model of a single dipolar solute
molecule s, treated as a sphere of radius @, possessing
a dipole of moment u at its center, a polarizability «,
and imbedded in the solvent treated as a dielectric con-
tinuum. Equation (35) can readily be applied to more
complex models, however. Since we employ a dielectric
continuum model, the nonpolar and optical polariza-
tion systems are equivalent, and we can replace zp in
Eq. (35) by op.

If r, denotes the center of s (there is only one s now)
the above solute has the following properties, as noted
elsewhere.’®

pd(r)=—V,(r—r,)-u (36)

4,(r, t')=V,8(r—r,) -aV,,/dr’a(r’—-r.). (37)
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The last term in (35) then becomes
- <V<I’u—o°p)1—0.op' (Ctl—ao) <V‘1’ao )o

For the above model we have!?

Fr=—[f/(1—fa") i (v, (38)
f=@1/a)[(2D-2)/(2D+1)], (39)
_(V¢0)=R=f9/(1—fa)’ (40)

where R is the well-known reaction field (of an equilib-
rium polarization system) acting on a solute dipole
which is held fixed in position.

In state [0], w=uo and D=D,, the static dielectric
constant of the medium. In state [1—0, opJ, u= wi— o
and D= D,,, the square of the refractive index of the
medium. We write a*=ap+v(ay—ay).

Using (38) to (40) Eq. (35) becomes:

. Y
(AU)O_ ((l—fopao)z 2 t (1_ .ao)z 2
! Jort1—¢ Jfauo e
7 (1—fopon) (1—f.ozo))(0‘1 o), (41)
1 op A 2
e <AU>0=_§(1-;ffopaovl‘° } ljfaanvo) (1—an).
(42)

We note that when u;¢ equals —pq, i.e., when g; van-
ishes, and when f, equals f;, i.e., when the medium has
no orientation polarization, (42) vanishes, as it should:
When the medium and the final electronic state of the
solute are both nonpolar, the polar term in the spectral
shift should be independent of the polarizability of the
final state of the solute a;. It is independent when (42)
vanishes. Parenthetically, it may be noted that the dif-
ference of polarizabilities in the two electronic states
still makes a contribution to the spectral shift in this
instance, namely, via the nonpolar term in U;— U, in
Eq. (6). The contribution arises from differences in
London dispersion forces between the solute in its two
electronic states and the medium.

28ee C. J. F. Bottcher, Theory of Elecirical Polarisation
(Elsevier Publishing Company, Inc., Amsterdam, 1952), p. 139.
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APPENDIX I. RELATION OF 7- TO TOTAL
COINFIGURA'I.‘IONAII.E §§§g§mUHON TO FREE

The total configurational contribution to the free
energy of equilibrium systems is

—kT In f exp[ﬂj-—v)-]dedvf

kT
=—kTIn f exp[——w;; Fa)]d‘v’, (43)

where F. is given by Eq. (3). [If any high-frequency
coordinates are treated quantum mechanically, they
should be excluded from +/; (43) is then the value at
any given value of these coordinates, there being a
quantum mechanical distribution of the «/. One then
integrates over them in the appropriate quantum plus
statistical mechanical fashion. ]

In the case of nonequilibrium systems (with a similar
qualification about any high frequency coordinates)
the total configurational difference of nonequilibrium
and equivalent equilibrium systems is:

f( U+ U/—-U—UY) exp[——(%fl]d‘:dx‘f
(44)
f exp[—M]dedef
RT
Since Uy~ Uy/ is independent of =, (44) becomes:
(UY—Ud Jos+ (Feo"—F o o.g, (45)

where ( o,y denotes average with respect to

a{57) [ [ ool Yo

The polar contribution (7) to Fproo—F,, may be in-
serted into (45) or, when it is but weakly dependent on
</, replaced by its value at the most probable value of
+/. In practice, the second of these procedures will
usually be followed. The nonpolar contribution to
Fpon—F., (Ui(0)—Uy(0) o, is also of much interest
in certain problems and is to be added to the polar one.




