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It is shown that the electronically polarizable continuum model of a particle satisfies the equations of
Part I, after suitable choice of operator A; appearing there. The proof is given for the case where the
system is regarded as composed of particles and treated statistically mechanically. It is also given for the
case where several particles receive special attention and the remainder of the system (the “medium’’)
is treated as an orientationally and electronically polarizable continuum. For the second case it was neces-
sary to extend the results of Part I, so as to include several particles in the presence of the above “medium”
and to compute the free energy of such systems. Calculations are given for media possessing equilibrium
and nonequilibrium dielectric polarization.

It follows from the foregoing proofs that a wide variety of models assumed in the literature for treating
polar interactions are special cases of the model in Part I and of the extension to particle-medium systems
in this paper. Electrode systems, for example, are included, even when the electrode is treated in the usual
dielectric continuum manner.

The relation and relative merits of the two models for the induced charge distribution that are standard
in the literature, both special cases of Part I, are discussed. These models are the induced dipole and the
electronically polarizable continuum. Possible direct experimental investigation of the second of these by

scattering experiments is examined.

INTRODUCTION

N Part I' equations were derived for the polar con-
tribution to the potential energy of interaction
between particles. Each particle represented a single
molecule or any collection of molecules (a whole elec-
trode, for example) at any specified nuclear configu-
ration. The equations involved multipolar permanent
and induced charge distributions on the particles and
constituted a generalization of earlier potential energy
expressions® in which the particles were restricted to
being single molecules interacting via permanent and
induced dipoles only. One use of the equations was in
the formulation of theories of phenomena related to
polar interactions, using fewer assumptions and appli-
cable to a wide class of more specialized models com-
monly found in the literature. Some of these applica-
tions are mentioned later.

In the present paper it is shown that the equations
of Part I are also formally satisfied by a common model
of a particle, wherein it is treated as an electronically
polarizable dielectric continuum containing some or no
fixed charge distribution.>® One merely chooses an
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appropriate function for the operator 4; appearing in
Part I. (An important example of such a model occurs
in the standard electrostatic treatment of polar inter-
actions between electrodes and particles in solution:
The electrode is regarded as being a continuum of
infinite dielectric constant.) Accordingly, any statis-
tical mechanical theory of a phenomenon developed
from the interparticle potential energy expression of
Part I must also be satisfied by this idealized elec-
tronically polarizable continuum model of a particle.
We make use of this result elsewhere.

Because of computational difficulties in the statis-
tical mechanical treatment of positions of the nuclei,
many literature calculations are based on a continuum
treatment of part of the orientation and electronic
polarization in the system. Several particles of specified
nuclear configuration receive special attention and the
remainder of the system (the “medium”) is treated
as an orientationally and electronically polarizable di-
electric continuum. The particles have either been
treated as having some permanent and induced dipolar
charge distribution®® (i.e., as being a special case of
the charge distribution in Part I) or as having a per-
manent charge distribution and as being the elec-
tronically polarizable continuum mentioned earlier.?~7
(Henceforth, for purposes of this paper only, the words
“orientationally polarizable continuum” and “medium”
are used interchangeably. In a statistical mechanical
treatment, the totality of molecules of the medium
can be treated as a single particle,! and such a system
is called here a “particles-only system.”) Using the
model of the particles given in Part I, the polar con-

5C. J. F. Bottcher, Theory of Electrical Polarization (Elsevier
Publishing Company, Inc., New York, 1952).
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461 INTERACTIONS IN
tribution to the free energy of these systems is calcu-
lated in the present paper for any specified nuclear
configuration of the particles. It is shown that the
electronically polarizable continuum model of a
particle is also a special case of the molecular model
of Part I in a medium-particle system (as it is in the
purely particle system discussed earlier). The proof is
given first for the case where the orientation part of
the dielectric polarization of the medium is in electro-
static equilibrium with the charge distribution on the
particles and then for the case where it is not.® The
electronic part of the polarization of the medium is
taken to be that dictated by the particles’ charges and
the medium’s orientation polarization.®

The relation between the two standard literature
models of the induced charge distribution (both special
cases of that in Part I), i.e., the induced dipolar and
the electronically polarizable continuum models, is dis-
cussed in a concluding section of this paper. Also
discussed is the possibility of direct investigation of
the continuum model of a gaseous molecule by ion
scattering experiments.

Each of the two specialized models has its merits,
the induced dipole approximation being more appro-
priate for small molecules and the electronically polar-
izable continuum model being suited to very large ones,
a crystal for example. In particular, the method of
approximating an induced charge distribution by its
leading term, the induced dipole, does not explain the
dissymmetry of light scattering by large particles.®
However, the dissymmetry is explained by the conti-
nuum model, because of the appearance of higher terms
than the dipolar one.® Moreover, even a uniform static
field sometimes produces induced moments higher than
the dipole one. Lack of knowledge of these higher
moments has encouraged the use of the continuum
model. In the case of spheres and, for the dipolar term
under certain conditions, ellipsoids, the two models
prove to yield identical results in a uniform field, pro-
vided the dielectric susceptibility of the continuum is
properly chosen. The choice of this susceptibility is
described.

Elsewhere, application is made of the equations of
Part I to a statistical-mechanical formulation of theo-
ries involving polar interactions in condensed phases
and of the equations of the present paper to a formu-
lation based on the continuum treatment of the med-
ium. Several problems to be treated involve nonequi-
librium dielectric polarization of the medium and deal
with electron transfer rates in solution and at elec-
trodes, and with shifts and broadening of electronic
spectral bands of polar solutes by polar solvents.!

1 For a description of nonequilibrium polarization systems cf.
R. A. Marcus, J. Chem. Phys. 24, 979 (1956) and Ref. 11. Such
siv;tems play a role in electron transfer processes and in spectral
shifts of polar solutes caused by polar solvents.

1 R. A, Marcus, J. Chem. Phys. 38, 1858 (1963).

POLAR MEDIA. II

MOLECULAR TREATMENT OF PARTICLES

As in Part I let ¢;(r) be the electrostatic potential
arising from all parts of the system other than from
the charge density p;(r) on particle 7. An equation of
Part I for ¢; is easily extended to the case where,
besides the particles, a medium is present having a
polarization P(r)1.12;

_ < [pi(D)dr ot
¢.(r’)—§f—+[P(r) vridr,

r

(1)

where integration is over the entire volume of the
system, 1/r denotes 1/| r—r’ |, P(r) vanishes inside
the region V; occupied by any particle 7, and pi(r) is
given by (2). [To obtain the equations of Part I, P(r)
is set equal to zero throughout this paper.]

pi(1) =pd(r) +pin(1), (2)

where p0 is the charge distribution on ¢ when it is
isolated.® The induced charge distribution p; is
related to ¢; via a linear Hermitian operator! 4;:

pi'"(r) = A(r, ') i(1'). 3)

When only particles are present, each having a
specified nuclear configuration, the polar contribution
to the interparticle potential energy UPe! is given by

(4).

Umi=33 [owbix (4)

where ¢; is given by (1) with P=0.
When both particles and the polarized medium are
present, it is the polar contribution to the free energy

2Cf. M. Mason and W. Weaver, The Eleclromagnetic Field
(The University of Chicago Press, Chicago, 1929), p. 67; cf. G.
J 0356,7Theorelical Physics (Blackie and Son, Ltd., London, 1934),
P 13 5,0 js the sum of a continuous function due to the electrons of
2 and of & functions (of suitable strength) due to the nuclei of 3.
For an ion of charge g, p;° is sometimes approximated by a & func-
tion to represent a point charge g situated at ro, p%(r) =¢é(r—ro).
A polar molecule of dipole moment u is often treated as a dipole,
and higher moments are ignored. This approximation corresponds*
to pi®= —pu-V,5(r—ro). Higher multipoles correspond in the same
way to higher derivatives of the § function. Sometimes a molecule
is regarded as consisting of several separated point charges, so
the corresponding p° is the sum of several & functions.

Any such approximations are special cases of the present more
general formulation and are therefore automatically included in
it. Various equations in the literature can be obtained from those
of this paper by noting that if ¢ is any function continuous at
Iy, then [¢p:%dr equals g¢ (ro) and u- (Vo) for the two examples
cited above. [Use is made of

8(r—ro) =8(x—20)8(y—10)8 (s—30)

and of any integration by parts in the second example.]]

In the literature p;.in is invariably approximated by an induced
dipole, aE; i.e., pie(r)=—aE(r,) Vs(r—r,), where o is the
polarizability tensor and E the field arising from the other parts
of the system. [See Eqs. (40) and (41) of Ref. 1.]

U Cf. discussion of derivatives of § functions by B. Friedman
in Principles and Techniques of Applied Mathemalics (John Wiley
& Sons, Inc,, New York, 1956).
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Frol which is of interest. When P(r) is in electrostatic
equilibrium with the charge equilibrium, e.g., when it
is given by —x(r)vy(r), where x is the dielectric
susceptibility of the medium and ¢ is the electrostatic
potential arising from all parts of the system, then
Frl is given by the rhs of (4), with ¢; given by (1).
A straightforward proof of (4) for U®! in the particle-
only case, and for Fre! in the particle-medium one, can
be given simultaneously. In both cases it equals the
work needed to charge every p? from 0 to its final
value, p,%.1® This proof supplements the two indepen-
dent proofs given in Part I for Ur°l, The value of Fre!
for a particle-medium system when P(r) is not in
electrostatic equilibrium with the p; is given later.

Equations (1) to (4) and an equation for P(r) are
the basic equations. We also make use of Eqgs. (5) and
(6) for the electrostatic potential ¢(r) due to all
sources and for the potential ¥(r) in a system con-
taining an isolated particle i. (This isolated system is
denoted by “is.”)

) =3 [ Dyet [p()vrur ()

r
=gu(r)+ [P 1, (sb)
vu(r) = [ @dr. (6)

ELECTRONICALLY POLARIZABLE CONTINUUM
MODEL OF A PARTICLE

Each particle ¢ is treated as a region having elec-
tronic dielectric susceptibility x;(r) and having a fixed
charge density p;°(r). Both x;(r) and p;°(r) can vary
with position 7 inside the molecule 4, and both vanish
outside V;, the volume occupied by i. The potential
¥(r’) is the sum of contributions of the charge distri-
butions p;” and from all polarized volume elements,
those inside each V;(—x;Vy) and those outside:

vr)=3 / {pT‘v—x.-ng-Vr—l}dr+ f P(r)-Vridr, (7)

18 Both Uve! and Fro! equal

pi=pg
b f f ¢idp0(r)dr,
$ S dpp0mg

¢: in each case being given by the appropriate expression.
Since ¢: depends linearly on o9, this equation can be integrated
to yield (4), as follows: Let A be a charging parameter which in-
creases from O to 1, and let the values of ¢, ¢, o0, ¥, during charg-
ing be denoted by a subscript ), i.e., pi® =N so that the dp:?
above becomes dp;®, i.e., p;%\. It may be seen from Egs. (1)-(6),
after division by A and using the linearity of Ay, that the triplet
(B, ¥*/A, and ¢i*/A) satisfies the same equations as does
(¢‘:' V’y and 4’1-)» Therefore, ¢‘X=M": ‘l"=)¢, ‘l’ill':)‘d’hr by a
mu:ne?z) theorem. Introduction of this value of ¢ and dp®
s to (4).

462

where P(r) vanishes inside each V. For generality,
both x;(r) and x(r) will be regarded as piecewise con-
tinuous functions,’ though in practice they are usually
treated as a special case of these functions, namely
piecewise constant ones. The density p;*(r) is frequently
approximated by certain functions,” but this need not
be done here.
For an isolated ¢ we have:

Yis(r) = / &:jdr— / XsV¥is* Vridr. (8)

From Eq. (8) the charge density of an isolated 7 pss
is found to be given by (9).7+18 Similarly, from Eq. (7)
the charge density of an ¢ in the actual system, p; is
given by (10).

)

(10)

pis(T) =p" (1) +V « (xsVis) — 8(n:) x:i(01n/05)
pi(r) =p"(£) +V - (xsV¥) —6(n:) x: (9 /ans),

where »; is the coordinate normal to the surface S;
enclosing V', its positive direction being outward from
Vi We let #n; equal zero at S; i.e., 8(n;) is a &
function peaked at S;. In the last term x; is the limit
of x:(r) as one approaches S; from within V;, [The
limit of x;(r) as one approaches S; from outside of V;
is zero.]

Uro! or Fr! is obtained by subtracting the reversible
work to charge the isolated #’s from that to charge

18 For example, in any bounded region of three-dimensional
space, a piecewise continuous function has discontinuities at
only a finite number of points, lines, or surfaces.

1 For example, using Green’s first identity,’® the rhs of (8)
can be rewritten as

pi® Ve (xiVio) XiVi¥ia
—dr+f—-———dr-—f7~( )dr;
: 4 r r

and the third of these integrils equals the surface integral (Gauss’
theorem, e.g., Ref. 12),

aKl‘ls
f xi—r~1dS;,
on;
which in terms of a & function is
a')l’ln
/ xi— 116 (n;)dr.
an;
¥is then becomes
a'l’in
/ [ps°+v-x.'v¢|.—x.-—5(m)]dr/r.
an;

The term in [[ ] represents py,, for ¢y, also equals [pdr/r.
30. D. Kellogg, Foundations of Poteniial Theory (Dover
Publications, Inc., New York, 1953).
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them in the actual system. U?! applies to the particles-
only system and Fr°! to the particle-medium system.

pi%=pi®
Uwior o) = 3 [ yaper)ar
i 2{%=p

_E/f N adpr(D)dE. (1)

P:%=0
Equation (11) may be integrated, using arguments
similar to those used before!® but based on the equa-
tions of this section. We find

Ur(or Foo) =33 [ (p=gidpcdr.  (12)

ELECTRONICALLY POLARIZABLE CONTINUUM
MODEL SATISFIES EQUATIONS (1)-(4)

It is shown now that this model satisfies Eqgs. (1)-(4)
with special choice of 4;. Necessary conditions for it
to satisfy these equations are:

(i) pi and p;, given by (9) and (10), also equal p
and p; in (2) and (3), respectively. (These functions
then include a & function peaked at S; if x; is discon-
tinuous at S;.)

(ii) ¥3 and ¢, given by (8) and (7), equal those
given by (6) and (5), respectively.

(iii) Identical values for Frel(or Urel),

We use (i) and (ii) to show that one can find a
molecular description with a p? and an 4; expressed
entirely in terms of continuum properties of i, i.e., in
terms of x:(r), p*, and geometry of V;, and (a crucial
point in the argument) independent of the presence
of any other j(5£1), of any external field and of the
value of x. These equations for p and 4; are necessary
consequences of this form of equivalence of the two
models. It is then shown that the equations are also
sufficient, i.e., that (i), (ii), and (iii) can be obtained
from them. One may then conclude that a particular
molecular description has been found which is math-
ematically equivalent to the electronically polarizable
continuum model of this molecule insofar as polar inter-
actions are concerned, i.e., that Egs. (1)-(4) are satis-
fied by this continuum model.

We treat the particles-only and particles-medium
systems simultaneously; in the former the symbol
P(r) is to be omitted. We obtain first the central
equation, Eq. (16), from which A; for the model
may then be deduced.

Equations (2), (5b), and (6) for the molecular
model yield

U(F)=gu(r) + [2oar, (13)

where

U=y—v¢i. (14)

INTERACTIONS IN POLAR MEDIA. II

Subtracting (9) from (10) to obtain p;i», inserting into
[pidr/r, then reversing steps analogous to those in
Footnote 17, and finally inserting into (13), (13)
becomes '

#(2) =U(C)+ [xvU-vrar.  (19)
Equation (15) is solved for U(r) in terms of ¢; in
Appendix I. [See Eq. (A1) with ¥ and W replaced by

¢: and U, respectively.] From (3), (13), and (A2),
with X and W thus replaced, we obtain

/A;¢‘dr= —/¢ix%g—‘d3i+f¢iv' (xiVGi)dr, (16)
where G;(r, ') is the Green’s function of Eq. (A3) in
Appendix I. Gi(r, ') depends only on x; and on the
geometry of 1.

Equation (16) is solved for 4; in Appendix II. 4;is
found there to be a linear operator dependent only on
the properties of ¢ (specifically on x; and on the geome-
try of 7), and not on the other species, the applied
fields, or the medium. In Appendix III, the p? for this
model is shown also to depend only on p*, x;, and
geometry of 1.

Using these equations for 4; and p?, conditions (i),
(i), and (iii) are then verified in Appendices IV to
VII, and proof is now complete.

SYSTEMS WITH NONEQUILIBRIUM POLARIZATION

We consider now the case where the polarization of
the medium P(r) in a particle-medium system is not
in electrostatic equilibrium with the pf. P(r) no longer
equals —xVy. Instead it can be written as!!-®

P(r) =Po(1) —xo(1) V(¥—0),

where Py(r) and yy are quantities characterizing the
nonequilibrium state of the medium surrounding the
particles 4, and where x. is the dielectric electronic sus-
ceptibility of the medium. The terms P, and ¥, are
independent of all p and p;®». On equating the molec-
ular and continuum particle model expressions for
various quantities, as in the earlier section on equiva-
lence of the two models, this environmental term
cancels, just as it did in the equilibrium case, so that
all equations in that section and in the pertinent dis-
cussion given in Appendix I remain unaffected. [In-
deed, P(r) nowhere appears explicitly in those sec-
tions.] Similarly, an examination of Appendices II,
III, IV, and VII reveals an absence of P(r), so that
these proofs are unaffected also. In Appendix V, x(r)
appears in Eq. (A24). However, when the last term
in (A24) is replaced by its nonequilibrium equivalent

- (17)

¥ x. is related to D,,, the square of the refractive index of the
medium, 4mx,=D,,—1. In an equilibrium polarization system,
¥=vo and Po=—xVyy, so that (17) reduces to the value given
earlier for equilibrium polarization systems.
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(17), the remaining few lines of the proof proceed as
before. Equations (4) and (12) for Fr! no longer
apply. The correct expressions are obtained as follows:
Let the above Py(r) be the polarization that the
medium would have if, for its given orientation polari-
zation, it were in electrostatic equilibrium with a
charge distribution. The properties of this hypothetical
state and charge distribution are designated by a sub-
script 0. It is then shown in Appendix VIII that the
value of Fro! for the molecular-type and continuum-
type models of the particles is given by (18) and (19),
respectively.

proi=Fomi+ - [ (dickda) (p0—pil)dx,  (18)

Frl= Fo‘”l'l'z.:f (¥4vo) (p°—pi?)dr.  (19)

The equality of these expressions is then also shown in
Appendix VIII, and the proof for this nonequilibrium
polarization case is also now complete.

SELECTION OF x;

Any choice of x; should be consistent with the be-
havior of the’isolated molecule in the simplest applied
potential of interest, the one with constant gradient.
Examination of, say, Egs. (A4) and (AS) of Appendix
I reveals that x;(r) is related to a dielectric constant
Di(r) defined by (20).

Di=1+4mx.

Since molecule 7 is at specified nuclear configuration,
x: or D; is related only to the electronic polarizability
of 1.

Restricting our attention now to piecewise constant
x¢’s, the value of x; is readily obtained for a dielectiic
sphere as follows:

The Green’s function is given by (21).2

(20)

o  2n+1 "
G(r, r' —_— n
(r,r)= é Dot penn(cosy)
(l’in Vi r’ not in V.'), (21)

where v is the angle between the vectors r and r’. v
is eliminated using the addition theorem for Legendre
polynomials.2

P,(cosy)

(n—m)
Z:(-f- )!

d/0n; is 9/0r.

0 Cf. J. A. Stratton, Electromagnetic Theory (McGraw-Hill
Book Company, Inc., New York, 1941), p. 204. Equation (20)
there was multiplied by 4r to convert to our units.

# Reference 20, p. 408. Our v is Stratton’s 6 on p. 204, P, ™=
Lm—m)/ (n+m) 1]P,m,

P,,"‘(coso)P ™ (cosh’) e‘{p[zm(tb ¢') ],
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In a uniform field E, along the z axis, ¢; equals
—E_z plus an additive constant. Remembering that
z equals 7 P;(cosf), then using (3) and (16) and noting
that the second integral in (16) vanishes since every
term in (21) satisfies Laplace’s equation in V;, one finds

/‘ —1  Pi(cost')
fr—r' | .+2 r'?

Eq. (22) also has the form of the potential of an
induced dipole moment, «E, equal to (D;—1)
@3E,/(D;+2). Thereby, D; is found to be the solution
of (23):

E. (rinVy); (22)

D= (a*42a)/(a*—a). (23)
The same value of « is found if one sets ¢;= — E;x or
— E,y so « is isotropic.

Using the Clausius-Mosotti equation, the square of
the refractive index # of a closely packed fluid com-
posed of #’s and having negligible free volume is
given by the same equation. Hence, D; may be obtained
from 7? for such a medium: D;=n? As remarked
earlier, once D; is selected, its value is independent of
the other particles present, of their concentration, and
of the external fields, to the approximation that these
variables do not alter V.

In the case of ellipsoidal particles, the Green’s func-
tion can be expressed in terms of ellipsoidal harmonics.
The leading term is of particular interest, it being the
only term when the potential has a constant gradient. In
a uniform external field where ¢:(r) = — E.x, one finds?

f p(r') | P abc(Di—1) Ex
[r—1 | 24-abc(D;—1) L

(24)

x/‘” ds
¢ [(s+a?)?(s+b?) (s+cA) I

where a, b, and ¢ are the lengths of the semiprincipal
axes (a>b>c), ¢ is the solution of (25), and L, is
given by (26):

%2 | 52 | 22

e
© ds

L’=/o TGt o) 1T

If the induced charge density had only a dipolar con-
tribution, say along the x axis, the density would
exert a potential x/7® times a constant. Only when a,
b, and ¢ are equal is (24) of such a simple form. Hence,
a potential with a constant gradient induces not only
a dipole but also higher multipoles as well. At large
(hence, at large £), the leading term in (24) is that

(E>=c), (25)

(26)

2 Reference 20, p. 213. In Eq. (38) there, one subtracts ¢o to
obtain the potential due to the induced charge. This ¢ is our ¢;.
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due to the induced dipole «.E.. Noting that for large ¢
the integral in (24) approaches % £, and setting (24)
equal to azEx/r% one finds that D; must satisfy (27):

a;=3abc(D;—1)/[2+abc(D;—1) L.]. 27
Similarly, D; is also the solution of the corresponding
equation with a. and L. replaced by o, and L,, and of
the corresponding equation with «. and L, replaced by
a, and L,2 A check on the consistency of the model
is obtained by seeing if the D; estimated from each of
the three equations is approximately the same.

ERROR OF INDUCED DIPOLE APPROXIMATION
FOR A SPHERE

As noted earlier, the approximation of regarding the
induced charge distribution as being an induced dipole
at a point in a molecule will break down when the
molecule becomes sufficiently large or the field suffi-
ciently nonuniform. In fact, this breakdown has per-
mitted the estimate of molecular size through light-
scattering experiments.8.%

The error in making the induced dipole approxima-
tion is easily estimated for the case of the interaction
of a charge with a dielectric sphere, the counterpart
of the interaction of an ion with a large spherical
molecule. The work required to bring a unit charge
and a dielectric sphere from infinity to a distance R
apart is given by (28)%:

w(R)=— (a/R)™n,

(D;—l) . n
T ° (28)

t+14nD;

The n=1 term is the dipole contribution. If in the
other terms one roughly sets n-+4122u, the ratio of
the #=1 term to the sum of all remaining term is
[(Ds+1)/(Di+2)J[(R/a)?—1]. Evidently, even when
R =~2a, the correction to the induced dipole approxi-
mation is not negligible. When R approaches g, a
situation which corresponds to an ion approaching an
appreciably larger molecule, the error is considerable.
If this approach occurs in the solution, and if the sur-
rounding solvent is treated as a dielectric continuum
of dielectric constant D, the corresponding equation
for w(R) is also available® and is obtained from (28)
by replacing D; by D;/D. As before, the ratio of the
induced dipole term (n=1) to the remainder is about
[{Di+D)/(D:+2D) [ (R/a*—1], which, as before, can
be smalll -

B Ly is L; with a and b interchanged and L, is L. with ¢ and ¢
interchanged. We note that L.+L,+L,=1. The approximate
values of the L’s are given by® L,:L,:L,=1/a:1/b:1/c.

# When the ratio of particle size to wavelength is of the order
of 0.1, a dissymmetry occurs in the scattered light. Estimates of
molecular size have been made thereby, particularly in the
“Rayleigh-Gans” region,? using in effect the continuum model.

2 ”J.l G. Kirkwood, Ref. 5. In his Eq. (76) we set =0, D=1,
k€= 1.

POLAR MEDIA. II

POSSIBLE EXPERIMENTAL TEST OF THE MODEL
FOR INDUCED CHARGE

The inadequacy of an induced point dipole model for
light-scattering experiments with very large molecules
has been mentioned earlier. Similar experiments for
smaller molecules, 20 X in diameter say, would require
light of wavelength of the order of 200 A or less. This
wavelength is not easily accessible, and also the elec-
tronic response would differ considerably from that
for static fields. An estimate has been made of the con-
tribution of induced quadrupoles in the case of x-ray
scattering from small jons in crystals.® In this partic-
ular case the effects appears to be small.

The study of the induced point dipole approxima-
tion by electron scattering also offers various experi-
mental and theoretical difficulties. To make the wave-
length appreciably large compared with particle size
[A=(150/V)% A] an unusually low electron energy is
needed. In addition, any penetration of the electron
cloud of the scattering molecule by the incident elec-
tron would also contribute other terms to the inter-
action energy. Indeed, in experiments at slightly higher
energies (~1 eV or more) such penetration terms have
been the ones used, in conjunction with some rough
polarization correction, to explain the scattering
patterns.”

To increase the wavelength considerably and so in-
vestigate the possible breakdown of the approximation
with particles of appreciable size, one might study
instead the scattering of ions by these molecules. A
sodium ijon of 2 eV kinetic energy has a A\ of about
150 X. Equations relating scattering to interaction
potential, say, in the WKB] approximation, have been
described® and could be applied to the present prob-
lem. The total interaction potential is usually taken to
be the sum of the polar term, a dispersion term, and
for shorter distances a repulsive term. For large 7 only
the first two need to be considered.” Certain possible
contributions of an inelastic nature, such as charge
transfer or electronic excitation, can be minimized by
use of ions of low electron affinity (e.g., monovalent
alkali metal cations) and of low energy.

ACKNOWLEDGMENTS

The writer would like to acknowledge the support
of this research by the U. S. Atomic Energy Commis-

# H. Honl, Z. Physik 84, 1 (1933); cf. discussion in R. W.
James, The Optical Principles of the Diffraction of X Rays (G. Bell
and Sons, Ltd., London, 1950), pp. 161-167.

7 Cf. N. F. Mott and H. S. W. Massey, The Theory of Alomic
Collisions (Oxford University Press, London, 1950), 2nd ed.

8 K. W. Ford and J. A. Wheeler, Ann. Phys. N.Y. 7, 259, 289
(1959); R. P. Marchi and C. R. Mueller, J. Chem. Phys, 36, 1100
(1962) ; R. B. Bernstein, ibid. 36, 1403 (1962) [who gives expres-
sions for an interaction potential energy of the form ¢f(r/c);
Eq. (30) is of this form].

® Cf. “Scattering of Atoms”: R. B. Bernstein, J. Chem. Phys.
%65396)4 (1961); E. W. Rothe and R. B. Bernstein, #bid. 31, 1619



R. A. MARCUS

sion, the National Science Foundation, and the Alfred
P. Sloan Foundation. A portion of this research and
that of Part I was performed while the writer was a
National Science Foundation Senior Post-Doctoral
Fellow at Courant Institute of Mathematical Sciences,
New York University.

APPENDIX I: SOLUTION OF EQUATION (A1) IN TERMS
OF (A2) AND VICE VERSA
If ¥ and W denote any functions for which the
pertinent operations are defined, it is shown that,
given Eq. (A1), (A2) follows, and conversely.

Y (r')=W(r')+ [ x(r) VW (r) - Vridr, (A1)

W(e)=¥(x)- [T 3 Xr, Das,

+ [ Y (1) V-x:(r)VGL(T, )dr, (A2)

where G;(r/, r) is a Green’s function, the solution of
Eq. (A3), and also the potential at a point r’ in a
system having a unit charge at r and a dielectric sus-
ceptibility function x;(r)

G, 1) =r1— f (OVG(t, 1) -Vaidt, (A3)

where V, denotes V expressed in terms of the coordi-
nates of ¢, 1/r denotes 1/| r'—r|, and 1/¢ denotes
1/ r'—t|. Gi(r’, r) can also be defined as the solution
of a differential equation (A4), with boundary con-
dition (AS).®

V-[(1+4mx:) VGi(Y, 1) ]=—4rd(r'—1); (A4)
for all 5:
(1+417x.) aG{/an,': aG.-/an,«° at S,'
, (A5)
G, continuous at all S;; 7G;< © when r=

where 8/dn® denotes the limit of 8/dn; as one ap-
proaches S; from outside of V;. One easily shows in a
standard fashion™ that G;(r’, r) =Gi(r, r'). In (AS5)

¥ Proceeding in the same way as when (10) was obtained from

(9),Y the rhs of (A3) becomes
V-x:VG;
+ j Mt
[

1 xs G
—f——dS:
} ong

Operating with V.? and applying the results of Ref. 18 (p. 150
and Theorem IIT, p. 156), (A4) follows. Operating insteag with
d/dn;’ and 3/9n," and using the results on p. 160 and p. 164
(Theorem VI) of Ref. 18, (AS) is obtained. 3/dn. and 8/an, there
are our 8/dn; and 3/any, respectively. There is a typographical
tta)rror li)n one of the equations on p. 160 (r~? should be replaced

r).

1 P. M. Morse and H. Feshbach, Methods of Theoretical Physics
{McGraw-Hill Book Company, Inc., New York, 1953).
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when j#i, x.(r)=0 and so 3G./dn, equals G,/on,
for 7 #1.
We shall also use the relation
V2(1/r) = —4xd(r—r’). (A6)
In both proofs in this Appendix we apply the identity
(A8), obtained as follows:

W (or indeed any function) can be written in the
form of an identity (A7), because of (A4) and (AS):

W(r’)=fW(r)6(r—r’)dr

1
- [Wy-(1-+4ax) VG dr

aG"—iG—"}ds,. (A7)

w
—I(1 i
+;[41r[( i )6n, anp
[We have added the term involving surface integrals, a
permissible step since it vanishes because of (AS).] The
collection of the surface integrals is, by Gauss’ theo-
rem,!? equal to

o[+ W (1-+rx) vGyar,

which on performing the V- operation yields two inte-
grals, one of which cancels the first one in (A7). Hence

1
W)= [ (t+4x) VW VG,
This integral can be rewritten as
/V-G.-(1+4-n-x.-) VWdr—/G;V- (14-4ax;) VWdr.

Using Gauss’ theorem one then finally obtains the
identity,

W(r)= —i [69- (1-+4ax) vwar

1 oW oW

+Z,:E Gi{ (14-4mxs) a_m—a—m-o}dSi. (A8)

Proof that Eq. (A2) for W is the Solution of Eq. (A1)
We first convert the integral in (A1) to

/ v.(x—‘vw)dr— / _v-x.-der
r r

and then convert the former to the surface integral

xi OW s,

r on;
(Gauss’ theorem). One may then obtain Egs. (A9)
and (A10) from (A1) in a way identical to that em-
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ployed to obtain (A4).and (AS) from (A3), by oper-
ating separately on (A1) with V.2, 8/dn;, and 3/any.

V- (1+4mx:) VW =V?Y; (A9)
for all 5:
oW oW oY oY
DT TS T, t.S;). (Al0
(1+4mx on; onp dn; ond (at 5,). (AL0)

Inserting (A9) and (A10) into the identity (A8) and
reversing the procedure used to obtain (A8) from (A7)
(two integrations by parts and two applications of
Gauss’ theorem), one finds

W(r)= —41r‘1[ f YViGdr— [ Y(gi—--;%)dS]
(A1)

Adding and subtracting,
(4rx:VG;) / darx; 0G5
—-— Y . ———d Y dSi,
[ v r+ 4 .

In;
and applying Eqs. (A4) and (AS), one obtains the
rhs of (A2).

Proof that Eq. (A1) for Y is the Solution of Eq. (A2)

Equation (A2) can be written as (A11) by reversing
the last step of the preceding section. But since W is
also given by the identity (A8), the rhs’s of these
equations can be equated, and, after some manipula-
tion, the result can be written as

f Grdr+ Y f Gio"dS;=0,
i

where p* and o;* are

pt=V-{(14+4rx;) VW—VY},
oW oW oY aY

7i (1+41I'x$) ani an,-" an,- an,-"'
[Use was made of (AS) : G;/0n;=03G:/dn;® when j#i.]
From the meaning of the Green’s function, we con-
clude from Eq. (A12) that in a medium in which the
dielectric susceptibility is x; in V; and zero everywhere
else, a system with volume charge density p* and sur-
face charge densities ¢;* has a potential which vanishes
identically. Hence p;* and all o must vanish every-
where. From the expressions for p;* and ¢;* Egs. (A9)
and (A10) then immediately follow. From the latter,
(A1) can be deduced by multiplying (A9) by 1/,
integrating over r, integrating by parts, appplying

Gauss’ theorem and finally using (A10) and (A6).

APPENDIX II: SOLUTION OF EQ. (16) FOR A;

(A12)

Since the induced charge density may have both
volume and surface contributions, we may write A4;
without loss of generality as in (A13),

Ai=Ar+A428(ns),

(A13)

and solve for 4, and 4.

POLAR MEDIA. II

Introducing (A13) into (16), one may obtain from
(16) Egs. (A14) and (A15) in the same way that (A4)
and (AS5) were obtained from (A3), by operating
separately with V,.2, 8/dn/, and 8/9n, etc.

oG
—4rAPPi= V,-r{/(ﬁ;V' (x,-VG,-)dr—/‘¢.-x.g—1:dS.~],

(A14)

d d aG;
ArA; ¢;= (?m—‘_,—amo,)[/ct.-v-erGdr— [¢.x.a—n‘d5.]
(A15)

(We. used the fact that [A»¢dr/r has a continuous
normal gradient at S:.)

Operator equations for 4, and A are obtained
from (A14) and (A15) by omitting ¢;. We see that
both 4, and A;* are operators which depend only on
x: and on the geometry of 4. (x; vanishes outside of V;.)

APPENDIX III: SOLUTION FOR »°

We first note from Eq. (8) that ¥, can be expressed
in terms of p*, x:, and the geometry of 4, using the
Gi(r, ') of Appendix I: Multiplying (A3) by pi*(r),
integrating over r, and interchanging the integration
order, one obtains an equation for [Gip"dr similar to
Eq. (8) for yi.. By the uniqueness theorem for poten-
tials'® we therefore have

b= [Gu(x, )prir. (A16)

From the fact that in the continuum model of a
particle ¥, is given by an equation similar to (6), but
with p replaced with pi, and from the fact that pi, is
given by (9), we have

pP=p+V « (x:Vis) — 8 (n:) xi(dis/Ons)

where i, has the value given by Eq. (A16). Inserting
(A16) into Eq. (A17), we see that p° depends only on
Xi, pi¥, and the geometry of 1.

(A17)

APPENDIX IV: EQUIVALENCE OF EXPRESSIONS
FOR ¢, FOR THE TWO MODELS

Introducing ps given by Egs. (A16) and (A17) into
Eq. (6) for ¢i® (M denotes molecular model), one
obtains, after an integration by parts and after inter-
changing the order of integration,

UM(r) = [ pe(t) dt[r-1— f VGi(T, t) - Vridr].
(A18)
Introducing Eq. (A3) for G;, the rhs of Eq. (A18)

becomes

[oe®Gi(x, vat,
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which is also the value of ¥, for the continuum model
[cf. Eq. (A16)].
APPENDIX V: EQUIVALENCE OF EXPRESSIONS
FOR ¢y FOR THE TWO MODELS

From the values of 4;* and 4 derived in Appendix
II, expressed in terms of properties of the continuum
model, we first obtain Eq. (A19):

Using (A13) to operate on an arbitrary function V,
then dividing A4,V by r, integrating over r, and intro-
ducing (A14) and (A15) (with ¢; replaced by the
arbitrary function V), one obtains an expression for
JA:Vdr/r. Integrating by parts and applying Gauss’
theorem twice and using (A6), one finds

iV dG;
f ir—dr= f VvV (x:VGi)dr— f Vx.a7d5¢- (A19)

However, from Egs. (2), (3), (Sb), and (6), one
finds

i¢t’M
r

sy =gr—y i [0 (a20)

which when combined with (A19) (with V now re-
placed by ¢:¥) yields

V() (1) =40+ [ 919+ (x:9Gdr

aG;
—/¢iMxl'£dSi' (A21)

This equation may be inverted to give (A22), by ap-
plying the second proof in Appendix I [deduction of
(A1) from (A2), with Y=¢M amd W=yM—y; 1],

pM=yM—yM+ / xiV (M=) - vridr.  (A22)

From (A20) and (A22), (A23) follows:

M
A2 4=~ [xw gy viriar. (a23)

Introducing (2), (3), and (A23), Eq. (5a) for y¥
becomes

B Ty Be——

— [ xVyM-Vridr,

on setting P(r) equal to —xVy¢M. The first integral
on the rhs equals ¥;™, but this equals the continuum
¥is (Appendix IV), [(p—xiV¥is*V)1/rdr. Making
this substitution, one obtains

Y= Z / [g"xﬁlﬁ"’ <V ‘]dr—- / xVYM-vr-idr.
(A24)
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This equation is the same as that satisfied by ¢ for
the continuum model [Eq. (7)]. By the uniqueness
theorem for potentials, they are therefore equal.

APPENDIX VI: EQUIVALENCE OF EXPRESSIONS
FOR Frel FOR THE TWO MODELS

Introducing Eq. (A22) for ¢ into Eq. (4) for Fy},
interchanging the order of integration, and using Eq.
(6), one obtains

le=%z[ [y piar

+ [ %V (¥ — i,M)-w«,dr]. (A25)

Introducing Eq. (A17) for p? one obtains (A26),
after integrating the last term in (A25) by parts and
remembering that x;=0 outside of V:

Fumi=33 [~y M)prir.  (A26)
Since ¢ and ¢ are the same as ¥ and y;, for the
continuum models (Appendices IV and V), this expres-
sion is identical with Eq. (12) for the continuum value
of Frel,

APPENDIX VII: EQUIVALEI;CE OF THE EXPRESSIONS
p:

Because of Eq. (A17) the expressions of the two
models for p;, (i.e., for p) are made automatically the
same by choosing p;* to satisfy (A17), for any assigned
pd(r), xi(r), and geometry of 1.

The expression for p; for the molecular model is given
by (A27), which follows from (2) and (3):

pM(r) =p(r)+ApM.

Because of the 1:1 correspondence between any func-
tion p;(r) and the function [p;(r)/rdr, it suffices to
prove equivalence of the latter for the two models.

From Egs. (A27), (A17), and (A23) one obtains,
after using Gauss’ theorem and recalling the boundary
conditions on ¥,

o _[p
'le'-— le'— xiVW°V1’_ldl’.

The rhs of this equation is, with ¢ replaced by the ¥
for the continuum model of a molecule, equal to
Jp€/rdr (where p€ is the p; for the continuum model).
Since yM and Y€ are equal (Appendix V), it then
follows from this equation that p# and p are equal
also.

APPENDIX VIII: Fro! FOR NONEQUILIBRIUM
POLARIZATION SYSTEMS

(A27)

Let X be a charging parameter describing the change
(at fixed orientation polarization) from the equilibrium
polarization state (A=0) to the specified nonequilib-
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rium state (A=1), i.e,,
P =pi" +A (P —pi”) .

piy” and p;® are the values of p¥ at A=0 and A=1,
respectively. Using (7) and (17) we may then write

Y= ; / (p%k— XV Vr—l)dr

(A28)

+ [[Pe—xv -] vrar,

whence

Pi"x—' piy’ 1
P == ;f[—r——x.-V(\P—%) V- ]dr

— [ XV (P—¢°) - Vridr. (A29)

It follows from (A28) and (A29) that (y*—s)/A and
¥ —yo satisfy the same equation, so that

P —v=A(¥—vo). (A30)

In virtue of (A17) and the proven equivalence of the
charge distributions in the two models and their expres-
sions for the s, p obeys an equation similar to (A28) :

p'ﬁ"= p,-oo-l-k(Pio_Pt’oo) . (A31)

POLAR MEDIA. II

Using (A21) for ¢, ¢s, and ¢y, then inserting (6),
(A30), and (A31) in each case, (A32) follows.

2 —di=Ndi— i) (A32)

For nonequilibrium polarization systems, Egs. (4)
and (11) for Fre! are to be replaced by

1
Frol= Fppol4- >~ f / ¢ dpfd\dr (molecular), (A33)
7 /=0

1
Frol= Fopol4- 3~ f f Y pdAdr  (continuum). (A34)
5 =0
Introducing (A30) and (A32), we obtain

(molecular) Frol= Fo+%z‘: f (Pitoin) (p—piy)dr,
(A33)

(continuum) Frel= Fo+%z_: f (Y+¥o) (p°—pi")dr.
(A34)

The equivalence proof is now similar to that used
in Appendix VI. Equation (A22) is introduced, there
being an equation of this type relating ¢ to o™ and
another of the same type relating ¢ to ¢*. In this
way the analog of (A25) is obtained from (A33).
After introducing (A17) for p?, the analog of (A26) is
obtained, and this proves to be the same as (A34).




