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The polar contribution to the free energy is calculated for a system containing “particles’ imbedded in
a continuum having nonequilibrium dielectric polarization. Each particle may either be a single molecule
or a whole collection of molecules (such as an electrode) at specified nuclear configuration and may possess

a general permanent and induced charge distribution.

Thereby, the results of Part I of this series are

extended to a variety of systems. It is also shown that the polar contribution to the free energy can be
written as the sum of free energies of equilibrium polarization systems, thereby permitting the immediate
application of literature expressions for the latter to calculating the former. This expression is also derived
for systems possessing partial dielectric unsaturation under a certain typical condition. Applications are
made to the theory of electron-transfer reactions in solution and at electrodes and to the theory of the shift

of electronic spectra of polar solutes by polar solvents.

INTRODUCTION

IN Part I of this series, the free energy and other
properties of systems having nonequilibrium di-
electric polarization were discussed, the system being
treated for quantitative purposes as a dielectric con-
tinuum.! This treatment was employed to formulate a
theory of electron-transfer rates in solution?? and at
electrodes,®® and to develop a theory of shifts of elec-
tronic spectra of polar solutes due to interactions with
polar solvents.® Certain molecules under special con-
sideration, which will be termed central species, were
regarded as being electronically polarizable regions
(continua) imbedded in the remainder of the system
treated as an orientationally and electronically po-
larizable dielectric continuum. Examples of the central
species are two reacting ions, a reacting ion and the
electrode, and a fluorescing solute molecule,

The treatment in Part I can be extended considerably
by using a recent and more general description of the
central species’: One may regard them as being particles,
each of which represents a single molecule or any collec-
tion of molecules at any specified configuration of the
particles’ nuclei. These particles are assigned general,
permanent, and induced charge distributions and can
be embedded as before in the remainder of the system
and treated as a dielectric continuum. (A statistical-
mechanical description of nonequilibrium polarization
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systems, based on this model of a particle, is given in
Part III of this series.)

Two special cases of this model of a particle are, it
has been shown,® the usual models employed in the
literature of dielectric behavior and polar phenomena.
These are the induced dipole and the electronically
polarizable continuum models of the induced charge
distribution on a particle. In this literature the particle
is a single molecule or, in electrode systems, an entire
electrode treated as a continuum. We need not restrict
ourselves to such special cases, however.

In the present paper we describe this extension of
Part I. Because of the general nature of these particles,
electrode systems are automatically included, and
thereby Part I is further generalized since it was con-
cerned with homogeneous systems only. Electrode
systems had to be described separately.?

An expression is obtained for the polar contribution
to the free energy of systems in which the medium
surrounding the particles is treated as an orientationally
and electronically polarizable dielectric continuum
having nonequilibrium dielectric polarization. It will
then be shown that this free energy can be expressed
as a sum of free energies of hypothetical systems having
equilibrium dielectric polarization. An advantage of
this relation is that literature expressions for equilibrium
polarization systems can then be immediately used to
compute the free energy of nonequilibrium ones.
Several examples of this application are given later.

It will be useful to regard each ion and its inner co-
ordination shell as forming a single particle. In electro-
chemical systems it will also be useful to treat the
electrode and any strongly bound adjacent layer of
molecules or ions as another particle. The interactions
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within these particles may then be described by molecu-
lar methods® while dielectric continuum theory is used
in this paper to calculate the polar contribution to the
free energy arising from the mutual interactions of the
particles and from their interactions with the medium.
The calculation is made at any specified nuclear con-
figuration of the particles. One may then integrate
over these nuclear configurations, suitably weighted as
in statistical mechanics. We consider first dielectrically
unsaturated systems and then deduce Eq. (23) for
partially saturated systems as well.
DIELECTRICALLY UNSATURATED NONEQUILIBRIUM
POLARIZATION SYSTEMS

We let each particle 7 have a total density p;(r), the
sum of a permanent charge density p0(r) (the charge
density when % is isolated) and an induced charge
density ps"(r). The latter is related to ¢:(r’), the po-
tential due to all sources but 7, via a linear Hermitian
operator A7

pi(r) =p(r) +pi"(1), (1)
#()=3 f ”L(rfldr+ f P(r) —V%dr, 2)
pin(r) =A(r, r') (1), 3)

where P(r) is the polarization of the medium (it
vanishes inside the volume V; occupied by any particle
i) and 1/r is 1/| r—r’|. Integration in (2) is over
the entire volume of the system, and p; vanishes out-
side V.

In the nonequilibrium polarization systems which
we have investigated thus far? 4® the orientational
contribution to P(r) has proved to be one which is in
equilibrium with p/’s different from the existing ones.
We shall denote by a subscript 0 the properties of this
equilibrium system (the ‘“equivalent equilibrium sys-
tem”). We also introduce three other equilibrium
polarization systems: (i) one denoted by a subscript 1,
having the same p;"s as the nonequilibrium system
pa® but having a P(r) in equilibrium with them; (ii)
one denoted by a subscript 1—0, having p;_0=p;?—
pi? and having a P(r) in equilibrium with the p;,-7’s;
(iii) one having pdf=p;_ and responding to these
p®’s only via an electronic polarization. We denote this
system by a superscript op and subscript 1—0. The
four equilibrium systems will be referred to as the [0],
[1], [1—0], and [1—0, op] systems, respectively.lt

1 These molecular methods for the internal nuclear coordinates
of the particles were used in references 3 and 5.

11 We assume in the present paper that the A; for any ¢ is the
same in the nonequilibrium and equivalent equilibrium polari-
zation systems. There is no obvious reversible path for changing
these 4.’s, and the extension of the present work to include such
changes lies more properly within the scope of a statistical me-
chanical treatment. This extension is given in Part III. The
additional contribution to AF in Eq. (7) is shown there to in-
volve certain fluctuation terms. This extension is of interest
when there is a sufficient change in the generalized polarizability
operator 4;. One possible example is in fluorescence or light ab-

sorption, where the excited and ground states of the radiating or
absorbing molecule have a different polarizability.

NONEQUILIBRIUM POLARIZATION SYSTEMS. II

Let x(r) and x,(r) denote the static and electronic
dielectric susceptibilities of the medium, respectively,
at any point r in the medium.

X(r)=(Da—1)/47r’ Xo(r)=(Dop_1)/47r,

where D,(r) and D,,(r) denote the static dielectric
constant and the square of the refractive index of the
medium, respectively. (Usually the x’s and the D’s
are constant scalars, but we include the possibility that
they are variable tensors.) Let y(r) denote the po-
tential at any point r due to all parts of the system’:

V=3 f Bar+ [ P-v%dr, (4)

with p; given by (1). When appropriate subscripts are
added, these equations refer to any of the five systems
described above. P(r) for the nonequilibrium polariza-
tion system differs from P of the [0] system, Po(r),
only in electronic polarization. Assuming the electronic
polarization to be dielectrically unsaturated, we have’%:

P—Py=—x,V(¥—n). ()

When from the coupled Egs. (1) to (4) one sub-
tracts their counterparts for the [0] system, we obtain
coupled equations for the (¢pi—¢i)’s and ¢—yp as a
function of the (pf—p;?)’s. Denoting the totality of
the latter 8p®’s by p°(r) —p(r),

PP —po"= (p®—p1’, P —pagls = *5 PP —pis ***),

we then see that when the p® are permitted to vary,
the ¢;—¢;, are linearly dependent on p°—ps® via a
linear operator C;3:

$i(1) —¢io(r) = Ci(x, ©') {o°(1') —p (1) }.  (6)

The polar contribution to the free energy of a system

12 Cf, Part I, where we wrote (in terms of the present notation):
P(r) =Pu(r) —x.V¥.

P, a convenient function for the minimizations performed there
and elsewhere, equals Po+x,Vio. It was termed the orientation
component of P in Part I, although it also contains an electrenic
component of the [0] system. This terminology was misleading
but did not affect either the formulas of Part I or their application.

B3 Let #; denote ¢;—oi,. To show that C; is a linear operator
we must show that

ui(ac+pd) =aui(a) +Pui (b),

where « and 8 are scalars, and a denotes a charge distribution
described by p—p¢° so that ae--B8b denotes a charge distribu-
tion described by a(p®—p®) +8(m®—ps®), and %;(a) denotes
@i (r) —¢io(r). By subtracting Egs. (1) to (5) for System [0]
from those for System % then multiplying by «, and by sub-
tracting (1) to é)ﬁfor 0] from those for b:rand multiplying
these by 8, and finally adding these two sets of equations one ob-
tains equations satisfied by oaw;(a)-+Bui(b). Because of the
linearity of 4; and of —x,V in (3) and (5), the same equations
for u; are also satisfied when the permanent charge density is
a(ps®—po®) +B(p—pd?), i.e., they are also satisfied by u;(aa+8b).
Because of the uniqueness theorem for the potentials, we may con-
cé:n:ie li;hat u;(xa+4B80) and au;(a) +ﬂu;(£)) are equal, i.e., that
is linear,
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equals the reversible work done to charge the system.™
The free-energy change AF, when that system is
changed from one set of charges on the particles to
another, equals the reversible work done to form one
system from the other'4s:

1
aF= [ gdipoar, )
A=0
where A is a charging parameter.

Starting with system [0] and holding the orientation
polarization of the medium fixed, we can form the non-
equilibrium polarization system by changing the p®
according to (8)

P =pid+A(pil—pid®). (8)

Since Py is being held fixed we may apply the linearity
relation (6) and conclude:

¢t’\ = ¢t'co+)‘ (¢51_¢1‘o) . (9)

Moreover, the collection (¥—wo, **+, @i—@iy *°*)
satisfies the same set of equations as does (Y1—°P---,
&i-° +++) so that by the uniqueness theorem for
potentials'® we have

Gi—Pig=i;-o""- (10)

From (7) to (10) Eq. (11) .then follows; i.e., for non-
equilibrium polarization,

F=Fot 3 [ Gatious) (pus—pid)dr. (1)

where Fy is the polar contribution to the free energy
of the equilibrium polarization system [0].

We need, too, the value of F for equilibrium polariza-
tion systems. Starting from an uncharged system, this
F is obtained from (7) by setting:

P =Np, (12)
P (r) = —x(r)vyr (13)

Relation (13) assumes dielectric unsaturation. Once
again, because of (1) to (4) and (13) one can prove a
linear dependence of ¢; on p°

$:(1) =Di(r, ') p°(r'),

1 Compare reference 7 for a discussion of the potential energy
of any configuration of particles, based on a Hartree approxima-
tion for the Schrédinger equation describing the interparticle
interactions and based alternatively on the electrostatic reversible
work to charge up the system. (The two expressions agree.) The
same argument can then be extended to the problem of calculat-
ing the free energy when an orientationally polarizable medium
is present.”

1 Tnitially, in using (7) to derive (23), the electrostriction
which may result when this work is performed at constant pres-
sure is ignored. It can be included by taking into account any
dependence of x(r) and x.(r) on A. We note that this electrostric-
tion is the one which occurs outside the inner coordination shell
of each ion. In the derivation of Eq. (23'), the electrostriction
on forming system [0] is not neglected. Rather one makes the
normally milder assumption of neglecting the additional electro-
striction_on forming system [17] from [0]. Systems [1-0] and
[1-0, op] have the x(r) and x.(r) of system [0].

! For example, O. D. Kellogg, Foundations of Potential Theory
(Dover Publications, Inc., New York, 1953).

(14)
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where D; is a linear operator. Using (12) we conclude
from (14) that

d =N (15)

From (7), (12), and (15) we obtain (16) for the polar
contribution to the free energy of an equilibrium
polarization system.

For equilibrium polarization

F=%Z/¢€Piodr-

Equations for F for the four equilibrium polarization
systems described earlier are obtained from (16) by
adding appropriate subscripts and superscripts. For
the [1—0] and [1—0, op] systems, we thus have

Fl—0=%Zfd’il-n(l’t'xo_ﬂioo)dr’

(16)

17

Frs=3% 4 (eid—pa)dr.  (19)

Another consequence of (14) is (19), since both sides
of (19) depend on (p1,- pa,~cs ***, Pa—ss ***), i€,
on py—¢, via the linear operator D;.

(19)

We shall need an expression for F;— Fy, which for sub-
sequent discussion of the effect of dielectric saturation
is best obtained from (7) using (8).

Plnk=Pl'o+)\(Pt'1°_Pioo) . (8)

As this p;® is varied, incidentally, P* changes from Py
according to (20), P* being linearly dependent on p°.

@iy ™ Piy™= Pi—or

Pr—Po= —xV (y*—v0). (20)
Because of (14) we have from (8)
=i+ bi—din), (21)

and from (7), (8), and (21) we obtain

Fi=Fo=3 2 [ (ot id (oud—pilddr.  (22)

Finally, from (11), (17), (18), (19), and (22) the
desired relation is obtained:

F=F+Fy_°*— Fy_,. (23)

PARTIALLY DIELECTRICALLY SATURATED
NONEQUILIBRIUM POLARIZATION SYSTEMS

Any solvent present in the inner coordination shell
of an ion will be at least partially dielectrically satu-
rated. Partly for this reason the inner coordination
shells are treated separately and by a noncontinuum
method.’® However, partial saturation can also occur
in the solvent just outside this shell if the ion is highly
charged, and in this section this latter saturation will
be considered.

Equation (23) can be derived for systems having
this partial dielectric saturation, provided the change
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in permanent charges of the particles on going from the
equivalent equilibrium system [0] to the nonequilib-
rium one is not too large. These changes are, in fact,
normally small. In electron-transfer reactions, for
example, they usually involve a change of § a charge
unit on each reacting particle.””

There are two types of dielectric saturation to be
included, electronic and orientational. We can consider
both at once. It will be assumed that the change in
charge on any species on going from the equivalent
equilibrium system [0] to the nonequilibrium one and,
therefore, to the equilibrium system [1] is sufficiently
small that although the linear equations (3), (5), and
(20) may not be applicable, each may be replaced by a
linear relation between increments:

Spin=A/5¢.. (24)
(For nonequilibrium polarization systems)

0P=—x.'5V¢. (25)
(For equilibrium polarization systems)

oP=—x'ovy. (26)

For example, it is assumed that when the plot of
P vs V¢ becomes curved due to dielectric saturation
we may compute the change 6P from the tangent, —x/,
and from 6Vy.

Because of (24) and (25), Eq. (6) is once again
obtained, but now the C; depend on the 4s and x.’
rather than on the A4/s and x.. Accordingly (9) again
follows.

We next introduce dielectrically unsaturated equi-
librium polarization systems whose A/s, x. and x
are equal to the 4,”s, x,’ and x’, namely the [1—0]
and [1—0, op] systems, designated now by primes.
Equation (10) then follows and, hence, so does (11).
We may again use (14) for these two systems but
because of (24) and (26) the D,’s now depend on 4,"’s
and x’ rather than on A.s and x. Accordingly (17)
and (18) obtain, but with F,_° and F,_y replacing
F,_°? and Fi_.

Because of (26), Eq. (21) and thereby (22) again
follow. Accordingly, so does the derived relation (23),
with [1—0, op] and [1—07] systems being dielectrically
unsaturated but having properties 4/, x.’ and x':

F=F+F, " —F1. (23"
SOME APPLICATIONS OF EQ. (23)

Although detailed applications of (23) will be made
in a subsequent series of papers, several examples may
be cited, drawn from the theory of electron-transfer
reactions and of solvent shifts on solute absorption or
fluorescence.

1"The change is given by mAe in the section on applications
and m is usually about —0.5. (cf. references 3 and 5).

I. Electron Transfers in Solution

If (s, €, -+, €j, -+ +) denotes the charges of the re-
actants A and B and of any other ions ; present before
electron transfer, and if (e.?, &?, «+-, ¢;7, -++) denotes
the charges after, then e;=e¢;. It has been shown??
that in the activated complex, the medium has an
orientation-atomic polarization which would be in
dielectric equilibrium only with the hypothetical
charges e;+m(e.—e?) (i=a, b or §) where m satisfies
a given equation. State [0] has, therefore, the charge
distribution described by:

State [0]= (e.+mAe, es—mAe, - -, e5-++), (27)

where Ae=e,—e,?=e>—es.

State [1], which consists of the equilibrium polariza-
tion system having the same nuclear configuration of
+'s and having the e/s existing before electron transfer,
is represented by (28). Hence the state [1—0] is given
by (29).

State [1]=(ea, &, * -, €}, ***), (28)
State [1—0]E (—mdle, mhe, +++,0,+-+), (29)

i.e., Fi_o is the free energy of an equilibrium polariza-
tion having »no charged particles other than those under-
going electron transfer.

If A and B are treated as spherical, and if electro-
static image effects are ignored (they contribute about
10% to the free-energy change’), then the polar con-
tribution to the free energy of the activated complex
minus that of an equilibrium polarization system with
charges €, e and -, ¢;, -+ in the same specified
positions is given by F— Fy, i.e., by Fi._°°— Fy_. How-
ever, using a well-known formula, F,_, equals the sum
of the Born charging terms at infinity plus the work re-
quired to bring the ions from @« to some mean distance
r apart. (It will be recalled that these F’s do not in-
clude interactions within the inner coordination shells.)
Since the 1—0 system has no ions other than A and B,
we then find:

1 1
= {1 = 2
Fino 201(1 D.) (mae)
1 1 (mAe) (—mAe)
(1= gy VTN TMER)
2@(1 D,) (mley
and
1 1
Op— — | —_— 2
F 1—0°P 201(1 Dop) (MAB)
1

1y 1 (mAe) (—mAe)
20’2(1 Dop) (mAe) 2+ Dopr ’

where a; and a, denote the radii of the reactants, each
including any inner coordination shell. Accordingly,
this contribution to the free-energy change is:

1 1

1 1 1
—_ —_ f o Y — e
F=Fi=(mae) (Do,, D.)(201+202 r)’ (30)
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a simple derivation of a result derived? and used*s
elsewhere.

II. Electron Transfers at Electrodes

Remarks similar to the above apply, but using the
appropriate equations for F;_o and F;_°® for electrode
systems:

If a reacting ion 4 is about to undergo electron
transfer with the electrode, one finds:

State [1]=(eqy *+++, €5, **+), (31)

State [0]= (catm(ea—es?), *++, €5, ++). (32)
Hence,

State [1—0]=(—m(ea—es?), +++,0, ).  (33)

In state [1—0], any charge on the electrode, other
than the electrostatic image charge, m(e,—e?),
vanishes. For such a system [1—0] having all ¢;=0,
Fio is the sum of the Born charging term when the
hypothetical ion and electrode are far apart and the
image term when they are brought together:

1 1 (mAe)?
=——(1— = 2_
Fio 2a( D.) (mhe)*— ==,

where r is twice the distance of the center of the ion to
the electrode surface. Accordingly, we obtain

1 1\/ 1 1
F—F=F; ?—F_o={— — — - 2
=P =Fio (2a 2r)(D,,,, D,) (mae)?,
(34)
as in an earlier paper.4

II. Fluorescence or Absorption of a Polar Species

A polar molecule orients polar solvent molecules
about it and, for a brief instant after fluorescence or
light absorption by the solute, the solvent molecules
maintain their orientation-atomic polarization, because
of the Franck—Condon principle. In this case the final
charge distributions are described by p;°, the initial
ones by py’, and the state of orientation-atomic polari-
zation by p.. The entropy associated with the latter
polarization being the same for the states of the entire
system just before and after the transition, the polar
contribution to their energy difference equals that to
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their free energy difference, F— F,. Thus, this contribu-
tion to the spectral shift for light absorption, for
fluorescence, and for the difference of the shifts is
given by (35) to (37), where e denotes the excited
state and g the ground state, and where non denotes
the nonequilibrium polarization system having the
charges of the subscript.

h(al’a)pol= Fenon"Fv= F,— F0+Fa—a°p—'Fc—m (35)
—h(a"f)pd: Fpor—F,= Fa_Fe+Fa—c°p—F0—¢’ (36)
h(8va—0vf) po1=2(Fo_o®—F,_,), (37)

since F,, and F,_,°° will be assumed to be quadratic
in the charge distribution, and hence the same as F,_,
and F,_2°P, respectively.

If the solute is treated as a sphere of radius ¢ having
a dipole moment x and an induced dipole at its center,
the usual treatment yields'®

F=—[f/(1—fa) Jhut,
f=(1/a*) (2D—2)/(2D+1),

where D is the dielectric constant of the medium (D,
in case of the op system) and « is the polarizability of
the solute molecule. Insertion of (38) into (35) to (37),
with appropriate subscript and, in one case, super-
script, yields an expression for the polar contribution to
the spectral shifts. The resulting equations may be
compared with earlier ones used in the literature.!® The
earlier ones correspond to the assumption af<1, and
are obtained by expanding (38) in a power series in
of and retaining only terms of zeroth or first order in
af. More elaborate models of the solute are given else-
where, in an application of the present paper.

The advantage of using (37) is that both the dis-
persion and exchange forces contributions to §(v,—vy)
vanish if the set of equilibrium solvent configurations
of nearest neighbors is the same for state ¢ as for g. On
the other hand év, (or év;) alone will also contain these
other contributions, the dispersion one giving rise to
the usual red shift.

(38)

18 For example, C. J. F. Bottcher, Theory of Electrical Polariza-
tion (Elsevier Publishing Company, Inc., New York 1952), p. 139.

®Y. Qoshika, J. Phys. Soc. Japan 9, 594 (1954); E. Lippert,
Z. Naturforsch. 104, 541 (1955).




