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Interactions in Polar Media. I. Interparticle Interaction Energy
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Using permanent plus induced charge distributions on particles a Hartree method is used to compute the

- polar contribution to the interparticle interaction enerby. Each particle may be a single molecule or a
collection of molecules, a whole electrode or an entire medium for example. The total interparticle interac-
tion energy is taken to be the sum of this polar term and of an interparticle electron correlation term. The
second of these includes effects due to interparticle London dispersion and exchange repulsion forces. A
symmetry property associated with a quantum mechanical operator characterizing the induced charge
distribution is obtained in a compact way using a projection operator. The polar term is also calculated

from classical electrostatics and shown to be the same
of earlier treatments in which the particles were sin

dipoles.

as the one above. The present work is a generalization
gle molecules interacting via permanent and induced

An application of this work is the more general formulation of theories associated with polar interactions
in condensed phases, such as the theory of electron transfer rates in solution and at electrodes, and the theory
of electronic spectral shifts and band broadening of polar solutes in polar media,

INTRODUCTION

IN theoretical analyses of dielectric properties of

condensed phases each molecule is usually treated
as having a permanent dipole plus an induced dipole
proportional to the reaction field acting on it.-® In
many calculations, this neglect of higher permanent

3

and induced multipoles is both convenient and, as a

* Alfred P. Sloan Fellow.

1 See, for example, reviews: H. Frohlich, Theory of Dielecirics
(Oxford University Press, London, 1950); C. F. H. Béttcher,
Theory of Electric Polarisation (Elsevier Publishing Company,
New York, 1952); W. F. Brown Jr., Encyclopedia of Physics
edited by S. Fligge (Springer-Verlag, Berlin, 1956). Vol. 17

3 M. Mandel and P, Mazur, Physica 24, 116 (1958); cf. W. F.
Brown, Jr., ibid. 24, 695 (1959).

# Permanent multipoles have been included by L. J. ansen, Phys.
Rev. 110, 661 (1958).

first approximation, correct. However, for purposes of
establishing certain general properties of various
phenomena it introduces assumptions which are not
only unnecessary but which also lead to an unduly
complex notation. For example, on the basis of this
dipole approximation one can deduce some formal
relations involving the effects of polar solvent-solute
interactions on electronic spectra, on electron transfer
rates in solution, and on rates of electrochemical elec-
tron transfers.! However, they can also, be derived—
in fact, more simply—from a more general model of
polar interactions,

4R. A. Marcus, Discussions Faraday Soc. 29, 21 (1960) and

unpublished work.
R. A. Marcus, J. Chem. Phys. (to be submitted),
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In the present paper, a more general model for polar
interactions in condensed media is described. It can
be shown that a number idealized models of molecules,
or of an entire medium, or of an electrode also satisfy
the same formal equations. Thus, when theories of these
phenomena are based on the above model a variety of
more specific ones are automatically included as well.
For this reason, use of the model has permitted the
development of a unified theory for electron transfer
rates in solution and at electrodes.®

INTERPARTICLE INTERACTION ENERGY

Usually, the intermolecular interaction energy of
any configuration of the nuclei in a macroscopic system
is taken to be the sum of London dispersion, exchange
repulsion and classical permanent and induced-dipole
electrostatic terms. For certain formal calculations
such detailed assumptions are not needed. Rather, we
may consider the macrosystem to be composed of
particles, each particle having a specified set of nuclei
in a fixed configuration, which is later permitted to
vary. Each particle may, for example, be a mole-
cule or any collection of molecules (a whole elec-
trode, for example). The total electronic energy of the
system at any specified nuclear configuration is the
sum of the electronic energies of the isolated particles,
each having a specified configuration, and of the inter-
particle interaction energy. It is desired to calculate
this interparticle term, i.e., to calculate the work re-
rquired to bring the particles together from infinity.

As discussed later, we assume that the interparticle
interaction energy is the sum of a polar term and an
interparticle electron-correlation term. (Among the
contributions to the second would be those arising
from interparticle London dispersion and exchange
repulsion interactions.) We define this polar term to be
the interaction energy calculated when electronic wave-
function of the macrosystem is assumed to be the best
product of antisymmetrized many-electron wave-
functions, one for each particle. As shown later, a polar
term so defined is then equal to the classical electro-
static interaction energy of one-electron charge densi-
ties on the particles. The best such wavefunction is the
one which minimizes the energy. That is, we shall
employ a Hartree-type treatment in which the com-
ponent wavefunctions are many-electron ones rather
than the usual one-electron functions of the atomic
Hartree method.

Let X be the electronic wavefunction of the system
and X; the antisymmetrized electronic wavefunction of
particle 4. Let each X; be normalized to unity.

X = HX.-.

When the interparticle interaction is removed, each X;
reduces to the exact wavefunction X2 for the isolated
i particle. In case the eigenspaces Q; and 22 to which
X; and X respectively belong are degenerate, a pre-

1
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cise definition of X is given later. Let H? be the
Hamiltonian for an isolated ¢ and let E® be the corre-
sponding electronic energy:

H)X=EX). (2)

Let H., be the coulombic interaction of the electrons and
nuclei of ¢+ with those of j. (H;; is the sum of the per-
tinent 1/r terms). The Hamiltonian of the entire
system H is therefore
H= ZH"O'F%E ZHt’r
i >y

We shall use the symbol ( , ) to denote the per-
tinent inner product, e.g., (X, HX) is [X*HXdr, where
one integrates over all electron coordinates 7 of the
entire system. (X;, V:X,) is [X*V X dr,, integration
being over all electron coordinates 7; of particle 7.
(X:X;, v;X:X;) is [X* XV X X drdr;, etc.

Minimizing (X, HX) with respect to variations in
each X, subject to constancy of (X, X), X; is found
in a standard way to be the solution of (4). The total
energy E, = (X, HX)/(X, X), is found to be given by
(6), when (3) to (5) are used.

(H84-Vi— E) X:=0, 4)

where E; is a Lagrangian multiplier, and V; is the sum
of coulombic attraction terms of the electrons of
particle ¢ with the nuclei of all j, > 5%, and of v;, the
internuclear and interelectron repulsion of ¢ and j,
averaged over the electronic distribution of all j#i,
and of Y the Coulombic attraction of the nuclei of 4
with electrons of all j>%1, averaged over the electronic
distribution of the j’s.

Vi= Z”!""'Z(Xi: [v;,-l—v.-’]X,) ’
7 7
E=Y Ei~3%), D (Xi X, 05 X:X))
: Py
— 22X viX;). (6)
Fy i

where we have normalized X, i.e., have set (X, X)=1.
Erel the polar contribution to the interparticle inter-
action energy is given by (7):

Erl=E— ZE,D.

(3)

(5)

(7)

We wish to obtain an expression for Er°! in terms
of charge densities. If particle ¢ has IV electrons (co-
ordinates 1, < -+, I'y) and nuclei g, b, ++- (coordinates
I., T, -+ and charges Zqe, Zie, *++), then the total
charge density of particle 7, pi(r), is the sum of elec-
tronic and nuclear terms p;(r) and p*(1):

pir)=Ne[ - [Xir(x, 13, -, 1)

X(r, Ty, o+, Ty)dra - <dTy
+ XD Zaed(r—1) =ps(r)+o(r), (8)
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where 8 is the Dirac & function. N and & should bear a
subscript 7, but we omit it for brevity. The charge
density on the isolated particle 1 is

pf(r)=Ne

Xf- . .[X¢°*(r, Ty, IN) XL, Iy, - o+, TN)dToe - Xy
(Xi'oi X‘_O)

+2 Zed(r—r.). (9)

The induced charge density p® is the difference:

(10)

Equation (5) for V; can be written in terms of these
pis:

Vi(rie++ ) = o 20u(tm)+ Do+ (X, 9%

pi=pd+pin.

(11)
where

w(n=32f ﬁ—f}fr (12)

and v;)" is the internuclear repulsion between par-
ticles 4 and j. To express Er°! in terms of the p’s we
first introduce a parameter A into Eq. (4):

(HO4NV— E}) X =0. (13)

Application of the Hellman-Feynmann theorem® to
(13) yields
OE} = (X, V.X), (14)

since d(AV;)/0X equals V. Integrating from O to 1 we
find

1
E=ES f (X2, VXA dh. (15)
A=0

Introducing (8) and (11) into (15), and noting that
p is independent of A one obtains (16) after some
manipulation:

1
E=Ed+ / / 2.drdh, (16)
A=0

Similarly, when (8) is introduced into the last two
terms of (6) they yield

> E// ,-(l‘)p,-(l")dl'dl",

i ] fr—r'|
ie.,

—%Z/pl@idr)

in virtue of (12). Combining this result with ), (N,
and (16) we obtain

Bri=3 ff 23T [oar. )

‘iH: Hellmann, Einfihrung in die Quantenchemie (F. Deuticke,
Leipzig, 1937); R. P. Feynmann, Phys. Rev. 56, 340 (1939).
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Noting that p} equals p,®*4-p; (only p;i** depends on
) and that } equals
1
[
0

Eq. (17) can be written in the final form:

1
Erl=13 [ pPPidr+) / / (pii™r—Np;in) B drd),
s i JA=0

(18)
where ®; is given by (12).

When p;i® is linear in &,, i.e., when the electronic
response of ¢ is linearly dependent on the perturbing
potential field, p;** equals Ap;* and the second integral
vanishes:

Ewl=1%" / S dr. (19)
This assumption of linear response is usually made in
the more specific models.

To complete the equations of this section, an equa-
tion is needed relating pii* to &,. It is obtained in a
compact way via projection operators:

Let P be the operator which projects functions
of the electron coordinates of particle 7 onto the
eigenspace 2 corresponding to EJ. Let the eigenspace
{; corresponding to E; be spanned by functions Xiq,
the dimension of ©; being equal to the degeneracy of
;. The functions X;,® are then defined by (20), and
the operator P? can be written as in (21)7:

PLX ia=X, l‘ao; (20)
Po= Z(Xia: ) Xid= ZP,@", (21)
Pid= (Xiaoy )Xiaox (22)

where the functions X are biorthogonal to X,°:
(X, Xig?) = bup. (23)

We normalize X, and adjust X, so as to satisfy
(24):
(Xl'a; Xi'a) = 1, (Xz'ao, Xs'a) = 1) (24)

L.e., X0 is not normalized. We shall focus attention on
one particular X, and its X, and omit the « in the
following notation (except in P;o? to avoid ambiguity).
From the inner product of (4) with this X and
from the Hermitian nature of H®, with the aid of Egs.
(2) and (24), one obtains (25), and from (4) and (25),
one obtains Eq. (26):

E=EM- (X0 VX)), (25)
(E‘.O_ '.O)X‘_= [V;— (X‘.O’ V,X,)]X;. (26)

" The projection operator P;® corresponds to one used by C.
Bloch for a different purpose [Nucl. Phys. 6, 329 (1958)].
His Py, a>, |a>0, and [&> correspond to our PO Xiay Xial,
and X, respectively. His Fig. 1 gives an excellent picture of
these vectors and of this operator.
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From the definition of P the rhs of (25) can be
written as (1— P;,°) V;X;. Noting® that

(1-PPH(1-P;

equals 1— P2, then applying 1—P? and (E,—HO)™
to (26) (an order dictated by the fact that the inverse
of Ef—HJ exists only on the orthogonal complement
of 29), one obtains (27) for X;:

Xi—X=BV.X, (27)

where we have used the idempotent property of the
projection operator 1— P and where B; is a Hermitian
operator®10

Bi=(Ef—HO)(1-P¢) (28)

One could solve Eq. (27) formally for X; in terms
of V:and X, so obtaining an expression for p;® when
(8) to (10) are used. When p,i® is assumed to be linear
in ®;, the corresponding approximation in (27) is
obtained by replacing X; on the rhs by X9, as may be
shown by an iteration procedure. Thereby,

Xi=X4B,V.X40[VZ], (29)

where O denotes “order of.”

To this same approximation, the induced many-
electron probability density p,i®, given by (30), can be
written as (31):

pin=XAX— XX/ (XI,X0)
=2 ReX (X~ X&) +0[V ],

(30)
(31)

where Re denotes ‘“‘real part of” and where we have
used the fact that terms quadratic in X;—XJ? are at
least quadratic in V;, because of (29). From (29) and
(31), and neglecting O [V 2], we find

P.’in: 2 RCX.'O.B"V.'X,'O, (32)

pii® is obtained by multiplying #:i* by Ne and inte-
grating over the coordinates of all electrons but one.

81t equals 1—P0— P; 04 POP;% But from (21) to (23)
POP;° equals Pyl

% Using the idempotency of 1— P;® and its commutativity with
(EP—H{9)™, we have

Bi=(ES—H) " (1—-P0)*= (1—P) (EL—H) 7 (1- PY)

The commutativity followed from the fact that both operators are
functions of H;%in an operational calculus.” Since Bj; is seen to be
a symmetrical product of factors, each of which is Hermitian,
it is Hermitian,

In the chemical literature the operator B; normally appears as
an infinite sum (and integral when part of the spectrum of eigen-
values is continuous), which one can find by solving any equation
(EQ—HOW =Z(Z 19°) for W by expanding W in a complete
set of eigenfunctions of H0. The answer for W can then be equated
to W= (E"— H{)~}(1— P®) Z and B; can be obtained thereby.

Wef. A. E. Taylor, Introduction to Functional Analysis (John
Wiley & Sons, Inc., New York, 1958), p. 287 for discussion of a
calculus of operators and for this commutativity property.
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Introducing (11), we obtain

pio(r))=2NeRe [ X8 (ry, +++, In) B;

N
X Z‘I’;(l’m)Xgo(l'l, eee, I'N)dl'g' . 'dl'N, (33)
m=1

since the last sum in (11) is independent of the elec-
tronic coordinates of 4 and since (1— P®) X9 vanishes.
Thus, psi® is linearly dependent on &; via a linear
operator, which we call 4;, namely

pi*(r) = Ai(r, r')2:(r'). (34)

A; is shown in the next section to be a symmetric
operator when it acts on the space of potentials, ®;.
Equations (10), (12), (19), (34), and this symmetry
property represent the essence of the present formalism.
It is shown elsewhere that various more idealized
models of the particles also satisfy these equations,
once A; is properly chosen. It is perhaps worthwhile
to emphasize that Egs. (10), (12), (19), and (34)
apply even if there are only several “particles,” all but
one of these being individual molecules, and the last
being the remainder of the macrosystem. Use of this
particular case is made elsewhere..

SYMMETRY PROPERTY OF A

We wish to show that 4; has the property

/@,’144 .'q).',dl'—'——‘ f@;,A,@;ldr, (35)
where 1 and 2 denote two macroscopic systems differ-
ing in corresponding p®s but not in the position of
their nuclei nor in corresponding A4,’s. Equation (35)
can be rewritten as

f &, pi,0dr= / &40, 10d T, (36)

If a molecule ¢ is to have the same A; in the two
systems, then p.® of Eq. (32) should depend only on
V.. That is, we have from (32)

pi2=2 ReX BV, X2, (37)

where the X0 is to be taken as the same for both
systems 1 and 2.
Since B; is Hermitian we have:

Re(Vy X0, BV o X)) =Re(Vu X8 BV, XP). (38)

Using (11), (37), and noting that the second term on
the rhs of (11) is independent of the electron co-
ordinates of < and that p;'» vanishes when integrated
zzlor;e over those coordinates, (36) then follows from
38).

Equation (36) can also be used to derive an equa-
tion which will be extensively used elsewhere. Summing
(36) over ¢ and using (12); one finds by subtraction of
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a term common to both sides

)P /fp.-ﬁ“(r)p,-,’"( r’)drdr’,

=Y | r—r' |
addition of
0(r)p;’(r')drdr’
Y

to both sides, and use of (12) that
Z / pi’Pdr= Z / pi?®; dr.

REMARKS ON APPLICATION TO ELECTRODE
SYSTEMS AND ON IDEALIZED MODELS

It will be shown in Part II that when any of the
particles is treated as a dielectric continuum having a
specified nuclear configuration, Egs. (10), (12), (19),
and (34) are still formally satisfied. The appropriate 4;
is then expressible in terms of certain electrostatic
properties. In the standard electrostatic calculations on
electrode systems, i.e., on electrode-ion—solvent inter-
actions, the electrode is treated as a dielectric con-
tinuum of infinite dielectric constant. Accordingly,
this classical treatment of polar interactions between
electrodes and particles in solution is also auto-
matically included in any treatment based on the above
four equations. Alternatively, these equations are also
valid for more general models for the electrode in
which 4 is obtained quantum-mechanically from (33).

Another special case of Egs. (10), (12), (19), and
(34), occurs when each particle is a molecule and
when only its dipolar contributions to p and p;® are
considered. This case is obtained by expanding p?
and, in (33), ®; in a Taylor’s series and retaining the
initial term in each case. The corresponding values of
p and A4; can be written as

(39)

pP(r)=—V,5(r—rf)-u, (40)

AT, 1) =V,5(r— 1) - 0¥, 0 / drs(r—ro), (41)

where 7 is the center of charge, not necessarily as-
sumed to be the same for the permanent and induced
terms, w; is the dipole moment, e; the polarizability
tensor (or scalar). The subscript to V indicates the
variable to be differentiated. It is understood that a
®;(r’) is to be placed on the right of both sides of
Eq. (41).

RELATED APPROACHES TO THE INTERMOLECULAR
ENERGY

A comparatively recently derived expression for the
polar term in the intermolecular energy has been given
by Mandel and Mazur," as well as by Brown,? who

M. Mandel and P, Mazur, Physica 24, 116 (1958).
* W. F. Brown, Jr., Encydlopedia of Physics (S ringer-Verlag,
Berlin, 1956, Vol. 17, p. 1; Physica 24, 695 (1958;)
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based their arguments on classical electrostatics and
considered permanent and induced point dipoles. As
they have pointed out, many earlier expressions for
this term were either incomplete or wrong. Their
expression is obtained from Egs. (10), (12), (19),
and (34), upon introducing the dipole approximation
embodied in Egs. (40) and (41).

Another calculation of the polar contribution to the
intermolecular potential energy as well as other terms
was based on solving the Schrédinger equation using
third-order Rayleigh-Schrédinger perturbation theory
and neglecting electron exchange.®® To this order, a
portion of the polar term was obtained, with the addi-
tional modification that the polarizability operator was
affected by the London dispersion forces. This coupling
term was used in partial explanation of minor devia-
tions from the Clausius—-Mosotti equation applied to
nonpolar gases.! Similarly, exchange effects also
modify the polarizability.!s However, it appears that the
polarizability calculated from refractive index data on
very dilute gases differs relatively slightly from that
calculated from similar data on condensed phases of the
same substance, and such coupling terms have been dis-
regarded in the present paper.® The Rayleigh-Sch-
rédinger perturbation theory as just used is appro-
priate for dilute gases but not for condensed phases,
where it becomes unwieldy because of many-body
interactions. In each order of perturbation a variety of
contributions occur, varying in importance, and the
theory does not separate them.

One treatment more suited to these many-body inter-
actions might be one analogous to that used for intra-
molecular interactions: a Hartree-Fock treatment for
interactions followed by a method introducing electron
correlation. In a more general but formal analysis
McWeeny has used a wavefunction which is an anti-
symmetrized product of antisymmetrized many-elec-
tron wavefunctions of each molecule.”” (A special case
of this is a Hartree-Fock product.) Such a product
contained only electron correlation between electrons
of like spin. Configuration interaction was then used

3 1 L. Jansen and P. Mazur, Physica 21, 193 (1955) and reference

14 P. Mazur and L. Jansen, Physica 21, 208 (1955).

5 For example, see C. A. Ten Seldam and S. R. de Groot,
Physica 18, 905, 910 (1952), who regarded the electrons as being
confined to a box.

18 For example, C. P. Smyth, Dielectric Behavior and Structure
McGraw-Hill Book Company, Inc., New York, 1955) for data
on gaseous and solid benzene (4ra/3=26.6 and 26.7-28.5, respec-
tively.); cf. F. G. Keyes and J. G. Kirkwood, Phys. Rev. 36, 754
(1930), for data on gaseous and liquid COs (4wa/3="7.49 at 10
atm and 7.81, respectively); cf. C. P. Smyth, E. W. Engel, and
E. B. Wilson, Jr., J. Am. Chem. Soc. 51, 1736 (1929), who found
additivity of molar refraction in liquid media. The latter reference
also refers to data of Lorentz and others on gases and liquids,
which are found to have the same «, within 1-39%, when this « is
obtained from the Lorentz-Lorenz expression. Strictly speaking,
this expression is appropriate to cubic crystals, and amnq should
be determined from the data on crystals by an equation derived
for the pertinent crystal type and then compared with o,

17 R. McWeeny, Proc. Roy. Soc. (Londong A253, 242 (1959).
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to introduce additional correlation, including that of
the London dispersion type. To terms second order in
the configuration interaction, the intermolecular po-
tential energy was the sum of a term arising from a
single configuration plus a correlation term. The
same remarks apply to the interparticle potential
energy, merely by choosing the wavefunction to be an
antisymmetrized product of wavefunctions for each
particle, and then adding the other antisymmetrized
products of particle wavefunctions. The Hartree
expression discussed earlier is an approximation to a
portion of the single configuration term, and is what
we have called the polar contribution.

COMPARISON WITH THE ELECTROSTATIC
' CALCULATION

A consequence of the Hartree approximation of the
preceding section and of the corresponding absence
of electron correlation was that the equations for Ero!
could be expressed in terms of one-electron charge
densities and their properties. Accordingly, one might
anticipate perhaps that Eq. (18) can be obtained from
purely electrostatic considerations, although the values
of both p? and py'® themselves can only be determined
quantum mechanically. This conjecture turns out to
be true.

To calculate Er°! from electrostatics we use a method
rather similar to that used previously for the dipolar
case on a macroscale,® applied now to the present
multipolar problem on a microscopic scale. (Another
way of obtaining the same result, more directly but less
illustratively, is given in Part II). The electrostatic
energy of interaction between the particles can be
regarded as the sum of:

(i) interaction of the permanent charge distributions,

L S(r)p(r')drdr’
12 Zf/ | r—r1'| )

Lot

The § avoids double counting.
(i) interaction of the permanent and induced charge
distributions,

Lt :[

(ili) interaction of the induced charge distributions,

'S E//Pii“(l‘)p;‘“(r’)drdr'.

=Y [ r—1'|

pd(r)ps"(r')drdr’
lr—r'|

(iv) energy stored in the induced charge distributions,

1
[ [ i pimyarar,
1 7 A=

where A is a parameter and where p;™* depends on

18R. A. Marcus, J. Chem. Phys. 24, 979 (1956).

A®; via the same operator that p;* depends on ®;. The
operator need not be linear. The energy stored in 7 is
computed as follows: Consider particle ¢ under the
influence of an external potential field V*=AV. The
work done when V* is increased from 0 to V is

[ f (pintp0)dVdr, ie, / f (pii™+-p) Vdrd.

To obtain the energy “stored” one must subtract the
interaction energy of the final p; with V, [(p;s®*+4p20) Vdr.
Multiplying the latter by

1
dx,
A=0
term (iv) is obtained.
Adding (i) to (iv) we have

Epol=%2 Z[f (1) pi(r’)drdr’

iy ji |l' l"l

+3 f [ D dra- 3 f ingdr
=%; / p.~°<I>.dr+; f AB drdh— Z [ / pinddr, (42)

where we have used Eq. (12). Comparison of Egs. (18)
and (42) for E*°! shows that they are indeed identical,
since [o'\dA equals 3.

Parenthetically, it may further be noted that terms
(i) to (iv) have their quantum-mechanical counter-
parts.

Taking the inner product of (4) with X;, we find

E,"-: (Xi, H,'OX") + (X.', V"X.') . (43)
Epel is then obtained from (6), (7), and (43):
Erel= Z[(Xi, HPX)— ES (X5, VX))

_.l; Z(X Xy 05, XX 7)) — E Z(Xn v7X;). (44)
55 J

The term (X;, HOX;) is the energy “stored in .”
That is, it is the energy stored in 1 is isolated, E&, plus
the addltlonal amount stored due to the perturbation.
Thus, term (1v) is > J[(X: H8X,)—EP]. The re-
maining terms in (44) are Coulombic ones and are
easily shown to be the sum of (i) to (iii).

ACKNOWLEDGMENT

This research was supported by the Alfred P. Sloan
Foundation and the National Science Foundation. A
portion of it was performed at the Courant Institute of
Mathematical Sciences, New York University, under
the tenure of a National Science Foundation Senior
Post-Doctoral Fellowship.



