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A theoretical model of elastically coupled reactions is proposed for
single molecule imaging and rotor manipulation experiments on
F,-ATPase. Stalling experiments are considered in which rates of
individual ligand binding, ligand release, and chemical reaction
steps have an exponential dependence on rotor angle. These data
are treated in terms of the effect of thermodynamic driving forces
on reaction rates, and lead to equations relating rate constants
and free energies to the stalling angle. These relations, in turn,
are modeled using a formalism originally developed to treat elec-
tron and other transfer reactions. During stalling the free energy
profile of the enzymatic steps is altered by a work term due to
elastic structural twisting. Using biochemical and single molecule
data, the dependence of the rate constant and equilibrium con-
stant on the stall angle, as well as the Bornsted slope are predicted
and compared with experiment. Reasonable agreement is found
with stalling experiments for ATP and GTP binding. The model can
be applied to other torque-generating steps of reversible ligand
binding, such as ADP and P; release, when sufficient data become
available.

biomolecular motors | free energy relations | ATPase | single molecule
imaging | Bronsted slope

Single molecule imaging directly demonstrated a stepping ro-
tation in F;-ATPase (1) that was resolved into ~ 40° and ~ 80°
substeps (initially reported as ~ 30° and ~ 90° cf. refs. 2 and 3),
and much information has been extracted by elaborate techniques
at the single molecule level (3-6). Complementing experimental
tools such as X-ray spectroscopy (7) and ensemble biochemical
methods (8), single molecule experiments reveal key details of the
coupling between enzymatic processes and rotation (9-12). A
detailed picture of highly coordinated substeps has emerged in
which the binding of solution ATP to an empty subunit and re-
lease of hydrolyzed ADP from the clockwise neighbor (viewed
from the rotor side) occur in concert during the ~ 80° rotation
step (13). As depicted in Fig. 1 and Table 1, the subsequent ~ 40°
rotation is coordinated with the hydrolysis of ATP in the third
subunit and the release of P; from the subunit that just released
ADP (13).

Recent stalling (6, 13, 14) and controlled rotation (15) exper-
iments provide additional insight into the dynamics of the cou-
pling between the rotation of the central shaft and the reaction
steps in the stator ring subunits. These experiments yielded the
rate constants of various steps, binding and release of ligands, and
hydrolysis/synthesis reaction, as a function of the stalled rotor
angle 6. The rates show an exponential dependence on 0 over a
wide range, such as a range of 80° for ATP binding and 40° for
hydrolysis. Free energy profiles for the initial and final dwell
angles at a specific 40° or 80° step are given in Fig. 2. For in-
termediate stalling angles, the profile is intermediate between
these two limits.

In stalling experiments (14) the freely rotating shaft of the
ATPase is stalled by magnetic tweezers upon reaching a dwell
angle. Rotation experiments have resolved two dwells: the binding
dwell (before the 80° step) and the hydrolysis dwell (before the 40°
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step). The rotor was stalled at various 6s around each of these
dwell angles for a predetermined time, then was released. The
system immediately returned either to the original dwell angle or
went forward to the next dwell angle, depending on the state of the
underlying process at the moment of release. The observed relative
number of forward and back events as a function of stall time was
given a simple two-state kinetic interpretation (14), which in turn
permitted the determination of forward and backward rate con-
stants of ATP binding, ATP hydrolysis, and P; release. In the pre-
sent article we formulate a theory for predicting the dependence of
the rate constant and equilibrium constant on the stalling angle for
the binding and release steps.

In a different set of experiments (15), a slow, controlled rotation
of the shaft was performed by magnetic tweezers. The change in
the ligand occupancy was monitored as a function of the rotor
angle using fluorescent ATP and ADP analogs. Events whereby the
occupancy changed between 0 and 1 were identified following an
intuitive “grouping” criterion and subsequently analyzed. The
number of (0 — 1) and (1 — 0) events over the time spent in a 0 and
1 occupancy state yielded forward and reverse rate constants, re-
spectively. In both types of experiments the equilibrium constant
(K) was calculated as the ratio of forward rate constant (ky) and
reverse rate constant. In what follows we focus on the stalling ex-
periments that use a straightforward method for rate versus 0 data
estimation that do not require a grouping criterion.

Theory for F,-ATPase Experiments

A Bronsted Interpretation of Single Molecule Data. In the interpreta-
tion proposed here for treating these singe molecule stalling ex-
periments the rate dependence can be translated, assuming
transition state (TS) theory and using thermodynamics, into free
energy relations (cf. Fig. 2). For the forward reaction rate constant
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release, show an exponential dependence on the stalled rotor
angle. Following concepts that originated in theories of electron
and group transfer reactions, a structure-based analytic model is
described to treat the dynamical behavior observed in these ex-
periments. Using biochemical and the single molecule observa-
tions, thermodynamic driving potentials are constructed that
take into account the elasticity of the rotor shaft. The model
predicts observable quantities without using adjustable param-
eters and is tested using existing data.

Author contributions: S.V.-K. and R.A.M. designed research; S.V.-K. and R.A.M. performed
research; S.V.-K. analyzed data; and S.V.-K. and R.A.M. wrote the paper.

Reviewers: A.S., National Institutes of Health; and A.W., University of Southern California.
The authors declare no conflict of interest.
See Commentary on page 14121.

"To whom correspondence should be addressed. Email: ram@caltech.edu.

www.pnas.org/cgi/doi/10.1073/pnas.1518489112


http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1518489112&domain=pdf
mailto:ram@caltech.edu
www.pnas.org/cgi/doi/10.1073/pnas.1518489112

L T

/

1\

=y

TP
dwell at120°

dwell at 0° dwell at 80°

Fig. 1. Scheme of coupled processes in Fi-ATPase during free rotation. The
dwell angle increases in the counter clockwise direction. The species occupying
the pockets of ring § subunits 1, 2, and 3 are represented in the binding and
catalytic dwells. The thick arcs represent a closed subunit structure preventing
admission or release of cited species. Dashed lines indicate that the structure
opens up during the step to allow release of the specified species. The con-
formational change corresponding to ATP binding/release (long dashes) is a
hinge-bending motion (47), and that corresponding to P; release/rebinding
(short dashes) is a different, less pronounced rearrangement (48).

ky(0) and the equilibrium constant K(6) of a given reaction step
we write

k¢ (0) = (kT /h)exp|-AG*(9) /kT], [1]

K(0)=exp[-AGY(0) /kT], [2]
where AG*(9) and AGY(6) are the Gibbs free energy of activa-
tion and the standard free energy of reaction, respectively, for
that step. Thus, the exponential rate dependences with respect to
each angle 6 in experiments (14, 15) correspond to free energy
relations and provide the Brgnsted slope a (16-18), defined by

IAGH
0AG?

_onk(6) _
" dnK(6)

[3]

at any given 7T (Table 2). Depending on the position of the TS along
a reaction coordinate, o can vary from 0, if the TS is reactantlike, to
1, if the TS is productlike. Otherwise, o takes on intermediate values
within these limits, in particular ~ 1/2 if AG? is small relative to a
reorganization energy defined later. Because the Brgnsted slope a
is approximately constant within a limited range of free energies,
the equivalent of Eq. 3 in the literature is often termed as a linear
free energy relation. In effect, « also serves as a measure for the
position of the TS along a reaction coordinate. In the present case
of the F;-ATPase we treat the free energies involved, after the first
contact of ATP with the ATPase, with the transition from one set
of hydrogen bonds linking the ATP to the ATPase, to another set.

Reaction Theory with Structural Elasticity. A goal here is to calculate
rate and equilibrium constants and their dependence on the rotor
angle for the binding of ligand molecules in the stalled F;-ATPase
system. To this end we use a formalism originally introduced for
electron (19) and other transfers, including hydrogen [proton
(20), hydride, and H-atom] and even methyl cation (21) transfers.
In this formalism, when the reactants approach each other to
some separation distance R, there is a “work term” w'(R), including
any electrostatic interaction and/or structural reorientation. [In
the electron transfer theory there is a weighted integral over a
separation distance coordinate R involving an electronic transition
probability p(R), the pair distribution function of the reactants
g(R), and the dependence of AG'(R) on R (22-24).] This work is
then, in the theory, followed by the reaction, which includes
any chemical or other structural changes, and in turn followed
by a separation of the products from R to oo, involving a work
term, —w” (R The standard free energy of reaction at that R
denoted by AG S is then given by AG°(R)=AG +w?P(R) -

W' (R), where AG" is the standard free energy of reaction at R = cc.
In this formalism, the free energy of activation AG™ is given by (16)
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AGT(R)=w'(R) + [A+ AG"(R)]* /44, where A is the reorganization
energy for the reaction. [A closely related equation, based instead
on a bond energy-bond order model, is given in ref. 16. A reso-
nance correction to the equation for AG'(R) for strong overlap
reactions is given in ref. 25.]

We apply these concepts to a reaction step in F;-ATPase noting
that the stalling angle 6 plays the role of R in the equations for
AGY(R) and AG'(R). In particular, we consider the binding of ATP
or an ATP analog to the binding pocket, because for this process
there are currently the most extensive stalling experimental data.
(Hereafter, as customary, ATP, ADP and any analog will denote the
molecule coordinated with a Mg>*; refs. 26 and 27). Nevertheless,
the general features of the model are intended to apply also to other
rotation-coupled steps involving the reversible binding and release of
a ligand molecule, such as ADP and P;, and to other ring-shaped
NTPases, and can be tested once sufficient kinetic data become
available. The model, as presently formulated, does not apply to the
ATP hydrolysis (cleavage) step, because it may be a multistep
process (28-30), as discussed in more detail in a later section.

Initially, before any reaction occurs, the rotor angle is changed
from its initial equilibrium angle (dwell angle) 6; to some value of
the stalled angle 0. This change has been induced by turning on the
magnetic field of the “tweezers”: the magnetic bead attached to the
rotor tip aligning itself with the direction of this external magnetic
field. Under this condition the system is still in the reactant state,
because the ATP in solution has not yet bound and the subunit is in
the open state. Because the stator ring is anchored to the surface of
the reaction vessel acting as a stator, the rotor shaft, and to some
extent the whole structure, undergoes a twisting deformation when
0 is changed from 6. The work done by the magnetic field to
achieve this deformation is denoted by w'(6).

The equilibrium value of © after the reaction occurs and the
magnetic field is turned off is denoted by f, another dwell angle. The
work done by the F;-ATPase during the untwisting of the rotor upon
turning off the magnetic field is then w”(6). Assuming a harmonic
twisting of the F;-ATPase rotor-stator complex (6, 31, 32) with a
torsional elastic constant k, we have for any stalling angle 6,

K 2 K 2

=§(9—6,~) , wP =§(0—9/~) . [4]
Using work terms one can build a thermodynamic cycle to

calculate the standard free energy of reaction while the system is

stalled at an angle ©.

AG(0)
—  GYO)

-w'] twP Scheme 1

In Scheme 1 G°(9) and GO( ) denote the free energies of the
system in its reactant and product states at the stalled angle 6,

Table 1. Representation of the steps in the sequential relay
mechanism of rotation in F;-ATPase

0;...0¢ (°) B, subunit B, subunit B3 subunit
0...80 ATP binding ADP release* ATP in pocket
80...120 ATP in pocket P; release ATP hydrolysis"
120...200* ATP in pocket ATP binding ADP release*

In the stator ring the g, 3,, 5 order is counter clockwise as viewed from
the rotor side. Key subunit for the step are in boldface. The “ATP, ADP and P;
in pocket” fields correspond to no ligand change during this step.

*ADP release is irreversible in these experiments and does not affect the
outcome of stalling experiments.

"We neglect the effect of the coupling of the hydrolysis cleavage reaction to rotor.
*This transition is identical to that of §; = 0° (first row) if the ring is rotated by
120° counter clockwise.
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Fig. 2. Dependence of forward and reverse rates and free energy profiles on
the stalling angle 6 for a given step. The two cases represented correspond to a
stall angle set at (A) the initial (reactant) angle 6; and (B) the final (product)
angle 0y. For other stall angles 0; < 0 < 0y the profiles are intermediate between a
and b. The value of 9; and 6 for the different steps are given in Table 1. For the
ATP binding step, in the reactant state an ATP molecule is weakly bound to the
entrance of the open subunit, and in the product state the molecule is bound to
the internal pocket site of the closed subunit. This subunit is structurally coupled
to the rotor shaft and produces rotation if the latter is unobstructed, but if the
rotor is stalled, a binding transition results in an elastic distortion of the system.

and G%(6;) and Gg(ef) are the corresponding standard free en-
ergies of the elastically relaxed or freely rotating system at §; and
0, respectively. The arrows denote the direction of the free
energy changes and work terms from one state to another.
Scheme 1 is analogous to the equation for AG®(R) above, if 0
and R are interchanged. From Eq. 4 and Scheme 1 it follows that
the contribution to AG°(6) for the F;-ATPase system due to
elastic twisting of the rotor, and the rotor tip is stalled at an angle
0, is w”(0) —w'(0), and thereby

AGY(0)=AG) - k(0 —6;) [0— (0, +6,) /2], [5]
where AG8, as defined in Scheme 1, is the standard free energy
of reaction for the freely rotating system, AG) = Gy (6y) — G)(6)).
We note in passing that 6 is a parameter and not a reaction
coordinate, as discussed below.

For the binding of ATP to the ATPase we note that there is a
term involved in the binding (27) to the outside or “entrance” of
the empty subunit, which we denote by W” (we note also the
distinction between w" and W”). In that case the effective free
energy barrier that the ATP molecule needs to overcome will
include this initial binding contribution,

AGT(0) =W+ [A+AG(0 / 43, 6]
where AG(9) is given by Eq. 5. Although we use for simplicity
the two-parabola basis of the quadratic relation in Eq. 6, the
equation represents approximately a more general relation and
has been tested by detailed quantum mechanical electronic struc-
ture calculations (e.g., 33-37).

To obtain an expression for the forward reaction rate con-
stant ky for ATP binding we note that there is a rate constant
for the solution ATP reaching the ATPase, namely, a collision
frequency Z. The rate constant for binding to the inside of
the pocket is then this Z multlphed by exp(-W’"/kT) and by
exp[—(4+ AG®(0)]*)/42kT), the “reaction term” for transitioning
into the pocket, according to Eq. 6. Thereby, k; is given by:

k¢(0) =Z exp[-AG' (0) /KT, [71

(The derivation of a Z-based Egs. 7 and 8 from a k7 /h based Eq.
1 can be seen in ref. 22, their equation 31, and involves convert-
ing a free energy contribution associated with the approach of
the two reactants from solutions.) Any orientational restrictions
on the ATP in binding to the outside of the ATPase are included
in the W'. Here, AG'(0) is given by the quadratic expression in
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Eq. 6. For a sufficiently broad range of G”s of the reaction
series, such curved free energy plots and Brgnsted plots pre-
dicted in Eq. 6 (or its R-dependent analog) have been reported
in experimental (38) and computer simulated (39, 40) electron
transfer reactions. In analogy, we denote by k) the rate constant
of the reaction for the freely rotating system,

kfo =Z exp[-AG} /KT, (8]
AG] being the free energy of activation,
AGy =W+ [1+AG(]” /42 9]

From Egs. 5, 6, and 7 one finds that ksy and AG} are equal to ks (6)
and AG"(6) evaluated at 0= (0; +6y)/2, a result we use in Results.
To obtain an expression for the equilibrium constant K (6) we
note that AGY(6) is the Gibbs standard free energy of reaction
assuming a reactant state where ATP is in solution, standard
conditions (1 mol/l). Then G°(), the standard free energy of the
reactant state of binding transition, where the ATP already
bound to the entrance site of the open subunit is AG?(6) minus
any work and entropic terms to bring ATP to the contact point,
AG°(0) =AG’(0) =W’ —kT InkT /hZ. [10]
By analogy, for free rotation AGY denotes the Gibbs standard
free energy of reaction for a reactant state where ATP is in so-
lution (1 mol/l), and we have

AG)=AGY ~ W' —kT InkT /hZ. [11]

Several predictions result from these equations:

1. InK(#) is predicted to be a linear function of 8 with a slope of
k(6 — 6;), according to Egs. 2, 5, and 10. The numerical value
of the slope can be predicted from the measured values of «
and (6 —#6;), and compared with values obtained from the
stalling experimental measurements. Alternatively, the exper-
imental slope and (6y — 6;) values can be used to predict the
elastic constant .

2. The Inks(0) given by Eqgs. 6 and 7 is predicted to be
an approximately linear function of 6 in the range of

—(6;—6;,)/2<0—6;<(0y—6;)/2 probed in stalling experi-
ments. The slope of the linear function depends on GY, A and
W', which can be estimated independently, as below, from ex-
periment. Concomitantly, within this angular range AG'(8)
obeys an approximate linear free energy relation.

3. The Brgnsted slope o defined in Eq. 3 is given by

dInks(0)/d6 1 AG{

1 x(6r = 6:) [0 _

“dmK©)/de 2t 2 T 2 [12]

Gf +06;
3 .

Typically, when AG} /4 is small, o will be close to 0.5. We note
that the last term is a small 6-dependent correction to the slope,
given the range of stall angles probed in the experiment (14).
4. The present framework is intended to apply to rotor-coupled
enzymatic steps involving binding and release of ligand mole-
cules, including ATP binding, ADP binding, and P; release, with
properties specific to each step. In particular for the P; release
step, there is no W” term but a product work term W? applies:
AGT(0) =

[2+4G(0))" [42-wr. [13]

A coupling between rotor and a ring subunit undergoing the en-
zymatic step is valid over the range from the R to the P regions,
perhaps while hydrogen bonds and other contacts between rotor and
f domain are maintained. In the next step, a different rotor-f subunit

Volkan-Kacsé and Marcus
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coupling applies, as new contacts form and another subunit “drives,”
by virtue of the reaction process in it, with the rotor coupled to a new
subunit. In unconstrained rotation experiments the sequence of steps
results in an effective sequential relay mechanism reminiscent of a
previous proposal (41). As depicted in Table 1 6; is reset for each
step and progressively assumes values of 0°, ~80°, ~120° .... We
note that a mechanism that couples the a34; ring to the rotor shaft,
including the effective spring constant, has been attributed to an
electrostatic energy landscape from simulations (42, 43).

Treatment of the Coupled Processes in the 80° Step. In the first row of
Table 1 we have two coupled processes, the binding of ATP in one
pocket and the release of ADP in a second pocket. These processes
may be sequential or synchronous. For the sequential case the ADP
release must be very rapid, because it has no effect on ATP binding
(14). We give here a formal treatment of coupled events in case
they are synchronous, and denote the respective occupancies of the
two pockets at time ¢ by n (¢) and n,(¢). Although n; goes from 0 to
1, n, goes from 1 to 0, and so n¢(t) +n2(t) =1 in the synchronous
system. For the rates dn;/dt and dn,/dt of the kinetic steps the
simplest coupling phenomenology is given by

dmy

0 =ki(1-n1)[1+f(0)] [14]
—dstZZkznz[l —f(G)], [15]

where ki, a pseudo first-order rate constant, denotes the bimo-
lecular rate constant for ATP binding to the ATPase multiplied
by the ATP concentration in solution. In these equations the
phenomenological dynamic coupling parameter of the two pockets,
denoted by f(6), accelerates the intrinsically slower step and retards
the intrinsically faster step. The ; s in Egs. 14 and 15 are k;(0)’s.

The net rate J is given by dn; /dt or by its equivalent —dn, /dt.
From the addition of the above two equations, after first dividing
each by its k;, we obtain

1 1

The effective rate constant of the coupled pair of processes in
this row of Table 1, k, defined by setting J =k(0)n,, is given by

1 1/ 1 1

k() 2@«&*@@9' 17l
We see that k=k; when k; =k;, a result understood by recog-
nizing that the pair of coupled reaction equations then becomes
equivalent to a single first-order reaction. A second consequence
of this equation is that when one of the rate constants (kq, k) is
intrinsically much faster than the other, & is essentially equal to
the smaller of the two k; s and so the faster k; then plays no role.
Our inspiration for the coupling formalism in Eqs. 14 and 15 is
the treatment of the effective interaction of diffusing ions in
solutions, using a diffusion potential analogous to f(0) (44).

In the following analysis we note that the pseudo first-order rate
constant of the ATP binding step, ki, is intrinsically much slower
than first-order rate constant k, for the ADP release step (3).
Accordingly, in our analysis of the two steps in the first row of Table
1, the k(0) is that of the ATP binding step, and we focus on it.

Results

Comparison of Stalling Experiments with Theoretical Predictions.
According to Egs. 6 and 12 the theoretically predicted Brgnsted slope
o is a function of the energetics of the freely rotating system, in par-
ticular W" s, AGY s, and As. These energies were estimated from ex-
perimental forward and reverse rate constants for both ATP and GTP,
and the binding affinities for the empty open-conformation system.

Volkan-Kacsé and Marcus

The W appearing in Eqs. 6 and 7 is approximately —9.1 kcal/mol
for ATP binding, calculated from the binding affinity of —6.3 kcal/mol
to the empty open-conformation subunit adjusted for entropic con-
tributions of —2.8 kcal/mol. [The affinity of the ATP to form an outer-
complexed state to the ATPase can be regarded as the standard free
energy change, starting from unit concentration of ATP in solution, to
form an outer bound complex with the ATPase. This free energy in
turn can be regarded as the sum of a free energy change to make
contact between the ATP and the ATPase plus W, the binding free
energy of that ATP to the ATPase in this outer bound complex. The
former can be shown to equal —kT" InkT'/hZ (cf. ref. 16, their footnote
21), where a ratio of quantities k7' /hZ was given, and the desired free
energy is —kT In kT /hZ.] The former corresponding to a dissociation
constant of 25 pM, which was measured by a fluorescent ensemble
technique (27). We estimated AGO =5.0 kca]/mol using Eq. 8 for
the freely rotating system, assuming Z =10" M~ s~! and using the
known value of kg = 2 x 10 M ' 57! (3). The collrsron frequency
in solution is approximately equal to the gas phase value multiplied by
the hard sphere pair distribution function at contact, a value of about
2-3 (45), incorporated into W". Consequently, for the freely rotating
system, the overall free energy of activation for the ATP binding
transition is estimated to be AG — W’ = 11.3 kcal/mol.

The AG) for ATP brndrng is estimated from the free rota-
tion equrhbrrum constant Ky = kf(] Jkpo = 10° ML noting that
—kT In Ky = AG). Because there is no kg available for the ATP
release rate (reverse process), ky is identified by k() at 6=
(6; +6f) /2 from stalling experlments (14) by applying Egs. 1, 13,
and 5 for the release process. If AGY = —kT In Ky =-12.3 kcal/mol

&~ —9.1kcal/mol, and kT InkT /hZ =2.8 kcal/mol for a standard
state of 1 mol/l, then according to Eq. 11 AG}) =—6.0 kcal/mol
(cf. Table 3).

An estimate of A follows from Eq. 9 written for free rotation.
Given that for ATP binding a ~0.5 and thus AG) < 1 the expan-
sion of the quadratic term yield the approximate solution for A,

A/A=AG)—W" - AG) /2, [18]

where the quantities on the right-hand side were obtained above.
The procedure for GTP binding energetics is similar, but we note
that because currently there is no available free rotation rate kg
data, we used the forward stalling experiments at 8= (6; +6y)/2
to calculate k) using Eqgs. 5, 6, and 8, and assumed that W is
equal to that for ATP binding.

The Brgnsted slopes of various enzymatic steps extracted from
stalling and controlled rotation experiments are given in Table 2.
To extract Brgnsted slopes, the experimentally measured re-
action rate and equilibrium constants at a limited range of 6s,
given in prediction 2 above gave the values of Ink(0) and In K ()
functions, that in turn gave an approximately linear plot of
Ink(0) vs. In K(0), yielding the Brgnsted slope according to Eq. 3.
Thereby, the stalling experiments (14) provided estimates for
free energy relations and slopes for ATP and GTP binding
(Table 2, entries 1-2), which permitted a quantitative compari-
son with the predictions of the present theory.

Theory and experiment (14) are compared in Tables 3 and 4
below for the slope of the In k¢ (0) functions, the elastic spring
constant k, and the Brgnsted slopes a. The experimental values of
o for ATP and GTP binding are equal, within experimental error.

According to Egs. 7-12, several factors affect the equilibrium
constant and forward rate constant slopes, d In K /d6 and d In ky /d6:
the torsional stiffness, the total angular displacement, the reorga-
nization energy, the standard free energy of reaction, and the initial
binding energy. In Table 4, we use the energetics from Table 3, the
values of (6 — 6;) and d In K /d0 to predict d Ink/d6 and k. Based
on Junge and coworkers’ measurements (32) x =20 pN - nm, chiefly
due to the rotor compliance.

Extension of the Treatment to P; Release. In the free rotation of F;-

ATPase the 40° rotation is coupled with the ATP hydrolysis in one
subunit and P; release from the clockwise neighbor subunit (6), as
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summarized in Table 1. The timescales associated with the two
processes have been resolved by rotation experiments (46), mean-
ing that they occur consecutively rather than synchronously, but
kinetics alone cannot distinguish whether the steps occur in a
specific sequential order or simultaneously (3). Meanwhile, for the
present purpose of treating P; release, we neglect the effect of the
coupling of hydrolysis with rotation during the 40° step given its
small standard free energy of reaction, AG® 0.6 kcal/mol (27).

Although ideas similar to those for the ATP binding can be
adapted to the substep of P; release, there are presently only two
0-dependent rate data points from previous experiments (3, 6),
which prevents an adequate estimation of the analogous k(6),
K(0), and a. We describe, nevertheless, a procedure for treating
such data when they become available in systematic angle-de-
pendent experiments.

For P; release the free rotation AG8 and AGS can be estimated
using an Eq. 1 analog for release, AG{=—kT In(hks/kT), and
the forward rate constant ks = 10° s7%; and collision theory for
rebinding, i.e., an Eq. 7 analog AGI) — AGY = —kT Inky/Z, with
Z=10" M~! s7! and kpy=10° M~! s, a rate constant from
stalling experiments (6, 14). Thereby, one obtains AG] = 2.8 kcal/mol
and AGS =10.9 kcal/mol. Here, ky( and k; were approximated from
angle-dependent data at 6= (6; + 6;)/2. We neglected any binding
effect of the P; to the exit site just before its release into solution,
WP 0. Using the same x =20 pN - nm, 1 =38 kcal/mol can be cal-
culated using Eq. 13.

P; release is a major torque-generating step (3, 26, 48), hence
we suggest that it is coupled to the rotor in the full range of 6,
i.e., O — ;= 40°. As noted above hydrolysis has a small standard
free energy of reaction, according to both ensemble (32) and
single molecule experiments (3). Assuming that in F;-ATPase
chemomechenical energy transduction can be very efficient
(49), the energetics also support the idea of a small hydrolysis-
coupled rotation. For P; release then, considering the given 6; —6;
value, the theory permits us to predict the 6-dependence of
dInK/d6=0.48 and dInk/d6=0.26 per 10° of stalling angle, and
Brgnsted slope of a=0.26/0.48=0.54, using Eqgs. 3, 5, and 6, as
described above. These results then can be compared with exper-
imental counterparts when more data become available.

Concluding Discussion and Outlook

An elastochemical theory of the F;-ATPase rotary biomolecular
motor described here provides an interpretation and explanation
for stalling experiments. The rate dependences on the rotor shaft
angle in various substeps are interpreted in terms of free energy
relations, and compared with theory. A transition-state treatment
based on a theory of electron, atom, proton, and group transfers is
given to interpret and predict these relations for ATP and GTP

Table 2. Brgnsted slopes of various reaction steps extracted
from single molecule experiments in F,-ATPase

Deduced Source of experimental
Number Reaction step slope* rates
1 ATP binding  0.48+0.05" Stalling (14)
2 GTP binding 0.56+0.08" Stalling (14)
3 ATP hydrolysis* (1) Stalling (14)
4 ATPyS hydrolysis* 1 Stalling (14)
5 P; release ~0.7% Stalling, free rotation (3, 6)
6 Cy3-ATP binding" 0.4-0.7  Controlled rotation (15)
7 Cy3-ADP release’ 0.7-0.95 Controlled rotation (15)

*All slopes were evaluated at pM or higher ligand concentration.
TConfidence intervals were calculated from the confidence intervals reported
in ref. 14.

*Mutant F; (8£7°°P). The reverse reaction (synthesis) is roughly independent
of 0 (14), hence a~1.

$Qualitative estimation, uncertainty in excess of ~ 0.1.

YRough estimates both in the presence and absence of P; in solution. Ligand
occupancy was 0 or 1.
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Table 3. Comparison of experimentally measured and
theoretical predicted Bronsted slopes

Reaction step Properties* Experiment Theory
A AG§ wr o o

ATP binding 56 -6.0 -9.1 0.48 0.47

GTP binding 55 -5.4 -9.1 0.56 0.48

*Free energies are given in kcal/mol.

binding and its application to other substeps involving binding
and release of a ligand molecule to the ATPase is discussed.

When the elastically compliant rotor is manipulated in these
experiments, transitions between reactant and product states of
the enzymatic steps occur while the rotor-stator complex un-
dergoes an elastic twisting deformation. In torque-generating en-
zymatic steps, such as ATP binding, the free energy profiles of
steps are perturbed by the elastic energy of twisting, which gives
rise to free energy relations as a function of rotor angle.

In the present comparison of theory and experiment, no ad-
justable parameters were introduced for the results in Tables 3
and 4. Within a harmonic force model for twisting the rotor—
stator structure, the theoretical linear dependence of InK (or
AG") on the rotor angle is exact. Given the coarse-graining level
of present modeling, the quantitative agreement in these tables is
reasonable. The kinetic data themselves are approximate, par-
ticularly the k data for the steps of GTP binding are sparse, apart
from one k(6) value (14) and not sufficient to accurately fit an
exponential k(6) versus 0 function. For P; release at present there
are no systematic angle-dependent rate data, the Brgnsted slope
in Table 3 is based on only two data points, but predictions are
made for a future comparison with experiment.

At a molecular level, the binding transition involves a dis-
placement of the ligand through a path inside the p-subunit that
leads from the initial weakly bound state to the binding pocket.
Presumably as the ligand transitions across the channel, old hy-
drogen bonds break and new ones form between ligand and host
subunit, and within the host subunit itself. A picture in which a
hydrogen bond order is conserved along the transition, effec-
tively lowering the TS barrier may apply. Such model for atom
transfer (H" and CHY) transfer chemical reactions based on the
conservation of total bond order has been previously used to
describe chemical reactions, and lead to equations similar to
those for ATP (16). Atomistic-level treatment permits the de-
tailed exploration of ligand molecule transfer along the path into
the pocket (48), and the free energy profile of subunit confor-
mational space coupled to the rotor angle (26, 43), and serve to
evaluate and correct the model on which Egs. 6, 13, and 9 or
their bond energy-bond order analogs (16) are based. Atomistic
simulations can test the proposed approximate relation of the
free energy of activation to the standard free energy of reaction
for the individual steps. They can address the coupling between
individual processes descried phenomenologically in Egs. 14 and
15. Simulations can calculate the effective torsional elastic con-
stant that appears in the various separations, can calculate the
kp(0)’s and K(0)’s for various steps, and can extract the entire
Inky(0) versus InK(0) curve and explore its presumed curved
nature. In brief, the present formalism may provide a bridge
for relating atomistic simulations to the various chemical and
mechanical aspects of the ATPases and the details of single
molecule behavior.

As noted earlier, the present formulation of the model is not
intended to apply to the ATP hydrolysis step, which is believed to
involve two or more substeps, rather than just one (28, 30, 50).
An a of 0.83 for ATP hydrolysis in tyrosyl-tRNA synthase was
inferred by use of mutants, and an explanation of this high o for
this reaction, where overall AG® is small, was given by Warshel,
who postulated two transition states of about equal energy with a
shallow minimum in between (28). Thereby the first step had a
barrier almost equal to the energy to reach the shallow well, and
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Table 4. Comparison of free energy changes with respect to
angle from stalling experiment with theoretical predictions

Properties* Experiment’ Theory"
Reactionstep A AG) 6;—6; 9k  dink Ak

ATP binding 56 -6.0 80° 0.91 0.45 20 042 16
GTP binding 55 -54 80° 0.84 047 20 047 15

*Free energies are given in kcal/mol. Properties are estimated from
experiment and are independent of columns 4-6.
Td Ink¢/d6 and dIn K/d6 are in units of 1/10° (14). k is in units of pN- nm (4).

so a was close to unity. Electronic structure calculations in
F,-ATPase of a more ab initio nature (30, 50) indicated at least
two TS’s, but further studies are needed to explore these TS’s,
and the valley between them should be treated. Obtaining o via
stalling experiments has an advantage over obtaining it via mu-
tations because the latter may also affect A. A more detailed ab
initio theory would also incorporate the structural coupling be-
tween the azf; ring unit and the rotor, e.g., akin to recent sim-
ulations of the electrostatic free energy profile (42, 43).
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It is planned to apply the present method and theoretical
framework to other single molecule experiments and data, such
as the other torque-generating steps probed by stalling, con-
trolled rotation or other advanced techniques, the free energy
response in controlled rotation (15) of arbitrary rotation velocity,
torque generation (5), and pulling experiments (51). The model
can be applied to other ring-shaped NTPases that rotate against
a shaftlike structure, such as the helicases or DNA-packaging
complexes found in bacteriophage viruses (51).

Methods

The theoretical modeling provided analytic mathematical formulas for the
change of rate constants, equilibrium constants, and Brensted slope with
respect to rotor angle. The theoretical values of these quantities were cal-
culated using properties such as angular displacements, elastic constants,
and the energetics of free rotation from ensemble and single molecule ex-
periments. These quantities were compared with their experimental coun-
terparts from previously published stalling experiments.
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