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Extension of the diffusion controlled electron
transfer theory for intermittent fluorescence of
quantum dots: inclusion of biexcitons and the
difference of “on” and "off” time distributions

Zhaoyan Zhu and R. A. Marcus*

The equations for the diffusion controlled electron transfer (DCET) theory of quantum dot blinking are
extended to include biexcitons. In contrast to excitons, which undego resonant light to dark transitions,
the biexcitons, having a much larger total energy, undergo a Fermi's Golden rule type transfer (many
acceptance states). The latter immediately gives rise to an exponential tail for the light state, and it is
explained why the dark state power law behavior is unaffected. Results are given for both continuous
and pulsed excitation. The typical —3/2 power law for the light state at low light intensities, and for the
dark state at all intensities, as well as dependence of the exponential tail on the square of the light
intensity, and a decrease of the power in the power law for the light state from —3/2 to less negative
values with increasing light intensity are all consistent with the theory. The desirability of measuring the
dependence of the spectral diffusion coefficient on light intensity at room temperature as a test of
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1 Introduction

Single molecule spectroscopy is a powerful and sensitive tech-
nique that permits the investigation of spatially heterogeneous
samples one at a time and reveals phenomena masked by
ensemble averaging. It is also complementary to ensemble
studies.™ It has been widely used to study the fluorescence of
single quantum dots,"*™° single fluorophores in porous silicon,"”
single polymer segments,'® light harvesting complexes,'® fluores-
cent proteins,”**' and single dye molecules on various surfaces.”> >’

The interesting phenomenon of blinking or fluorescence
intermittency has been observed in which abrupt transitions
occur between alternating episodes of absorption of light and
fluorescence recycling is followed by sustained periods of
darkness where no light is emitted. Numerous experiments
have been performed since the first observation® of the fluores-
cence blinking of quantum dots.”'® Memory in subsequent
fluorescence or dark episodes®® and electric field modulation of
fluorescence® have been observed. Several models have been
proposed to explain the phenomenon.>?*~3%

In the present paper we extend a reaction diffusion differential
equation to include biexcitons, prompted by recent experimental
results.***® The theory now contains two different mechanisms
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several aspects of the theory is noted.

for the intermittency, resonant and Fermi’s Golden rule,
depending in the energy, and also now explaining why the light
(“on”) state shows, typically, on the average at low light intensity
an ~ —3/2 power law"” ™' with an exponential tail that depends
on the light intensity while the dark (“‘off”) state only shows
the ~—3/2 power law, even under these high light intensity
conditions.

Until now we have had a differential equation that treats the
common —3/2 power law and an argument in the literature as
to how biexcitons give rise to an exponential tail. This interest-
ing ‘“patchwork” is now replaced by a unified treatment, a
differential equation for the light state and one for the dark
state and their solution. A physical reason, based on amount of
excess energy, is given as to why there are two forms of change
of state, one that is a resonant transition (~ 0.3 eV***”) and the
other is a Fermi’s Golden rule transition (~2.2 eV*'). What
emerges from the solution of the differential equations, under-
stood in physical terms, is an explanation of why the light state
but not the dark state shows an exponential tail. Before now
one had to assume some not understood difference in diffusion
constants for the explanation, an explanation that also would not
have explained the intensity dependence of the exponential tail.

The paper is organized as follows: in Section 2, the previous
Diffusion Controlled Electron Transfer (DCET) model is briefly
summarized. The present extended DCET model with biexcitons
is introduced there and the equation for the bright population
density change with time is derived for both the continuous
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(Section 2.3) and pulsed laser excitation (Section 2.4) cases and
solved for the survival probability. The equations of dark states
population are also derived and the solution is given there. In
Section 3, the quadratic dependence of the exponential tail on
the excitation power, the difference between the bright and dark
cycling, the dependence of the linear portion of the log-log plot
for the “on” state on the light intensity and other phenomena
are discussed. Concluding remarks are given in Section 4.

2 Theory
2.1 DCET model

The existence of an approximately —3/2 power law"®™® for the
blinking has suggested that diffusion (a spectral diffusion) is
involved in the blinking.***® Subsequently, a diffusion controlled
electron transfer (DCET) equation was proposed™*®*” to treat the
intermittency. The diffusion considered here differs from that
discussed in ref. 49, which considers diffusion of electrons rather
than “spectral diffusion”. A DCET mechanism is assumed to
govern the charge transfer reactions between an “on” state |e) of
the quantum dot and a charge-separated state |d) there (Fig. 1).
The latter appears dark due to a fast Auger relaxation of an
excited state |d*).>**%"3 That relaxation dominates any fluores-
cence.”® State |d) is a long-lived dark trapped state. However,
what the theory did not do, and what we do in this paper, is to
explain why the “off” state only shows the power law, whereas the
“on” state has an exponential tail in addition to its power law and
give and solve differential equations for these two states.

2.2 DCET model with biexcitons

We adopt the diffusion controlled electron transfer mecha-
nism where the equations are given in ref. 38, and to it we
add a quite different mechanism for including biexcitons,
different because of their high energy, and so add a term in
the DCET equation containing this reaction step. In the present
article we add biexcitons, while multi excitons will be included
in a later paper. With biexciton generation, the previous four-
level system®® is generalized to now include the new bright
species, biexcitons.

We denote the ground state by |g), the excited state (one
exciton) by |e), the biexciton by |b), the trapped state (the dark
state) by |d) and the excited dark state by |d*). These symbols
each denote the state of the entire QD and not just part of it.

on - event off - event

reaction  coordinate  Q reaction  coordinate  Q

Fig. 1 Diffusion on the parabolic potential surfaces |l) and |d) across a
sink at the energy-level crossing governs the intermittency phenomenon
(corresponding to Fig. 2(b) from ref. 38).

Phys. Chem. Chem. Phys.

View Article Online

PCCP

The assumed reaction mechanism can be written as follows:

Reaction step Rate constant

For a bright QD:

lg) + v —e) Ige (i)
le) — Ig) keg (i)
le) + hv — |b) Iy, (iif)
le) - [d) Kea (iv)
[b) — |e) Kpe )
[b) — |d') ko (vi)

For a dark QD: we have

|d) + hv — |d*) Iaa~ (vii)
[d*) — |e) kare (viii)
[d*) — |d) kaxa (ix)
[d) — |d) kaa &y

The state |d) is the lowest energy dark ground state, |d*) is a dark
state with an extra exciton and |d’) is a higher energy dark state. The
keg and ki, are both a sum of the radiative and nonradiative rate
constants, while kg is an Auger assisted ionization rate constant to
form the dark state,> k4« is an Auger-assisted rate constant to form
the bright state,"” and kyq is a fast relaxation process. The pulse
duration of the commonly used pulse lasers is on the order of 1 ps to
100 ps.*** The Auger process occurs in similar time range.** Even
after an Auger assisted ionization, a dark QD is still in the dark
cycling, unlike the Auger kinetics in a bright QD.

2.3 Continuous laser excitation

Under continuous (cw) laser excitation the bright cycling equa-
tions contain the added kinetic step and are given by
9pe(Q, 1)

T: kegpe(Q’t) _Igepg(Q’[)7 (1)

w = gepg(sz) +Lepe(Q7t) +kbepb(Q:Z) (2)

- (keg + Ieb)pe(Q7 t) - kedé(Q)pe(Qv t)7

O06(CT) _ 1ope(0.1) + Lophl0.0) — (hoe + K )pn(0.1), ©)
where L. is the diffusion operator in state |e) and L, is the
diffusion operator for the biexciton state. From ref. 1 we know
that a dark state is dark for an hour when there is no light. Our
interpretation of this result is two-fold: the dark to bright
transition is in the time period of the experiments a light-
induced Auger transition, and also the dark state doesn’t diffuse
in the absence of light (otherwise it would reach the intersection of
the potential energy curves) and the ground state doesn’t diffuse.
The remaining symbols are the reaction rate constants shown
in the reaction scheme given above. We have

olo 1 0

L= De@ @+kB—T@Ue(Q) ) (4)

where D, is the diffusion constant for a structural, e.g., spectral,
diffusion and U(Q) is the potential energy (more precisely
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a free energy curve)*® as a function of a generalized coordi-
nate Q.”***

Unlike the resonant transition terms in eqn (2) given by the
delta function (Fig. 1), we assume that because of the large
energy present in the biexciton state an electron or perhaps
even the more localized hole can be ejected to any site outside
the core QD, a process treated in the present derivation by
Fermi’s Golden rule and later leading to the exponential factor
in the decay of the bright states, as seen in eqn (22) below.
Due to fast Auger processes the lifetime of biexcitons is much
shorter than the one of single exciton so we neglect any
structural diffusion, the Lyp, term in eqn (3) in the biexciton
states during the time available.

In the meanwhile, the dark cycling equations remain the
same as in ref. 38,

Ipa(Q, 1)

T = k&dpm (Q, t) - Idd*pd(Qv t)? (5)

W = Lgpg (0, 1) + Lig pqa(0, 1) o

- kd*dpd* (Q7 [) - kd*eé(Q)pd*(Qa t)a

where Ly is the diffusion operator in state |d*) and other
symbols are reaction rate constants shown in the table. Since
|d’) all goes back to |d) the instantaneous contribution of py: is
negligible. Biexciton and multi exciton terms are not specifi-
cally included here because pumping to and relaxation from
biexciton and multi exciton states is still in the dark cycling and
plays no role in the dark to bright electron transfer reaction. In
the present model the diffusion is stimulated by each absorp-
tion of light so a stepwise diffusion occurs just with light and so
occurs in the |e), |b) and |d*) states but not in the |g) and |d)
states. So there is no L4 in eqn (5) since in the theory there is no
spectral diffusion in this lowest dark state.

The sum of the three rate equations, eqn (1)-(3) yields the
rate of change of the total “on” population p, + p. + p1,, denoted
by pr,,

0
% = Lepe(Q, l) - kedé(Q)pe(Q, l) — kbd’pb(Q7 [). (7)

In comparison the sum of the rate equations for the two dark
states, eqn (5) and (6), yields the rate of change of the total “off”
population pgq + pg+, denoted by pp:

%: Ld‘pd* (Q’ t) _k&eé(Q)pd“(Q7[)7 (8)

Here, the counterpart of the last term in eqn (7) which later is
shown to result in the exponential tail in the solution is missing.

With I usually <0.01 ns™* (ref. 1, 6-13, 15, 16 and 27) <
keg (~0.1 ns™")°>* and at any time ¢ > 1/I, a quasiequilibrium
is established between |g) and |e), yielding kegpe(Q,t) X Igepq(Q)t).
There is a similar quasiequilibrium between |e) and |b) and so
Pb X pelev/kpe. If the absorption cross-section of a QD changes
little with exciton generation, i.e., Io,, = Iye, then

Iy
=_£ 9
Po = TP ©)
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kcg Igc kcg
— 8 =~ —=p.. 10
PL [gcpc+pc+pckhe Igcpc ( )
Eqn (7) can now be written as eqn (11) for cw
I 0 St
LM = chL(Q7 t) - kcdé(Q)pL(Q7 t)
keg Ot
_ Koy
pL(O, I)Igek (11)
be

With a similar quasiequilibrium between |d) and |d*), pq ~
pa-ka=allaa~ and pp = pgrkarallaax + par X pa-kara/laa~, and
eqn (8) becomes

AiiapD(Qv [)

kea 01~ Lepp(Q0) —keed(Q)pp(Q:0). (12)

The solution of eqn (11) for p, and (12) for pp is given in
Section 2.5.

2.4 Pulsed laser excitation

For pulsed laser excitation, there are two time frames, one
arising at the start of the experiment, ¢, and the other, the time
between consecutive pulses counting from the start of every
pulse, ¢, where 0 < t, < T, T being the interval between
consecutive pulses. Fluorescence lifetime, biexciton and multi
exciton lifetime and other transient properties occur within the
t, frame while the “on” and “off”’ time distribution occurs in
the ¢ frame. With T (typically 200 ns) much greater than an
exciton lifetime (~ 10 ns), before the next pulse starts, all bright
exciton states have relaxed either back to ground state or trans-
ferred to dark states. The density of biexcitons transferred to dark
states in every pulse, piosi(b), is

plost(b) = Pionbpb(Q)t)7 [13)

where Pj,n, is the ionization efficiency of a biexciton. If we
adopt T, the interval between successive incident light pulses,
as the unit of ¢, then pj,s(b) is the rate of biexcitons transferred
to dark states and we then have
% = LePc(Q? Z)T?X - kedé(Q)pc(Q’ [)‘%X
- Pionbpb(Q7 l)7 (14)

where 1, is the single exciton lifetime, while for the dark states
we have
8,0 D (Qv ? ) Tx

T - Ld*pd* (Q7 Z)? - kd*c(S(Q)pd* (Q> I)T?X7 (15)

Treating the absorption of photons as consisting of inde-
pendent events, we then have a Poisson distribution. In every
single pulse, the probability of absorbing of m incoming
photons by a QD forming an m exciton is

P(m) = ef<Mx>_<";x!>_m (16)

where (M,) is the average exciton number formed in a QD per
pulse. Here, we only consider ground states, single excitons
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and biexcitons. Then pi(Q,t) = pg(Q,t) + p(Q,t) + pu(Q,t) and
eqn (14) can be rewritten as

(My) IpL(01) _
L+ (M) + (My)? /2 Ot

(1)
1)
(17)

Lepr Q1) — ksad(Q)p1.(Q.0)7: = p1(Q. 1) P

For the dark states pp(Q,t) = pa(Q,t) + pa~(Q,t) and eqn (15)
becomes

(Mx) 9pp(Q1)
14+ (M) ot

= Lepp(Q, )7 — keed(Q)pp(Q. )2

(18)

2.5 Solution

Without the last term eqn (11) and (17) (and in the case of
eqn (17) without the (M,)*/2 term) are similar to the eq (4a)
obtained by Tang and Marcus,’® as are eqn (12) and (18) for
the dark states. Comparing eqn (11) and (17) with eq (4a) we
then see that the solution of eqn (11) and (17) equals that of
eq (4a) multiplied by e %, where k. = Igezkbd//[kegkbe] and k. =
Piony (M)*/[2(1 + (M)+(M,)?/2)] for eqn (11) and (17), respec-
tively while for the dark states the solution of eqn (11) and (17)
is the same as the solution of eq (4a). Here, we consider the case
that"' during a pulse excitation there is no accumulation of
excitons from previous pulses, i.e., all bright exciton states have
relaxed either back to the ground state or transformed to dark
states. The integration of the probability density function
p1(Q,t) over Q gives the survival probability at time ¢ for an
“on” state that started at ¢ = 0. Treating the survival probability
for “on” as a step function, noting that the derivative of a step
function is a § function, the derivative gives the time at which a
change occurs from “on” to “off”, so giving the waiting-time
distribution Pi(t). This Py(¢) for a quantum dot, defined in
eqn (19) as the derivative of the survival probability, is the
probability of a QD that has been in the “on” cycling for ¢ and
transfers to an “off”’ cycling during d¢ per unit d¢. It is given by

o0
o =-5] don@.. (19)
—00
where Q is the reaction coordinate. When the quantum dot is in
the vicinity of the intersection of the relevant electronic state
potential energy surfaces,>® the effect of the slopes of the corre-
sponding potential energy surfaces Uy;(Q)**>” on the dynamics
will be assumed to be small (¢ < 1/I', in the notation of
ref. 2 and 38). The diffusion operator L;; defined in eqn (4)
can then be approximated as D;,0%/0Q” which is the no-forced
diffusion term. We use the Green function method>® to solve
eqn (17) with the free energy derivatives>*® with respect to
Q absent and, as before,*® obtain a closed form solution in
Laplace transform space. The solution for p;(Q,?) and hence for

Pi(¢) is given by

14 2kt Tt t _
P = 1 — | —e""erf — ket 2
L(1) T [ \/ lce er c(\/;)}e ) (20)
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with the limiting forms (21) and (22) for ¢t « t. and t >» t..

1
Tt

PL(t) = 1<t (21)

and

4 .
PL(Z) ~ \/_C 67/\617

T t> te. (22)
e

where t. is the critical time®*® in which the population has

largely been depleted near the sink (time to set up a steady-
state) due to disappearance into the sink at the crossing and

te = ADelgellkegkea’] (23)
and
te = ADT(M)/[t(1 + (M) + (M)*/2)kea®]  (24)
for eqn (11) and (17) respectively. For cw excitation,

kbd’
ke,gkbe7

ke = I (25)

and for pulsed excitation,

(M,)?
2(1 + (My) + (My)?/2)

kc = Pionb ~ Pionb<Mx>2/27 (26)
where (M,) is the average exciton number formed in a QD per
pulse. Comparing eqn (7) and (14), we can see that ky,q' plays the
role Of Pionp. Ipe’/(kegkbe) and (M)?/2 are the ratio py/py, respec-
tively, for the continuous and pulsed laser excitation.

In concluding this section, we make one further remark on
eqn (22). The complete form of eqn (22) is

PL(t) ~ \/%e*’“"(l + 2k.t),
The second term in the parentheses in eqn (22) only con-
tributes when at ¢t ~ 1/k. and would contribute to the little rise
from the power law (Fig. 3) at the beginning of the exponential
tail. It is a very small effect and would be hard to see in experimental
results.”"*® For the dark states the distribution is again given by
eqn (20), with the k. in eqn (21) and (22) equal to zero, and with
the ¢. given by eqn (28) and (29) for cw and pulsed laser excitation
instead of eqn (23) and (24).

1> . (27)

te = 4Dgelgar![karakare’] (28)

te = ADg-T[1 + (M)]/[tx (M) kqs?] (29)

3 Results and discussion
3.1 Absence of exponential decay of the dark cycling

While the dark cycling is similar to the bright cycling, the
difference is that in dark cycling the fluorescence is quenched
by an Auger process. If there is an Auger-assisted ionization
from the dark state with two extra excitons, then after ionization
the QD is still in the dark cycling phase and not yet transformed
to the bright cycling: there are now two extra charges of the
same kind in the conduction band or in the valence band that

This journal is © the Owner Societies 2014
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can participate in the Auger process. The exponential decay
seen in eqn (22) for the “on” state is absent in the “off” waiting-
time distribution Pp/(t), since the dark state remains a dark state
after this transition.

3.2 Quadratic dependence of the exponential tail of the “on”
time distribution on the excitation power

At an intermediate excitation intensity when the chance of
multi exciton generation higher than a biexciton is small, only
the ground, exciton and biexciton states need be considered,
prlpe ~ kegllye and (M) is small but large enough to cause
the exponential tail. The exponential for the “on” state in
eqn (22) is exp(—kct). For cw excitation, k. ~ Iye’kba'/[Kegkbe)
and for pulsed excitation, k. ~ Pi(,nb<MX)2/2. This result agrees
with the quadratic dependence of the exponential tail on the
excitation power, as in the present Fig. 2 and 3 and in Fig. 4 of
ref. 41. According to ref. 41, for the 3 points in Fig. 2 (M) is
~0.1 to 0.3. When the excitation intensity increases and multi
excitons have to be taken into account, and in general this
quadratic dependence is not expected. The general case with
multi exciton species taken into account will be treated in a
later paper.

3.3 Slope of power law at short time

A prediction of the diffusion controlled electron transfer model
for the power law is that the power at short times will be —1/2
instead of —3/2 at longer times and the transition happens at
the critical time ¢, as seen in eqn (21) and (22). A subsequent
test of this prediction was made and the expected change of
unity in the slope®® was observed. However, while the result is

0 10 20 30 40 50 60
F(10°'W?em’)

Fig. 2 k. vs. I? fitting where / is laser intensity.

® 230Wicm?
A 120Wicm?
66Wicm?

P(ms”)

Fig. 3 On-time probability distributions measured under pulsed laser
conditions at Ae = 434 nm and laser intensities of 230 (red @), 120 (blue A),
and 66 W cm™2 (green M). The solid lines are fits to the data of power law
with exponential cut-offs k. (k. = 11.3, 2.2, 0.8 s7%, respectively) and bumps
according to egn (22) and the dashed lines are fits to the data only of
power law. Here the slopes are not fixed at 3/2. The curves** had been
vertically shifted by unspecified amounts. Data reprinted with permission
from ref. 41. Copyright (2009) American Chemical Society.
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supportive of the theory it doesn’t confirm it since in principle
it might have some other origin.

3.4 Slope deviation from —3/2

For the dark state the slope m of the log P vs. log ¢ plot is —3/2 but
for the light state at high intensities in Fig. 3 m is different (lower
power) from —3/2 and this difference increases with increased
light intensity.** The mechanism of this light intensity dependence
of the power law slope remains to be analyzed. One possibility is
a binning effect on the log-log plot.*° If there is not a sharp
distinction between “dark” and “light” for example, if there are
different degrees of apparent brightness in the bright state due to
fluctuations in numbers of bright periods within a bin, then the
analysis would be more complex. In such a case, the trajectories
would look “ragged” for a light state, instead of an ideal “picket
fence” type trajectory. When possible, we have focused on systems
that display the even height “picket fence” type trajectory rather
than a “ragged” one, as in the trajectories shown in ref. 41 and 61
but not those in ref. 62. In general, it would be helpful to decrease
the bin size when analysing high excitation intensity experimental
results and see if the power exponent converges to a constant
value, signal intensity permitting.

Another possible origin is the change of the critical time ¢,
with a change of laser excitation intensity I. ¢, o¢c Delg.. Since
both D. and I, increase with increasing I, t. becomes larger and
the probability of “on” events shorter than ¢, (slope —1/2 as in
eqn (21))becomes larger. If we assume D, oc Iand Iy, oc I, then
te oc I*. Scaling ¢ with I* (Fig. 4) one sees that the data points of
the power law parts at the 3 different intensities in Fig. 3 merge
and are fit with ¢, = 3 ms at 230 W cm 2 by eqn (20) without the
exponential term. This ¢, is comparable to results obtained at
approximately the same absorption rate in ref. 59, a t. ~ 5 ms.
Recently Bawendi and coworkers directly observed spectral diffusion
dynamics in single CdSe-CdS QDs at low temperature.®® If diffusion
constants can be obtained at room temperature this possibility
can be tested.

The theory for the other experimental observations described
earlier is independent of this possible explanation of this light
intensity dependence of the initial linear slope in the experi-
ments of ref. 41.

3.5 Nature of the trapped states

Indirect evidence for a localized dark state with a localized
charge trapped in a set of surface sites is seen in the experiment

® 230Wiem?
A 120Wiem?
66Wicm?

P(ms”)
3

10° 107 10" 10° 10
Y(1/230)°

Fig. 4 On-time probability distributions with time t scaled with excitation
intensity /2. Only the continuity of the linear portion of the plot should be
examined.
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of Barbara and coworkers.>" Their result indicates that there is
no uniform surface band, but rather that a localized charge is
trapped at different surface sites at different times, there being
perhaps a trap to trap diffusion of the charge on the surface.
The Babara experiment doesn’t determine the sign of the surface
trapped state. Here, the “off” times are attributed to surface charge
trapped states. Efros, Hermier and coworkers have measured the
polarization-resolved PL spectra in magnetic fields in which the
sign of the circular polarization degree indicates the sign of
the resident charge to determine the extra charge® in the core is
an electron. Thus the dark state is formed when a hole transfers
from an exciton state to a trap |d) off the valence band leaving
an extra electron in the core. Guyot-Sionnest and coworkers
showed that an 1S. electron pumped to 1P, state has a large
chance to tunneling to the surface.®® This is interpreted as the
electron transfer discussed in ref. 47. In ref. 47 the state was
assumed to be a state off the valence band. In the latter, the
trapped state is a surface Se®~ prior to the transition that causes it
to become a Se™ after the transition, in the case of a CdSe QD.*’
That is, it is a trapped hole off the valence band. Correspond-
ingly, in this trapped state there is in the body of the QD an
excess electron in the 1P, state. This view treats the trapped state
as formed in an Auger process from a possible resonance to 1P,
to 1S, transition from a transition between a 1S hole state in the
valence band and a Se*~ surface state. For biexcitons, with two
electrons in the 1S, state and two holes in the 1S;, state, we have
an Auger assisted ionization process in which one hole comes
deeply from the valence band to the Se*~ ion and another hole
annihilates one electron in the 1S. state. In this trapped state
with an excess electron in the core of the quantum dot when
another electron is photo excited from the ground state to the
conduction band Auger dominated nonradiative pathways can
dominate the fluorescence. This oxidation by hole was evidenced
recently in electrical charging experiments.®®

3.6 Other remarks

A memory in consecutive bright or consecutive dark events has
been reported by Stefani et al.*>® It may now be due to successive
trapping preferentially at or near a particularly favorable local
site a dangling surface Se*>~, for example, reflecting an expected
heterogeneity in properties of the individual surface sites.

4 Conclusions

The equations for the DCET model have been extended so as to
include biexcitons at the higher light intensities. The new
partial differential equation modified from an earlier work by the
inclusion of biexcitons provides an interpretation of the expo-
nential cut-off of the power law time distribution of the “on” state
of the single quantum dot fluorescence blinking process, the
quadratic dependence of the exponential tail on the excitation
intensity, and, particularly, the previously unexplained asymmetry
between “on” and “off” states, only the former having an expo-
nential tail in the observed time domain. Several other experiments
including an effect of electric fields® are also stated.>*
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