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UV-B absorption by the photoreceptor UV resistance locus 8
(UVR8) consisting of two identical protein units triggers a signal
chain used by plants in connection with protection and repair of
UV-B induced damage. X-ray structural analysis of the purified
protein [Christie JM, et al. (2012) Science 335(6075):1492-1496]
[Wu D, et al. (2012) Nature 484(7393): 214-220] has revealed that
the dimer is held together by arginine-aspartate salt bridges. In
this paper we address the initial processes in the signal chain. On
the basis of high-level quantum-chemical calculations, we propose
a mechanism for the photodissociation of UVR8 that consists of
three steps: (/) In each monomer, multiple tryptophans form an
extended light-harvesting system in which the L, excited state of
Trp233 experiences strong electrostatic stabilization by the protein
environment. The strong stabilization singles out this tryptophan
to be an efficient exciton acceptor that accumulates the excitation
energy from the entire protein subunit. (/i) A fast decay of the
locally excited state by charge separation generates the radical
ion pair Trp285(+)-Trp233(—) with a dipole moment of ~18 D.
(iii) Key to the proposed mechanism is that this large dipole mo-
ment drives the breaking of the salt bridges between the two
monomer subunits. The suggested mechanism for the UV-B-driven
dissociation of the dimer that rests on the prominent players
Trp233 and Trp285 explains the experimental results obtained
from mutagenesis of UVRS.

Life on earth depends on sunlight that drives energy conver-
sion and signaling processes, however, at the price that its UV
fraction may damage DNA. Counteracting this threat, plants
respond to UV-B radiation by the photoreceptor UV resistance
locus 8 (UVRS) discovered in Arabidopsis thaliana (1). In the
presence of UV-B (280-315 nm), the UVRS8 protein accumu-
lates rapidly in the cell nucleus (2, 3). Its interaction with other
proteins activates gene expression to protect against or repair
UV-B-induced damage (4-7). Unlike other photoreceptors in
cells, the protein UVRS exploits the UV-B absorbance of its
intrinsic tryptophans rather than that of exogenic chromophores.

The crystal structure of the UVRS protein (8, 9) revealed that
the dimer is held together by salt bridges between the cationic
arginine (R) and anionic aspartate (D) or glutamate (E) side
chains at the interface between the two subunits. Exposure of
UVRS to UV-B light causes dissociation of the protein into the
monomers. This monomerization is universal, because it is ob-
served for the purified protein (8, 9) and in plants and heterol-
ogous systems (10). The crystal structure allows one to infer
a cooperative role and an interplay of specific tryptophans. It was
suggested (11, 12) that excitation of the tryptophan triad W233,
W285, and W337 initiates the dissociation of the dimeric pho-
toreceptor and triggers the signal chain used by plants for UV-B
protection (10). Subsequent interactions of monomer subunits
with other proteins associated with chromatin have been shown
to activate transcription of the target genes (2, 13). This basic
understanding of the UVRS8 photoreceptor has been corrobo-
rated further by the spontaneous reassembly of the monomer
subunits restoring the homodimer and its UV-B response (14).

www.pnas.org/cgi/doi/10.1073/pnas.1402025111

In recent years a wide spectrum of aspects related to UVRS
function has been addressed in the literature (15, 16). Still, the
mechanism that links UV-B absorption to the dissociation of the
photoreceptor remains unclear.

Several mechanisms for the photodissociation of UVRS8 have
been proposed. One of them involves electron transfer from an
excited Trp residue to the cationic arginines, which leads to the
breaking of one of the salt bridges (8). Another mechanism
implies that absorption of UV-B by Trp residues induces de-
stabilization of their interaction with the neighboring arginines,
which in turn causes disruption of critical intermolecular hy-
drogen bonds (9). So far, there are, however, neither experimental
nor computational data that support any of these mechanisms.

In this study, we consider mechanistic features underlying the
photoinduced dissociation of the UVRS protein. On the basis of
multistate complete active space second-order perturbation theory
(MS-CASPT2) calculations, we find that one “special” trypto-
phan, Trp233, serves as a sink for excitation energy transferred
from other tryptophans of the protein. This unique feature rests
on the strong electrostatic stabilization of Trp233 in its excited
L, state by the protein environment. Upon efficient accumula-
tion of UV-B energy at Trp233, a fast decay of this excited state
via charge separation generates the charge transfer state Trp285
(+)Trp233(—) with a large dipole moment of ~18 D. We propose
that the significant change in the electric field drives the pho-
todissociation of UVRS. Apart from the well-established con-
cepts (17, 18) that salt bridges are broken when conformational
changes force the involved residues to move apart, our calcu-
lations point to the possibility of a more local mechanism for the
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Fig. 1. UVR8 X-ray structure. Amino acid residues responsible for pho-
toinduced splitting of the homodimer into the A and B subunits are
shown: Trp triad (green) and salt bridges between Arg (pink) and as-
partate residues (cyan).

breaking of salt bridges. The changes of the electrostatic po-
tential at the arginines R286 and R338 brought about by the
nearby charge transfer (CT) state may facilitate proton transfer
between R286 and D96 and lead to the neutral species. In-
dependent of the detailed mechanism of the breaking of salt
bridges, the central players are Trp233 and Trp285 and this
conclusion is also consistent with the available experimental data
(7-10, 19).

Results and Discussion

Electronic Excitation of Tryptophans in UVR8. In UVRS four tryp-
tophan side chains (W94, W233, W285, and W337) located ad-
jacent to salt bridges at the interface between the monomers are
arranged in two pyramids across the dimeric interface (Fig. 1).
The two subunits of UVRS are stitched together by several salt
bridges: R286-D107, R286-D96, R146-E182, R338-D44, R354-
E43, and R354-E53. The importance of such ionic interactions in
maintaining the dimeric structure of the UVRS protein was
computationally studied (20).

We first consider the MS-CASPT? results for the two lowest
n—n* excitations in the side-chain group of Trp (indole). In
Table 1 we compile the computed vertical excitation energies
(E), the corresponding wave lengths (L), oscillator strengths (F),
dipole moments (p) in Debye, and the change of the dipole
moment upon excitation (Ap;). The results are in good agree-
ment with previous calculations (21).

Because the dipole moment of indole changes significantly
(Ap = 4.2 D) by the L, excitation, the energy of this excited state

Table 1. Excited-state properties of indole calculated with the
MS-CASPT2 method, using the ANO-L basis set and the (10, 10)
active space

Transition E, eV L, nm F |uil, D |Apil, D
Ly 4.703 264 0.022 1.51 0.49
La 4.887 254 0.121 5.91 4.21

E denotes the excitation energy, L the excitation wavelength, F the
oscillator strength, p; the dipole moment of the excited state, and Ay; the
change of the dipole moment upon excitation.

20of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1402025111

should be sensitive to its local environment. In a polar environ-
ment, one observes a red shift of the L, absorption bands (22).
This shift was estimated from a change in electrostatic in-
teraction of electron density of indole upon vertical excitation.
The stabilization energies were computed using a simple
model, A= (1/2)5,5,04((¢8* —4{)/Rai). where g and g¢* are
MS-CASPT?2 atomic charges of Trp calculated in the ground and
excited states, and Q4 is the charge on the protein atom A4
obtained using the PDB2PQR program (23). R; is the distance
between atoms i and A; only electronic polarization of the en-
vironment, £ = 2, was taken into account, there being no time for
relaxation of the protein charges during the absorption event.
As shown in Fig. 2, the L, states of the tryptophans are es-
sentially stabilized by residues that belong to the same protein
subunit (here to subunit A). The electrostatic interaction with
the residues of the subunit B destabilizes the L, state of Trps of
the subunit A. A similar situation is observed for Trps of the unit
B: their L, state is stabilized by residues of the same unit, but
destabilized by the interaction with the second unit. As also seen
in Fig. 2, the interaction with the environment leads to a de-
crease of the L, excitation energy by ~0.4 eV; i.e., the calculated
absorption maximum is shifted from 254 nm to 280 nm into
the region of UV-B radiation. The most important feature is
that the electrostatic interaction with the protein matrix stabilizes
the L, excited state of W233 considerably more than the excited
states of other Trp residues. Thus, W233 becomes an efficient
exciton acceptor. So the protein makes it energetically favor-
able for excitons to flow from any other tryptophan in the
photoreceptor to the tryptophan at the position 233. The resi-
dues D129 and R234 give the largest contribution (—0.51 eV and
—0.28 eV, respectively) to the stabilization energy of the L, state
of W233. More details are given in Table S1. Our estimate of the
electrostatic interaction of the electron density in the ground
state and the L, excited state of Trp with the protein environ-
ment shows that the excitation energy of Trps remains almost
constant; typically the changes are smaller than 0.05 eV.

Excitation Energy Transfer Between Tryptophans. As described in
Methods, the excitation energy transfer (EET) rate between the
Trp residues in the homodimer (Fig. 3) is determined by the
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Fig. 2. Stabilization energies A of Trp residues in subunit A in their L, ex-
cited states due to charged and polar amino acid residues (AARs). Green:
Electrostatic stabilization caused by AARs of the entire protein dimer. Blue:
Electrostatic stabilization caused by AARs of the subunit A alone. The com-
parison shows that the L, states of most Trps in subunit A are destabilized by
electrostatic interaction with AARs of subunit B.
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electronic coupling squared. Fig. 4 shows the couplings of L, and
L excited states of the Trp residues within the monomer subunit
A. The coupling value depends not only on the exciton donor—
acceptor distance but also on the relative orientation of the Trp
side chains. As can be expected from the oscillator strengths, in
most cases the Ly-L, coupling is weaker than the L,-L;, and L,-L,
couplings. The most strongly coupled chromophores form the
triad cluster W233-W285-W337. The largest values of electronic
couplings, 0.015 eV and 0.011 eV, are calculated for V(L,-L,)
and V(Ly-L,) of W233-W337, respectively. W233 is also strongly
coupled with W250 and W285. More details are provided in
Table S2 and Figs. S1 and S2. The favorable orientations of
W233 and W94 give rise to their significant excitonic interaction,
despite the relatively large interchromophore distance of ~12 A.
The reorganization energy for exciton transfer between two Trp
residues can be estimated as the difference between vertical
absorption and vertical emission energies (Stokes shift) of in-
dole. For excitation energy transfer, A\(EET) = M(D) + A(A),
which gives 2A(indole) in our case. As the Stokes shift is also
equal to 2A(indole), AM(EET) is defined by the difference of
vertical absorption and vertical emission energies, which is esti-
mated to be 0.35 eV (21). Using the EET parameters listed in
Tables S1 and S2, one obtains the rates 2.70 ps~ and 0.07 ps~*
for EET from W250 to W233 and from W198 to W233, re-
spectively. It is this funneling transfer mechanism of excitation
energy to the special tryptophan at the position 233 that paves
the road for experimentally accessing the dynamics in fluo-
rescence measurements (19).

Photoinduced Charge Separation Within the Triad W233-W285-W337.
The residue W°285 has two neighbors, W233 and W337, at short
distances, 4.7 A and 3.6 A, respectively. The relative position of
the indole groups in the triad is shown in Fig. 5. As can be seen,
the indole rings of W233 and W285 are perpendicular to each
other, whereas those of W285 and W337 form a =-stack. The
results of MS-CASPT?2 calculations are listed in Tables 2 and 3.

The excited-state properties of the dyads W233-W285 and
W285-W337 are found to be quite different. The two first excited
states, 1 and 2, of W233-W285 correspond to combinations of
the indole L states. They are quite delocalized in the S; state,
where 72% of the exciton resides on W233 and 28% on W28S;
the reverse ratio is observed for the S, state. The states 3 and 4
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UVR8 X-ray structure. Shown are Trp residues (green) in the homodimer.

correspond to the L, states of W285 and W233. In the CT state
5, 0.96 e is transferred from W285 to W233 (Fig. S3), leading to
a large dipole moment of 18.03 D. Because of the small oscillator
strength, F = 0.001, this state is hardly populated by direct ex-
citation of the ground state. However, if we excite the system to
the state L,, this localized state is expected to undergo a rela-
tively rapid transition into the lower CT state. Using the Onsager
formula Ey = ((e—1)/(2e+1))(p?/a®) as a rough approxima-
tion, one can estimate the solvation energy of the CT state in
unrelaxed (with only the electronic polarization being accounted
for, ¢ = 2) and relaxed (¢ = 6) protein environments. Taking for
the cavity radius for the dimer a = 4 A, one obtains for the CT
state (p = 18 D) Egoy = 0.63 eV and 1.13 eV for e = 2 and € = 6,
respectively. In summary, whereas in the isolated dyad W233-
W285, the CT state is calculated to be ~0.5 eV higher than the
L, state, the CT state is strongly stabilized by the protein
matrix that favors the charge separation process L,—CT on
energy grounds.

Also, there exists an alternative CT state, [W233" W2857] with
the inverse direction of charge separation. The MS-CASPT2
calculation of the isolated dimer predicts, however, that the
energy of such a state should be at least 1 eV higher than that of
[W233~ W285*]. Because of that result, we consider in this paper
exclusively the [W233~ W285™] CT state. However, we are aware
that the interaction of the high-energy state [W233* W2857] with
the protein environment can stabilize this radical ion pair sig-
nificantly. To assess the role of the “inverted” CT state advanced
models have been developed at present.

Table 2. MS-CASPT2 calculation of excited-state properties of
the isolated W233-W285 dyad using the ANO-S basis and the
active space (12, 12)

Exciton Charges
Transition E, eV F w233 W285 w233 W285
1 5.079 0.038 0.722 0.278 —-0.024 0.024
2 5.112 0.052 0.255 0.745 —-0.025 0.025
3 5.294 0.195 0.080 0.920 —-0.029 0.029
4 5.382 0.228 0.987 0.013 -0.016 0.016
5 5.851 0.001 —-0.957 0.957
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Table 3. MS-CASPT2 calculation of excited-state properties of
the isolated W285-W337 dyad using the ANO-S basis and the
active space (12, 12)

Exciton Charges

Transition E, eV F w285 W337 W285 W337
1 4.852 0.239 0.976 0.024 -0.010 0.010
2 4919 0.128  0.073 0.927 —-0.003 0.003
3 5.028 0.224  0.225 0.775 —0.000 0.000
4 5.098 0.160  0.744 0.256 —0.008 0.008
5 6.854 0.018  0.021 0.979 0.002  -0.002
6 6.877 0.031 0.976 0.024 0.007 -0.007
7 7.490 0.000 0.492 0.508 —0.001 0.001
cT*

*The energy of the charge transfer (CT) state is exceeding 7.5 eV as this state
is not showing up within eight low-lying electronic states.

We note in passing that the absorption peak of Trp at about
300 nm corresponds to the excitation energy 4.14 eV, which is
sufficient to oxidize or reduce nearby species such as aromatic
amino acid residues or the protein backbone (24, 25). However,
we assume that the redox reaction involving two Trps is easier to
achieve than other electron transfer reactions within this protein
structure. This assumption is supported by experimental muta-
genic evidence (see below). Conversely, the charge recombination
reaction [W233~ W285" | » [W233,W285] is expected to be in the
Marcus inverted region and one might have to invoke the quantum
equivalent of the Marcus equation that takes into account the
role of the high-frequency modes as energy acceptors (26).

Using the generalized Mulliken-Hush (GMH) (27) and
fragment charge difference (FCD) (28, 29) methods, we esti-
mated electronic couplings for the charge separation reaction
in the dyad W233-W285 on the basis of the MS-CASPT?2 cal-
culations. The couplings of the first L, state and the CT state in
this Trp dyad system found with the GMH and FCD methods
are 0.057 eV and 0.049 eV, respectively. Smaller values are
obtained for the couplings of the second L, state and the CT
state, 0.023 eV and 0.024 eV. The corresponding rates for
charge separation calculated with reorganization energy of 1
eV are found to be 2.0 ps~! and 1.1 ps~!, using the estimated
free energies of —0.43 eV and —0.53 eV and not accounting for
relaxation of the protein matrix. The n—n* excitations were
also calculated for the dyad W285-W337 (Table 3). The four
lowest excited states are found within the range of 0.25 eV,
exhibiting relatively high oscillator strength. These states are
formed by superposition of L, and L, states. No electronic
states with significant charge separation showing excitation
energies <7.5 eV have been identified. This result suggests that
charge separation between W285 and W337 should be ener-
getically prohibited in the UVRS protein.

Electrostatic Effects of the Charge Transfer State. The formation of
the CT state [W233~ W285"] drives the dissociation of UVRS
into its subunits by breaking the salt bridges between them.
Generally (17, 18) salt bridges are broken as the result of qua-
ternary structural transitions. If so in UVRS, such structural
changes have to be triggered by the large dipole moment of the
CT state.

In the following, we consider a more local route to salt-bridge
breaking in UVRS and ask whether the CT state may signifi-
cantly change the electrostatic potential at a salt bridge (Fig. 1),
thereby giving rise to a proton transfer process within the bridge.
Proton transfer from the positively charged guanidine group of
Arg to the negatively charged carboxylic group of Asp (or Glu)
will generate two neutral species and break the salt bridge.

40f 6 | www.pnas.org/cgi/doi/10.1073/pnas.1402025111

Accurate theoretical models of proton transfer in proteins
have been developed (30-33). For a simple and rough estimate
of differences in the free energy barrier for proton transfers
(34) from Arg* to Asp~ we consider an expression for the reaction
free energy barrier, adapted from electron transfer theory, (AG”+
A)*/4), where AG® is the standard free energy of the proton
transfer reaction and A is the equivalent “reorganization energy”
(35). The vertical free energy difference calculated for the
reactants at their initial configuration going to the products
without changing the nuclear configuration is (AG0+7\). There, in
comparing different reactions as in Table S3, we take A to be
approximately constant and assume that the main changes occur
in the AG® values. Then, a major contribution to this quantity is
the molecular electrostatic potential (MEP) at the final proton
position minus that at its initial position. Thus, the probability of
proton transfer is determined by the difference of electrostatic
potential Ag at the proton donor and the proton acceptor sites.
According to our estimates compiled in Table S3, the formation
of the charge-separated state leads to significant modulation
of Ag on the salt bridges between the units A and B. A pos-
itive value of the difference Ap(N)—A@(O) facilitates the proton
transfer from Arg* to Asp~ and stabilizes the neutral amino acid
residues.

We note that the CT state of Trp233 and Trp285 is stabilized
by its environment due to electronic polarization of the protein
environment. This effect counteracts its unfavorable interaction
with the charged residues R146, R286, R338, R354, D44, D96,
D107, ES3, and E182. The largest difference in MEP, i.e., 1.2
eV, is calculated for the ionic bridge R286-D96. Because of
proton transfer from R286 to D96, also the electrostatic in-
teraction R286-D107 becomes significantly smaller. We are
aware that pK, values of Arg and Asp are quite different, 12.1
and 3.7, respectively. A change in the electrostatic potential on N
(Arg) and O (Asp) required to transfer the proton from Arg to
Asp at T = 300 K can be estimated as A¢p(eV)=0.06- ApK,,
which gives Ap = 0.50 eV. According to our data (Table S3), the
change in the electrostatic potential for R286-D96 due to the
formation of the charge transfer state is 1.2 eV, which would be
more than enough to initiate the proton shift from R286 to D96.

To initiate the dissociation reaction by a change of the elec-
trostatic potential, the lifetime of the CT state has to be suffi-
ciently long. If we assume that the lifetime of the CT state is
no longer than a few nanoseconds, during this time the proton
transfer within the salt bridges should occur together with the
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Fig. 4. Excitonic coupling of Trp residues in subunit A in their L, and L,
excited states.
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Fig. 5. Relative position of indoles in the triad W233-W285-W337 encoding
Cin gray, H in white, and N in blue.

corresponding changes in the orientation of the Arg and Asp
residues. We assume also that the orientational transformation
following the proton transfer prohibits the immediate back transfer
of the proton after recombination of the charge-separated state
[W2337-W285™]. Then, dissociation of UVRS into its monomers
would become feasible.

Comparison of Calculated and Experimental Results. Experimentally
the potential involvement of different tryptophans in the im-
portant triad W285-W233-W337 has been studied by site-
specific mutagenesis (8-10, 19). Our discussion below is fo-
cused on purified in vitro proteins for which X-ray structural
analysis has proved that mutations did not impair their structural
integrity.

w285F. The phenylalanine mutant W285F forms a constitutive
dimer that fails to respond to UV-B light as concluded from
circular dichroism (8) and fluorescence spectroscopy (9). We
note in passing that this dimeric mutant when expressed in
yeast is nonfunctional because it does not monomerize in re-
sponse to UV-B radiation (10). In plants UV-B light does not
give rise to gene expression and as a consequence these mu-
tated plants are highly sensitive to UV-B-induced damaging
(7). The failure of the W285F mutant is in line with our cal-
culations. The replacement of Trp by Phe at position 285 is
expected to prevent the formation of the charge-separated
state. In our mechanism, however, it is the [W2337-W233*]
radical ion pair state that is instrumental for the breakage of
salt bridges that stabilize the dimer structure. By the same
argument, the failure of function of this W285F mutant is
consistent with the notion that other redox species—for in-
stance, the amides (22, 24, 36, 37) of the protein backbone or,
although less probable, the arginines (8)—do hardly substitute
as redox partners. Also in line with our mechanism is the re-
cently reported drastic increase of both the fluorescence life-
time and the steady-state quantum yield of Trp in the dimeric
mutant W285F of the isolated UVRS protein compared with its
wild type (8). These fluorescence experiments confirm also in
a most convincing way the funneling of the excitation energy to
the redox active Trp233.

w233F. This mutation leads to the loss of response to UV-B ra-
diation similarly to that in the mutant W285F (8, 9). Following
our calculations, this failure is not surprising due to the double
role of W233 as both excitation energy sink in the excitonic
coupling scheme of the Trp cluster and electron acceptor giving
rise to the radical ion pair state [W233~ W285™].

Voityuk et al.

W337F. In contrast to mutations of W285F and W233F that are in
wild-type UVRS involved in intertryptophan electron transfer,
mutation of W337 to phenylalanine shows less effect. Apart from
a reduced response to UV-B light, this mutant still maintains the
UV-B induced dimer-to-monomer conversion (8). This behavior is
in line with our mechanism that considers the two tryptophans
W285 and W233 as the main players in the induction of the dis-
sociation process of the dimer UVRS upon exposure to UV-B.

Conclusions

On the basis of high-level MS-CASPT2 quantum-mechanical
calculations we suggest a plausible mechanism (Fig. 6) for the
dissociation of the UVRS8 homodimer upon UV-B photorecep-
tion. Electronic interactions, directionality, and probability of
excitation energy transfer between the Trp chromophores of the
homodimer have been analyzed together with the functionally
important role of the triad Trp233-Trp285-Trp337 at the in-
terface of the two monomer units. It is shown that the strong
electrostatic stabilization of the L, excited state of Trp233 by the
protein matrix makes this tryptophan energetically favorable for
excitons to flow from other Trps into this “sink” at position 233.
Then, a fast decay (on the picosecond timescale) of the excited
state via charge separation into the radical ion pair Trp285(+)-
Trp233(-) generates a large dipole moment of ~18 D. Thereby,
according to our calculations the electrostatic interaction be-
tween the monomeric subunits caused by dimer-stabilizing salt
bridges is weakened and so the dissociation of the dimer is fa-
cilitated. However, we emphasize that the large dipole moment
of the CT state could as well induce changes in the quaternary
protein structure that lead to the breaking of the salt bridges and
thus to the dissociation of the dimer. The mechanism depicted in
Fig. 6 can explain the experimental results from mutagenesis of
UVRS, which show that replacement of either key residue, Trp285
or Trp233, by phenylalanine inhibits the photodissociation of
UVRS. In summary, our calculations support the notion that the
two tryptophans, Trp285 and Trp233, are indeed the key amino
acid residues responsible for both the accumulation of excitons
at Trp233 and the subsequent charge separation between Trp233
and Trp285. The resulting large dipole moment leads to the
breaking of the dimer-stabilizing salt bridges and starts with the
signal chain of the UV-B sensor UVRS.

Methods

Quantum chemical calculations as well as the estimation of electrostatic
interactions are based on the experimental X-ray structure (9) of the UVR8
protein (Protein Data Bank ID: 4DNW). The MS-CASPT2 calculations (38)
were performed with MOLCAS 7.6, using the ANO-S and ANO-L basis sets
(39). The active space (10, 10) comprising 10 electrons distributed among
10 = orbitals was used to calculate excited-state properties of indole. Exci-
tonic couplings of excited states of Trps were computed using the transition
densities for both the L, and L, excited states of indole. For complexes
[Trp233, Trp285] and [Trp285, Trp337] only the side chains (indole moieties)
were included in the model; in this case the active space (12, 12) was used.

EET Charge
To W233 Separation
_—

— Y T

in Salt Bridge
R286-D96 ?

Salt Bridge Breaking
Dimer Dissociation

Fig. 6. Primary photoprocesses in UVRS.

l Proton Transfer

PNAS Early Edition | 5of6

BIOPHYSICS AND
COMPUTATIONAL BIOLOGY



The rate kger can be expressed in terms of the electronic coupling squared
V2 and the Franck-Condon weighted density of states (FCWD),

2
Keer :%v2 (FCWD), [l

that accounts for the overlap of vibrational states of donor and acceptor and
can be approximately estimated using the classical Marcus equation (40),

~(AG° +2)?

_ -1/2
(FCWD) = (470K T) exp[ Vet [2]

where ) is the reorganization energy and AGP is the standard free energy
change of the process. In the case of EET, AG® is to a good approximation
equivalent to AE, i.e., the energy difference of the donor and acceptor sites.
This approach to calculate the rate of excitation energy transfer was used
in several previous studies (41, 42). The EET rate and its distance de-
pendence are controlled by the electronic coupling of the corresponding
diabatic states, keer(Trp, = Trp,)~ V3. In line with Férster theory, exci-
tonic coupling of two singlet excited state of molecules A and B is esti-
mated as the interaction of their transition dipole moments ps and pg,
Vg = (1a - 1) /Rag — (3(1a - Ras) (1s - Ras)/R3z), Where Rag is the intermolecular
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distance. This expression provides good estimates when the spatial exten-
sion of the transition densities in the molecules is much smaller than the
distance Rag. More accurate values of the excitonic coupling can be obtained
using transition atomic charges (43):

[31

In Eqg. 3, g; and g; are transition charges derived from quantum mechanical
calculations of excited states of the molecules, and i and j are summed over
all atoms of the molecules A and B. The performance of the transition
charge model was recently discussed (44).
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