
THE JOURNAL OF CHEMICAL PHYSICS 139, 124107 (2013)
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In the present paper we provide a statistical theory for the vibrational pooling and fluorescence time
dependence observed in infrared laser excitation of CO on an NaCl surface. The pooling is seen in
experiment and in computer simulations. In the theory, we assume a rapid equilibration of the quanta
in the substrate and minimize the free energy subject to the constraint at any time t of a fixed number
of vibrational quanta N(t). At low incident intensity, the distribution is limited to one-quantum ex-
changes with the solid and the Debye frequency of the solid plays a key role in limiting the range of
this one-quantum domain. The resulting inverted vibrational equilibrium population depends only on
fundamental parameters of the oscillator (ωe and ωeχ e) and the surface (ωD and T). The relation to the
Treanor gas phase treatment is discussed. Unlike the solid phase system, the gas phase system has no
Debye-constraining maximum. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821991]

I. INTRODUCTION

Recently, the infrared absorption of CO on NaCl at low
temperatures was calculated using Monte Carlo.1, 2 In this pa-
per, we describe such a statistical theory to explain two key
effects:1–5 (1) an inversion of the population of CO vibrational
states and (2) the origin of the single exponential overtone
fluorescence decay, the many contributing second-order and
first-order steps in the mechanism notwithstanding.

The present statistical form is of the same type as that
derived by Treanor et al.6 for pooling of vibrational energy,
except that since his treatment dealt with gases, he did not
have a Debye cutoff. A comparison and possible extension of
Treanor’s results are given in Sec. IV.

A relative inverted peak in the vibrational population dis-
tribution is possible when there is a phonon bottleneck, e.g.,
when the average energy of the phonons emitted by a pooling
step to reach a still higher vibrational state n exceeds ¯ωD,
where ωD is the Debye frequency of the solid. This situa-
tion is somewhat unusual, because it requires no low energy
electronic, rotational, bending or vibrational transitions with
which the high frequency stretch, in this case CO, can decay
in less than a large number of quanta, resulting in relaxation
on the ms timescale.10

In this work, we derive an expression for the approxi-
mate statistics and dynamics of single-phonon processes up
to the first pooling maximum, recognizing that higher fluence
results may lead to other, higher local maxima in n, a result
we probe separately.3

II. STATISTICAL TREATMENT OF VIBRATIONAL
ENERGY DISTRIBUTION

In the theory, we assume that after injection of infrared
quanta, vibrational pooling and depooling lead to rapid equi-
libration among the vibrational states of the system at each
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time t. Consistent with the available information on the indi-
vidual rate constants for CO:NaCl, but applicable to mono-
layers on other surfaces if pooling occurs, we assume that
the multi phonon relaxation by energy transfer to the solid
is slower than the single-phonon-mediated pooling equilibra-
tion, so we treat the deactivation separately, as in Sec. III. The
number of sites M and the total number of quanta N(t) in the
system (the adsorbed CO) can be expressed in terms of the
occupation numbers mn of each site as

M =
∑

n

mn(t), (1)

N (t) =
∑

n

nmn(t), (2)

F (t) = E(t) − T S(t) =
∑

n

mn(t)εn − kT ln
M!∏

n mn(t)!
,

(3)

where E is the total vibrational energy at time t, εn is the en-
ergy of the nth vibrational state of an adsorbed molecule, S(t)
is the entropy of the adsorbate, F(t) is the free energy, and
S = klnW , where W is the number of ways of distributing
the N quanta among the adsorbed molecules. For the purposes
of simplicity, given the long timescales of the relaxation in
question, we consider primarily an after laser excitation pic-
ture, where quanta are initially distributed according to the
absorbed fluence in the calculations.

We minimize F subject to constraints on total M and N
above, apply Stirling’s formula to the factorials, introduce a
Lagrangian multiplier γ (t) and obtain

mn(t)
M

= eγ (t)n− εn
kT

∑
n eγ (t)n− εn

kT

. (4)

Phenomenologically, we note that inversion occurs when
the energy change for additional pooling requires additional
phonon excitation of the solid that exceeds the Debye peak
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discontinuity in phonon density of states of the solid. We
thereby assume that the vibrational number domain for pool-
ing is restricted by (units ¯ = 1):

ωD ≥ ε1,0 − εnmax ,nmax−1, (5)

where nmax is the maximum integer n attainable energetically
by a one-quantum transfer from an n = 1 neighbor by pooling,
and so satisfies Eq. (5). The pooling maximum arises because
of the discontinuity in the density of states at the Debye fre-
quency ωD (223 cm−1 where in Eq. (5), εn, m = εn − εm, with
εn, the vibrational energy of the oscillator, in this case the ad-
sorbed diatomic molecule, given by

εn = ωe

(
n + 1

2

)
− ωeχe

(
n + 1

2

)2

. (6)

Here, ωeχ e = 11.5 cm−1 is the anharmonicity and ωe = 2130
cm−1, known from CO infrared spectra. In virtue of Eq. (5),
we restrict the domain to [0, nmax].

We rewrite Eq. (4) as

ln(mn) + En

kT
= γn + ln(M). (7)

We note that if ln(Pn) + En/kT is a linear function of n, then
the slope is γ , the only parameter in our distribution.

We can test Eq. (7) by comparing with kinetic Monte
Carlo results on the ms experimental timescale (Ref. 3 gives
further details of the calculation). The result is seen in Fig. 1
and is evidence of the usefulness of the theory in the present
paper for the constrained distribution of vibrational quanta
among the quantum states of the oscillator. The distribution
given by Eq. (4) is not exact. Nevertheless, the results demon-
strate that it is a useful description of the inverted distribution
with its cutoff at n = 10.
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FIG. 1. The fit for the parameter, γ . The representative pool is derived from
monolayer populations, calculated elsewhere by kinetic Monte Carlo,3 as the
slope of ln(Pn) + En/kT, vs. n, the vibrational state. For the Pn calculated near
the end of a pulse of the conditions of the previous monolayer experiment,10

γ = 131.
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FIG. 2. This figure shows the Pn from Eq. (4) compared to the Boltzmann
distribution at 22 K for γ = 131.

The γ appearing in Eq. (4) can be evaluated indepen-
dently from the following:

N

M
=

∑
neγn− εn

kT

∑
eγn− εn

kT

. (8)

A simple way of obtaining γ from the value of N/M is to
evaluate the right-hand side of this function for varied γ , and
then find the γ corresponding to the experimentally known
N/M. Given a lasing rate of kabs = 9.0 × 10−4, one ex-
pects a long term excitation of N/M = (1 − exp(−kabs t))/
2 = 0.18.10 From this value for N/M, we find γ = 130, agree-
ing to every significant figure with the result derived from ki-
netic Monte Carlo Pn, as shown in Fig. 2.

III. RESULTING DYNAMICS

The dynamics in the Monte Carlo simulations are quite
complex,1–3 in containing hundreds of first-order and second-
order reactions, but can be treated as having to an effective
single exponential decay when there is a rapid equilibration
process among the states n as follows. Consider the average
number of quanta in any one site:

N =
∑

nmn. (9)

In the loss of N vibrational quanta from the pooled surface,
the non-radiative excitation of phonons in the solid involves
many phonons, and is slow relative to single-quantum pool-
ing equilibration: the latter involves only single excitations,
whereas the former involves many such excitations simulta-
neously. The slow disappearance of quanta in the adsorbate is
given by

−dN

dt
=

∑
κnmn. (10)

If there is at each time t a rapid equilibration among the quanta
in the adsorbate, then there is a single exponential decay of
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N, N = N0e−λt, and mn = mn0e
−λt , so from Eq. (9) we have

dN/dt = −λ
∑

nmn. We note that this temporal dependence of
the mn, under rapid pooling equilibration, leads to the same,
single-exponential, temporal decay of all states equilibrated,
with time constant 1/λ, in contrast to prior expectations for
pooling on the H:Si(111) surface.8

Comparing with Eq. (10), we then have

λ =
∑

κnmn∑
nmn

. (11)

When applied to the present problem,3 this model with
the theoretical constrained equilibrium distribution given in
Eq. (4) recovers a reasonably close time constant (3.6 ms for
the present theoretical result of Eq. (11) vs. 4.3 ms in the full
Monte Carlo calculation and experimentally) and single ex-
ponential behavior for each state in the pool with the same
time constant. We can compare the effective single exponen-
tial decay rate with the actual computed results for the mono-
layer, as in Fig. 3. We note that the actual output of the Monte
Carlo code is not a perfect fit to a single exponential with the
same exponent at all times, but varies from having slightly
shorter to slightly longer effective time-constants throughout
the calculation (as in Fig. 3). Nonetheless, when plotted on
the observable, total overtone fluorescence scale, I(t) vs. t, as
in the computational comparison with experiment,3 the dif-
ference from single exponential for the monolayer result is
barely noticeable, as in Fig. 4.
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FIG. 3. Calculated 1/λ(t) versus time, compared with the single exponential
observation. The deviation is small, varying from shorter lived at short times
to longer lived at long times. The difference from the best-single-exponential
fit for the overtone fluorescence in paper, is negligible on the ms timescale
when plotted for the observable directly, as in Ref. 3.
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FIG. 4. The total overtone fluorescence decay (circles computed) matches
experiment (solid single exponential with τ = 4.3 ms).

IV. DISCUSSION

The consequences of a novel regime of distribution of
the vibrational quanta among the different vibrational states
are several-fold.6, 7 We note the unifying simplicity of appli-
cation of the model for different surfaces and phases. While
our CO:NaCl(100) simulations at several laser intensities is
a time-consuming calculation,3 the simplicity of the present
approximate analytical distribution, when valid, allows one to
describe readily other results that may occur experimentally.

We note that the single exponential decay for individual
states calculated in this work and Refs. 1–3 indicates that a
single exponential decay of individual states cannot be taken
as evidence against vibrational pooling, as has been suggested
for the H:Si(111) surface.8 Single exponential decay, even of
individual states as observed experimentally (see the discus-
sion preceding Eq. (11)), does not rule out pooling of the vi-
brational excitation as long as the latter is rapid relative to the
decay to the solid, and this point plays a major role when con-
sidering fast bimolecular vibrational processes such as single-
quantum assisted non-resonant energy transfer. The key to a
single exponential is the validity of the approximation of rapid
equilibration between the quantum states of CO molecules on
the surface. For example, if a particular state n′ has a relatively
rapid decay rate by energy loss to the solid (still slow relative
to the pooling equilibration, but fast relative to all other pro-
cesses), the other n s rapidly refill the n′ population, so that
all states n decay at the same rate. In summary, rapid equili-
bration among the states relative to loss of quanta to the solid
is the key to understanding the single-exponential decay ob-
served both in the experiment and in the computations.

A comparison of the present derivation (CO on a
solid) with Treanor’s6 (CO in a gas) is interesting. The N-
conservation step is crucial in both, and, up to our Debye-
based cut-off, the resulting distribution function is of the same
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form for both (Treanor’s6 equation (4.8) and Eq. (4) of this
paper). In our case, there is a restriction of domain of al-
lowed n-states in the single-quantum exchange with the solid,
whereas in the gas phase the non-resonant transfer was aided
by a smooth translational energy distribution. However, an-
other difference, purely technical, rather than physical, is in
the minimization of free energy in our derivation, as opposed
to an entropy-maximization and a temperature ansatz for β in
Treanor’s. The latter ansatz requires further steps to be made
rigorous, namely, a calculation of the energy E, entropy S,
and an introduction of temperature, 1/T = dS/dE, to reach a
rigorous result, a result obtained simply by a free energy min-
imization as above.

Of particular interest in the present study is the in-
verted nature of the distribution, with a maximum at some
nmax = %ωD/2ωeχ e& following a period of excitation. We
note that this limit is proportional to the Debye cutoff fre-
quency and inversely proportional to the anharmonicity, so
nmax for CO:Si(100) would be 20 because ωD = 448 cm−1 for
Si(100),15 assuming the same anharmonicity for CO, while
for H:Si(111) it would be 5, since 2ωeχ e = 90 cm−1 for that
surface, assuming the same ωD as Si(100). Additional inves-
tigation of these surfaces using kinetic Monte Carlo and treat-
ing several experimental results8, 13 is the topic of forthcoming
work. Pooling equilibration, while minimizing the free en-
ergy, also conserves the total number of quanta. Because of
this constraint, the population tends to lower its energy by oc-
cupying the highest vibrational states, and so inversion is ther-
modynamically allowed, consistent with a constrained equi-
librium statistical mechanics. Complete decay, radiatively and
non-radiatively, will occur to eventually yield a thermal equi-
librium population distribution, largely in the n = 0 state.

The present approximation is not restricted to phonon re-
laxation of high frequency vibrations on solids, but is relevant
in other situations that conserve N, the total number of vibra-
tional quanta, namely, situations where there is rapid single-
quantum non-resonant vibrational transfer, faster than dissi-
pative processes. In all cases, there is then superimposed on
these rapid exchanges the slow decay of N. The theory may
be extended to treat isolated molecules in matrix solids,9 and
multilayers of CO on NaCl(100).4, 5

The validity of the equilibration approximation depends
on the absorbed laser intensity. It may be expected to be valid
when the intensity is sufficiently high. The argument is as fol-
lows: equilibration is valid when the decay rate for loss of
quanta to the solid is small relative to the rates of the pooling
and depooling processes. Pooling is a second-order process
and proportional to the square of the light intensity. If the ab-
sorbed intensity is too low, the rate of realized pooling will be
too slow and the approximation fails.

Quantitatively, for monolayer CO:NaCl(100), where the
observed fluorescence relaxation lifetime is 4.3 ms, the calcu-
lated rate constant for the 1 + 9 to 0 + 10 pooling reaction
is 5 × 107 s−1 from the kinetic Monte Carlo calculations.2, 3

For this case, wee see that the pooling rate constant,
kpool is 2 × 105 times faster than the rate of loss of single
quanta to the solid, λ ≈ 1/(4.3 ms) (noting again slight vari-
ation around this mean lifetime over time as in Fig. 3). If
kpoolP1P9 ( λP9, we expect the equilibration condition to be

satisfied, and so when P1 ( λ/(kpool) ≈ 5 × 10−6. Knowing or
estimating the cross-section for the absorption and a lifetime
for the loss, from n = 1 to n = 0, for quanta to the solid, one
can estimate what laser intensity is needed to obtain any P1.

In the case of possible vibrational pooling in H:Si(111)
Sum Frequency Generation (SFG) pump-probe experiments,
there is observed single exponential decay of the n = 1 state.8

There was also observed a hot band,13 whose observed life-
time is the same as that for recovery of the fundamental
at room temperature, 0.9 ns. If the rapid equilibration (fast-
pooling) approximation holds, then all 0 < n ≤ nmax should
have the same single-exponential rate of relaxation, identical
to the rate of n = 0 recovery. If there were no equilibration,
the lifetimes for n = 1 and n = 2 would be quite different. For
example, computations12 for a Bloch-Redfield dynamics gave
an intrinsic lifetime for the n = 2 state of 0.13 ns, and for the
n = 1 state, 0.9 ns. From previous calculations of the pool-
ing rate constant,11 the rate constant for the 1 + 1 to 0 + 2
pooling reaction can be as high as ≈2 × 108 s−1 on H:Si(111)
under some experimental conditions.8, 13 Based on the trends
in pooling rate constants for CO:NaCl(100),3 we expect the
pooling rate constant for the 1 + nmax − 1 to 0 + nmax pooling
reaction, kSiH

pool , to be 7 × 109 s−1. In this case, the calculated
pooling rate constant is ≈10 times the observed rate of loss of
single quanta to the solid (λSiH ≈1/0.9 ns =1 × 109 s−1), and
P1 ( 0.1 would meet the equilibrium condition.

One can also examine the spectrally integrated SFG
intensity in the previous hot band pump-probe experiment
for evidence of pooling on H:Si(111).13 We plan to discuss
these and other issues14 for the H:Si(111) system in a later
publication.

V. CONCLUSIONS

In the present theory, a simple distribution is derived
by a free energy minimization during vibrational-quanta-
conserving pooling equilibration on solids. In particular, the
following experimentally testable predictions are made:

(1) Statistical behavior is expected in vibrational equilibria,
subject to the constraint of a slowly decaying number
of quanta N(t) when the vibrational equilibration is fast
relative to all radiative and non-radiative processes. This
behavior can be described by the temperature and Debye
frequency of the solid along with the anharmonicity and
fundamental frequency of the high frequency vibration.

(2) All vibrational populations on surfaces in this model are
described by restricting quantum state n to the domain
[0, %ωD/2ωeχ e&]. The vibrational pools are coupled by
all resonances and near-resonances consistent with the
preservation of the number of quanta.

(3) Temporal single-exponential decay cannot be taken as
evidence against vibrational pooling despite the bi-
molecular rate constant behavior of individual rates and
the unimolecular dependence of other steps. Indeed, sin-
gle exponential decay is the expected result if pooling
equilibration is faster than all decay processes.
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