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Key experimental and theoretical features of mass-independent fractionation (MIF) of isotopes, also known as the n-effect, are summa-
rized, including its difference from the exit channel zero-point energy difference effect. The latter exactly cancels in the MIF. One key
experimental result is that the MIF for O3 formation is a low-pressure phenomenon and, moreover, that it decreases with increasing
pressure of third bodies at pressures far below the “Lindemann fall-off” pressures for three-body recombination of O and O,. A possible
origin of the MIF is discussed in terms of a role for isotopologue symmetry in intramolecular energy sharing. An explanation is suggested
for the large difference in the fall-off pressure for recombination and the pressure for a large decrease in MIF, in terms of a difference
between deactivating collisions and what we term here “symmetry-changing collisions”. It is noted that the theory of the MIF involves four
recombination rate constants and an equilibrium constant, for each trace isotope, seven rate constants in all and two equilibrium con-
stants. A conceptual shortcut is noted. Experimental and computational information that may provide added insight into the MIF mech-

anism and tests is described.

anomalous pressure effect | ergodic | quasi-periodic | RRKM | chaperon

The discovery of the mass-independent frac-
tionation (MIF) of isotopes in ozone for-
mation by Thiemens and Heidenrich in the
laboratory in 1983 (1, 2) is a well-recognized
milestone in the study of isotope effects and
a subject of papers in this journal issue
[cf. also several reviews, refs. 3-6). In
the present article, we note that there is
also a very interesting zero-point energy
difference (AZPE) effect (7) that is well
understood in terms of RRKM (Rice-
Ramsperger-Kassel-Marcus) theory (8-12).
Instead, we focus on the MIF, considering
it in terms of a deviation from statistical
behavior. We recall that a factor n (the
“n-effect”) was introduced by Hathorn and
Marcus (8, 9) and explored further by Gao
and Marcus (10, 11) and Gao, Chen, and
Marcus (12) to treat many aspects of the
MIF. To consider a quantum dynamical
origin of n, we discuss the intramolecular
dynamics involved. In particular, we now
incorporate the experimental result that
the pressure effect on the MIF occurs at
pressures far lower than those for the
three-body deactivation in the recombina-
tion rate. A key question, which remains
to be answered, is whether the symmetric
isotopologues deviate from statistical be-
havior (non-RRKM) more than do the
asymmetric isotopologues and whether,
thereby, their lifetime is shorter and the
corresponding rate of formation of the
O; by deactivation of O;k is smaller. When
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0 and '®O are present in only trace
amounts, the only asymmetric ozone iso-
topologues are OOQ, where Q denotes 70
as '80, whereas the symmetric isotopo-
logues are OQO and OOO. The symmetric
isotopologues OOO and OQO have half
the density of vibrational rotational states
due to symmetry restrictions, and we look
at the consequences of that difference in
terms of having fewer accidental resonan-
ces. Fewer accidental resonances mean
less energy sharing and so less statistical
behavior with a consequence of a shorter
lifetime of O;k at low pressures, as dis-
cussed later.

In discussing vibrationally excited O;
formed from O + O, and a possible phys-
ical basis for the n-effect we consider
some concepts of the dynamics of anhar-
monic vibrational-rotational motion and
in particular of regular (quasi-periodic)
vs. chaotic classical mechanical behavior
and its semiclassical and quantum coun-
terparts (13-21). The analysis is concep-
tual rather than computational and is
a prelude to a more detailed discussion
elsewhere.

This article is intended to be, in part,
an overview and, in part, to describe
some unique ideas, including providing
more detail on a suggested molecular ba-
sis for the postulated n-effect and a
potential role for long-range symmetry-
changing collisions.

Isotopic Enrichment

We first recall that the isotopic enrichment
59 of an isotope Q of oxygen in the forma-
tion of ozone is defined in mils (22, 23):

52 (Q/O) in ozone
—— == -1 1]
1000 (Q/O) in oxygen

Eq. 1 can be rewritten in terms of the amounts
of the molecular species as

@] L)

Qs QOO0 +0QO
20,

1000 | 30,
where Q denotes 7O or *0 throughout. The
expression for 9§ in terms of the O + O, re-
combination rate constants is given by (8, 9)

W kg +kg§q6 + ks Kex

_% - -1, [3
1000 3K3 66 131

where s denotes the isotopically symmetric
isotopologue OQO and OOO and as is the
asymmetric isotopologue OOQ. When formed
from O and QO, it has a rate constant kg ;¢
and when formed from Q and OO, it has a
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rate constant kfmﬁ . Kex denotes the equilib-
rium constant [Q][0,]/[QO][O]. In the MIF
phenomenon the 2 is the same for Q = 0"
and Q = O'%,

Key Experimental Results to be
Explained by an MIF Theory

In attempting to understand the n-effect
(MIF) in physical terms, we first recall several
experimental results that a theory for the MIF
should explain, results that would also con-
stitute a test of any theory:

i) It is now well known that there are two
distinct isotope effects in the MIF litera-
ture, one being the MIF. The other is an
effect arising from the difference of zero-
point energies of the two exit channels of
a dissociating ABB* formed from A +
BB, where A and B are different isotopes
of O. In this second isotope effect (24, 25)
the low-pressure recombination rate con-
stants for the formation of ozone isotopo-
logues ABB* from A + BB are studied
under “isotopically unscrambled condi-
tions” (8), namely, where an effort is made
to avoid complications from follow-up re-
actions of the products of the dissociated
ABB* with other species. It was shown
(8-12) that this very interesting AZPE
effect cancels under conditions (“isoto-
pically scrambled conditions”) where
the MIF is studied experimentally and
cancels for a physically understood rea-
son. We return to this point later.

ii) As seen in Eq. 3, four recombination rate
constants and one equilibrium constant
are needed to relate the MIF to individual
recombination rate constants (8). The
results for both Q = 0" and O'® trace
isotopes are needed to distinguish from
some small mass-dependent component
(24, 25) that also occurs. To calculate
the 70 and '®0 enrichment using some
existing theory, for example ref. 26, one
would need to pursue any such calcula-
tion further, because only three of the
seven required rate constants were com-
puted. This remark applies, of course,
to other calculations in the literature
as well.

iii) One major feature of the MIF is that it is
a low-pressure phenomenon that disap-
pears at higher pressures (6, 27, 28). At
these low pressures, an equilibrium exists
between O + O, and the accessible states
of O;k for all isotopologues present. It
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was shown in ref. 8 that the particular
combination of rate constants in Eq. 3
can be rewritten in terms of the steady-
state density of accessible quantum states
accessible by at least one of the atom-
diatom channels of the excited ozone iso-
topologues. That work showed that the
final expression for °Q is independent of
the AZPE effect.

iv) The effect of pressure in reducing the MIF
(6, 27, 28) occurs at pressures that are
considerably lower than the “Lindemann
fall-off pressure” for the formation of
ozone from O + O, (6, 29, 30) for the
same added gases. (The Lindemann fall-
off pressure is the pressure at which the
unimolecular dissociation rate constant,
and hence the bimolecular recombina-
tion rate constant, is 50% of its high-
pressure value.) This major difference
in the pressure effect indicates a differ-
ence in the role of the collisions in these
two distinct phenomena.

v) For any ozone isotopologue the MIF is
largely independent of the isotopic masses,
as seen in the experiments of Mauers-
berger and coworkers for all of the isoto-
logues (24, 28).

vi) The MIF decreases with decreasing tem-
perature (28).

Although both types of isotope effects have
been observed for ozone formation, one of
them, the AZPE effect is, in our view, well
understood both qualitatively and quanti-
tatively in terms of transition state theory
(RRKM theory) (8-12). It is an interesting
effect and has also been the subject of a
number of quantum mechanical scattering
calculations (31-34). In the present over-
view of the MIF we confine our attention
to the MIF effect itself. An excellent recent
review of the isotopic fractionation of
ozone for both effects is given by Feilberg
et al. (6).

MIF, a Low-Pressure Effect

Some specific results on the effect of pressure
of a third body M on MIF are available, al-
though relatively sparse and in need of data
at higher pressures. The difference between
the pressure for the “50% Lindemann fall-
off” of the rate constant for the three-body
recombination or dissociation and the pres-
sure of the same gas for the 50% decrease
of the MIF from its low-pressure value is
perhaps the most dramatic when the third
body M is SFs. The 50% Lindemann fall-off

pressure for M = SF¢ occurs at ~20 atm (30),
whereas for the MIF the 50% value occurs at
less than 0.5 atm (6). For M = O, or N,/O,
the respective numbers are ~100 atm for the
recombination rate (29) and ~10 atm for the
MIF (27, 28). Comparisons for other gases
could also be made. The data are incomplete
at the needed higher pressures. There is also
some uncertainty in the 50% fall-off pressure
for deactivation when additional complica-
tions occur at very high pressures (29), as
judged by an unusual increase of the slope of
one rate constant vs. the third-body pressure
plot at high pressures (29).

From the existence of an MIF at low third-
body pressures that greatly decreases with
higher pressure we conclude that any theory
of MIF should recognize both that it is a low-
pressure phenomenon and that a quasi-
equilibrium exists at low pressures, O + O,
= O;k between all isotopologues of O and O,
and the accessible states of all iso-
topologues of O;k . Accordingly, any theory
of the MIF needs to consider not only the
forward step in O;k formation, but also the
dissociation, to have a quasi-equilibrium at
low pressures between the accessible states
of all transient isotopic species.

Because the MIF n-effect is a low-pressure
phenomenon, it can have one of two possible
origins (8, 9): (i) an isotopic symmetry effect
on the low-pressure O + O, = O;k quasi-
equilibrium constant associated with the
quantum states of O;k accessible from O +
O, or (ii) a difference in deactivation col-
lisional cross-sections of the third body
with symmetric compared with asymmetric
isotopologues. The difference in collisional
effect on recombination rate constants for
isotopically symmetric and asymmetric mol-
ecules was calculated (35), but the theory
was too approximate to draw conclusions
for this possibility. Eventually, more accurate
computations of the role of deactivating
collisions would be of interest, particu-
larly on what we later term “symmetry-
changing collisions”.

Accordingly, we focus on an intramo-
lecular source of an MIF and consider it
together with the possibility of explaining
the large difference in pressure fall-off
regions for the recombination and for MIF.
One possibility for the latter is a difference
in cross-sections between deactivating and
symmetry-changing collisions. We return
to this topic later. We first consider, briefly,
several classical, semiclassical, and quan-
tum aspects of intramolecular dynamics
of isolated molecules (15-19) relevant to
discussing a role of symmetry in the onset
of “chaos” in intramolecular dynamics and
in the MIF.
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Classical, Semiclassical, and Quantum
Intramolecular Dynamics

When the classical internal motion of a mol-
ecule is quasiperiodic (“regular”), a molecule
having n coordinates and n momenta for the
given energy lies in an n-dimensional sub-
space, a torus, at any given energy E, instead
of on a phase space of 2n — 1 dimensions
available to the corresponding chaotic (sta-
tistical) molecule. A special example of a
molecule that is regular is one whose vibra-
tions are harmonic, with n constants of the
motion, the so-called action variables (the
classical counterparts of quantum numbers),
but the introduction of some anharmonicity
can still leave the motion quasi-periodic
and hence restricted to motion on the n-
dimensional subspace (Kolmogorov, Arnold,
and Moser theorem) (15-18).

An ozone molecule that is in a quasi-
periodic state cannot dissociate, dissociation
being aperiodic. Correspondingly, such states
would not be accessible by the reverse pro-
cess of recombination (microscopic revers-
ibility). Such molecules have fewer accessible
states when formed from O + O, and so
from a statistical point of view have a shorter
lifetime. As a consequence, with less time to
undergo deactivating collisions their rate of
formation of O3 would be less. N. Ghaderi in
our group, using classical trajectories and
methods outlined in ref. 36, found that
(classically) about 10-15% of the O;k phase
space did not dissociate and so had quasi-
periodic orbits. However, quantum mechan-
ically this restriction is not as severe, because
semiclassically the system can undergo tun-
neling between the phase space tori. For the
present, we simply assume that internal res-
onances will favor statistical theory, but this is
just an assumption, albeit dynamically based.
We note that some nonstatistical behavior is
a necessary but not a sufficient condition for
the MIF and also that, as discussed in this
paper, because of the role of symmetry, the
MIF is a quantum phenomenon and so there
is no immediate link between the 10-15% of
nondissociating trajectories mentioned above
and the magnitude of the MIF.

Siebert et al. found classical periodic orbits
at energies above the dissociation limit (37).
Periodic orbits are a special case of quasi-
periodic orbits with all frequencies com-
mensurate. These frequencies vary with the
classical mechanical phase space action vari-
ables and so each periodic orbit in phase
space is encircled by quasi-periodic orbits,
the whole constituting a classical resonance.
In Chirikov theory (20) the overlapping
of classical resonances leads to classical
chaotic and hence statistical behavior (more

Marcus

bifurcations); Coriolis effects have also been
implicated in slow intramolecular energy
exchange (5, 38, 39), contributing to some
deviation from statistical theory. The overall
deviation from statistical theory for the re-
combination rate constant was (N. Ghaderi)
less than a factor of 2. So, cla351cally, the
statistical model is not quite right for O but
not far wrong. For the n-effect dev1at10ns of
only 10-15%, and so only a relatively small
deviation from a statistical behavior, but of
the right kind, are needed for this effect.

Corresponding quantum mechanically to
overlapping of classical resonances is the
overlapping of avoided crossings of vibra-
tional-rotational eigenvalues (40-42) that in
turn make a state unidentifiable in a spec-
trum. Vibrational spectra of ozone have been
measured up to ~7,800 cm™’, using cavity
ring down spectroscopy, e.g. refs. 43 and
44, and numerous states identified for en-
ergies that are still substantially below the
dissociation limit of ~8,400 cm™", where vi-
brational anharmonicity and mixing of reg-
ular states would occur even more. There are
many earlier studies of internal resonances in
ozone, albeit with less resolution, e.g, refs. 45—
50. We note here that even in a nonstatistical
classical model for the dissociation of O
any ensemble of O molecules would not he
on a single torus, but rather would be dis-
tributed over many tori. A quantum state
would occupy a phase space volume element
hN in N-dimensional phase space. Any chaos
in the form of higher-order resonances
within a volume element 4" would be coarse
gained and so presumably not contribute to
quantum chaos. In classical mechanics, in
that volume element they may be many re-
sonances and so many bifurcations of tra-
jectories, yielding a classical chaos. In this
case, quantum mechanics can yield regular
states whereas the corresponding classical
mechanics yield chaos.

This case would not be the first where an
eigenvalue spectrum is more regular than
that expected from classical trajectories. For
example, Jaffe and Reinhardt (53) for the
Henon-Heiles potential (52) used classical
mechanical perturbation theory, a theory that
tacitly assumes quasi-periodicity, to calculate
semiclassical eigenvalues by calculating the
classical mechanical vibrational action varia-
bles and quantizing them by semiclassical
theory. They found good agreement with the
quantum mechanical eigenvalues, even at
high energies, where the system is classically
chaotic, with pockets of quasi-periodicity. For
the present we adopt the following model.
Whereas overlapping resonances lead to sta-
tistical theory, nevertheless extensive reso-
nances lead to extensive energy sharing and

perhaps a largely statistical behavior. The
higher the density of resonances, it is as-
sumed, the more the overlap of resonances
and so the more the statistical behavior. A
laboratory experiment on the effect of den-
sity of states on the onset of chaos is given
in Kim et al. (53).

We consider next the implications for
isotopically symmetric and asymmetric
ozone or other molecules. For isotopically
symmetric isotopologues, one-half of the
vibrational-rotational quantum states is
forbidden by the Pauli exclusion principle.
Because of this difference between the sym-
metric and the asymmetric isotopologues,
there is a smaller density of states in the
former, thereby a smaller number of reso-
nances, and so (by assumption) a smaller
amount of energy sharing. The simplest
statistical interpretation is that those iso-
topically symmetric molecules have, there-
by, shorter lifetimes and so are less apt
to be deactivated by collisions before a
redissociation.

One key question is whether such a model
can explain the difference between the pres-
sure effect for the MIF and that for the re-
comblnatlon rate. An isotopically symmetric
O with identical isotopes for the end atoms
is, in the presence of a nearby colliding gas
molecule, no longer isotopically symmetrical
and during the collision can change its ro-
tational-vibrational state to permit the mol-
ecule to access otherwise nonaccessed states
during its lifetime. E.g., if the rotational-vi-
brational state had one symmetry for the
vibrations and, for the given isotopic spins,
the appropriate symmetry for the rotations,
then after the collisions these rotational-
vibrational symmetries can be reversed. One
can term the collisions “symmetry-changing
collisions”. When they occur frequently
enough during the lifetime of the O3 , all
vibrational states of any particular O can be
accessed and not just one-half of them If
such state-changing collisions have a cross-
section significantly larger than that for
deactivating collisions, then the lower fall-off
pressure for MIF compared with that for
recombination can be understood. Clearly,
relevant quantum mechanical computations
on collision cross-sections will be instructive.
There has been extensive study of conven-
tional energy transfer collisions (e.g. refs. 54
and 55), and perhaps these methods can be
adapted to symmetry-changing collisions.

One feature not discussed thus far is the
effect of temperature on the MIF (56, 57). In
treating an effect of temperature on the re-
combination rate for the O + O, reaction
Troe introduced a chaperon mechanism (29,
30, 58), in addition to the energy transfer
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mechanism, the importance of the chaperon
component increasing with decreasing tem-
perature. In this mechanism, the third body
M serves as a chaperon closely bound to one
of the reactants, e.g, O, + M = O,M, fol-
lowed by reaction O;M+ O — O3 + M, the
M carrying away some of the excess energy.
The decrease of the MIF with decreasing
temperature (56, 57), we suggested (59), may
be due to an increasing contribution of the
chaperon mechanism at low temperatures,
because for a chaperon mechanism there is
no long-lived quasi-equilibrium O + O, =
Of and so in the present theory no MIF.
It has been estimated that the major com-
ponent of the three-body recombination
at low temperature occurs via a chaperon
mechanism (29, 58, 60). One can expect, as
a consequence, that the discrepancy be-
tween the fall-off pressure for MIF and that
for MIF will decrease when the temperature
is decreased.

To learn more experimentally about the
distribution of lifetimes of O;k molecules, one
possibility would be pump-dump laser
experiments in which a ground electronic
state O; molecule is excited to a repulsive
electronic state and then with a second laser
is dumped into the ground electronic state of
the molecule, but with enough energy to
dissociate. One might explore testing whether
all such isolated molecules dissociate, even
the quasi-periodic ones because of tun-
neling, and particularly whether the decay
is single exponential (statistical) or multi-
exponential (nonstatistical) and whether
there are some residual nonstatistical OZs
that do not dissociate.

There has been a start on quantum me-
chanical computations for MIF in ozone
formation (59-62), and a mixed quantum-
classical calculation is given in ref. 25.
Rigorous computations are extremely de-
manding and presently incomplete. The
full-scale quantum dynamics would treat
MIF using the numerous angular momen-
tum states of the colliding O + O, reac-
tants, including a treatment of the newly
formed long-lived O;k living perhaps 100 ns
at the pressures involved in MIF, which
treats for the reacting system the appro-
priate symmetry restrictions, as well as the
three-body collision aspect. Such a treat-
ment is still on the horizon. Examples of
some calculations are given in refs. 25, 34,
and 61-63. A number of computational
studies have been made, instead, of the
quantum mechanics of the isotope AZPE
effect. As noted earlier, this isotope effect
cancels in “scrambled systems” (8), systems
where the MIF effect is actually observed in
experiments, and so theories of the AZPE

effect are interesting in their own right but
not revealing in my view for understanding
the MIF. We noted that the AZPE effect
cancels exactly for the MIF. The reason is
that, at the low pressures involved, there is
an equilibrium between the states of all the
isotopologues of Of and the two sets of
reactants in the two exit channels. Some of
the O;k states are accessed from one channel
and some from the other, but there is
quasi-equilibrium.

As noted earlier to treat the MIF quantum
mechanically four rate constants are involved
for each of O and 'O enrichments (8, 9).
Of particular value in MIF-focused quantum
calculations is the treatment of A + AA
collisions, because there is then no compli-
cation due to the unneeded AZPE. It is ab-
sent in this case. The effect of symmetry can

be studied using the same masses for the
three isotopes, but using distinguishing labels,
and so investigating the pure symmetry effect
in the absence of a AZPE. An example of
subtle differences in symmetry effects is
found in a detailed study of a much simpler
system, the Ne, + H — 2Ne + H system (64).

In summary, we have considered a possi-
ble origin for the MIF in terms of the relative
nonstatistical behavior of symmetric and
asymmetric isotopologues and suggested
potential experiments and computations.
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