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The semiclassical instanton approach discussed by Kryvohuz [J. Chem. Phys. 134, 114103 (2011)]
is applied to calculate kinetic H/D isotope effect (KIE) of intramolecular hydrogen transfer in cis-
1,3-pentadiene. All 33 vibrational degrees of freedom are treated quantum mechanically with semi-
classical approximation. Nuclear quantum effects such as tunneling under the barrier and zero-point
energy are automatically incorporated in the theory, and are shown to be responsible for the observed
appreciable kinetic isotope effect in cis-1,3-pentadiene. Over the barrier passage is also automati-
cally included. Numerical calculations are performed on an empirical valence bond potential energy
surface and compared with the previous experimental and theoretical studies. An estimation of heavy-
atom 12C/13C KIE in the same system is also provided and the factors contributing to it are discussed.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754660]

I. INTRODUCTION

Proton, hydrogen, and hydride transfer reactions play im-
portant roles in many chemically and biologically important
processes. Due to the light mass of transferring hydrogen
atom, nuclear quantum effects such as tunneling and zero-
point energy (ZPE) may play a significant role. Recent exper-
imental and theoretical studies showed the occurrence of tun-
neling in reactions of enzyme catalysis,1 which emphasized
the importance of nuclear quantum effects in hydrogen trans-
fer reactions.2–7

One of the most direct experimental tools for the as-
sessment of the mechanism of hydrogen transfer is measure-
ment of kinetic isotope effects (KIE).8 The KIE is the ratio
of rates of two reactant isotopologues, which in case of hy-
drogen transfer is usually the ratio of the rate of hydrogen
transfer to the rate of deuterium transfer, kH/kD, or to the rate
of tritium transfer, kH/kT. Large values of KIE can be indi-
cators of significant quantum effects.7, 9, 10 Nuclear zero-point
energy effects can result in the values of KIE up to kH/kD = 7
at room temperatures,11, 12 while higher values of KIE sug-
gest involvement of quantum mechanical tunneling in the
mechanism of hydrogen transfer.13–16 A KIE close to 100 has
been experimentally observed in reactions of enzyme catal-
ysis even at physiological temperatures,17 and KIE of more
than 400 has been reported for a non-enzymatic system.18 De-
velopment of an adequate theoretical approach for quantita-
tive description of KIEs is of much interest for understanding
the physical origin of the observed KIEs and mechanisms of
the underlying chemical reactions.

For quantitative description of KIEs it is necessary to
employ a reaction rate theory that incorporates quantum me-
chanical effects. Several quantum reaction rate theories ex-
ist and have been tested on multiple chemical and biological
systems.19–27 For a given potential energy surface (PES), the
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quantum instanton approach22 provides accurate estimates of
quantum mechanical reaction rates.28, 29 However, it requires
considerable statistical sampling on the order 107 points30, 31

and thus may need a priori knowledge of PES. On the other
hand, in cases when PES is not known, or when a direct
path integral approach requires a considerable computational
effort, a simplified way of rate constant estimation looks
attractive.20, 32 One of such methods is based on the semi-
classical instanton theory,21, 33–46 and is capable of account-
ing for nuclear quantum effects such as zero-point energy and
tunneling. Another merit of the instanton approach is that it
provides more conceptual insight on the role of nuclear quan-
tum effects, and tunneling in particular, in the mechanism of a
chemical reaction. It does not involve ad hoc approximations
of tunneling phenomena and thus can provide an automated
method for rigorous evaluation of chemical reaction rate con-
stants and KIEs in multiatomic systems. A quantitative advan-
tage of the semiclassical instanton approach is its dependence
on a single ¯β-periodic classical trajectory. These trajectories
are sufficiently easy to find using methodology described in
the present paper or other methods.40, 45, 48 While for known
PES, the semiclassical instanton approach can provide a sim-
ple and rather accurate estimate of quantum reaction rate con-
stants, for molecular systems with unknown PES the deter-
mination of instanton trajectories can be efficiently combined
with on the fly ab initio calculations of PES, which has been
already successfully implemented in Refs. 47, 49, and 50.

A major limitation of semiclassical instanton theory was
the restriction of its applicability only to low-temperature sys-
tems. We have recently proposed an extension of the semiclas-
sical instanton method51 which can be applied at any temper-
ature and checked its validity for the estimation of quantum
reaction rate constants of several atom-diatom scattering re-
actions. Although the semiclassical instanton approach under-
estimated reaction rate constants by a factor of 1.5−2, which
is primarily due to the neglect of anharmonicity effects of the
orthogonal to the reaction coordinate degrees of freedom,51, 52

this factor remains the same for different isotopologues of
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reacting species. We thus expect that the semiclassical in-
stanton approach can provide accurate estimates of KIEs. In
this paper we test the performance of the semiclassical in-
stanton method for calculation of kinetic isotope effects of
intramolecular hydrogen transfer in cis-1,3-pentadiene.53–56

The KIEs of 4 to 5 have been experimentally observed in this
system in the temperature range of 460−500 K,57 and the im-
portance of quantum tunneling has been emphasized for this
reaction.53, 54 We calculate KIE by comparing the rate con-
stants of H transfer in the same isotopologues that were mea-
sured in experiment: hydrogen transfer in D2C(CH)3CH3 and
deuterium transfer in H2C(CH)3CD3. We also study heavy
atom 12C/13C KIEs of H transfer in D2C(CH)3CH3. Due to
the importance of skeleton motions and possible dynamical
effects of environment on hydrogen transfer step in reactions
of enzyme catalysis,58 this multidimensional 13-atomic sys-
tem may serve as a prototype of hydrogen transfer in enzyme
reactions, particularly in approaches where a subset of the
atoms ∼50 is treated quantum mechanically and the rest by
other methods.1, 10, 59, 60

The paper is organized as follows. In Sec. II the semi-
classical instanton approach is reviewed and the key equations
(2.1) and (2.2) of the paper are provided. In Sec. III, the type
of potential energy surface used in calculations is discussed.
In Secs. IV and V the algorithm for the search of instanton
trajectories is discussed and the results of numerical calcula-
tions of H/D and heavy-atom KIEs are presented. The paper
is concluded in Sec. VI with a discussion of the results and
suggestions for the future improvements and applications of
the present approach.

II. SEMICLASSICAL INSTANTON APPROACH

The semiclassical instanton approach can be considered
as a multidimensional generalization of the semiclassical
WKB theory.61 This approach is based on determination of
particular classical periodic trajectories, called instantons, on
inverted potential energy surfaces. Instantons correspond to
oscillations along a single stable degree of freedom which
originates from the unstable degree of freedom (the reaction
coordinate) after inversion of PES.33 These periodic trajec-
tories make dominant contributions to the quantum partition
function path integrals allowing one to evaluate them within
a stationary phase approximation. Classical parameters corre-
sponding to instanton trajectories, such as energy Einst, action
Winst , and stability parameters λn enter the resulting semi-
classical expressions and provide an estimate for the quantum
parameter of interest such as reaction rate constant or ground
state energy splitting.33, 35, 40, 41, 62–69

In Ref. 51, the following semiclassical expressions for
reaction rate constants k were proposed based on the instanton
theory

k = κBT

h

Qvib

Qr

e−Winst (β)
¯

×
⎧⎨⎩
√

2π
dẼ(β)

d(1/β)
erf

⎡⎣ Ṽ0 − Ẽ(β)√
−dẼ(β)/dβ

⎤⎦⎫⎬⎭ , for β ≥ β̃c

(2.1)

k = 1

Qr

Corr(�)

2¯β̃c sin(πβ/β̃c)
e−βṼ0 , for β ≤ β̃c, (2.2)

where β̃c is the crossover parameter defined in Eq. (2.8) which
separates high-temperature and low-temperature regimes; Qr

is the partition function of the reactants and

Qvib = exp(−βFvib) (2.3)

is the partition function of orthogonal to the reaction coordi-
nate oscillators (transverse degrees of freedom).

Fvib(β) = 1

β

N−1∑
n=1

ln

(
2 sinh

λn(β)

2

)
(2.4)

is the effective total free energy of transverse degrees of free-
dom.

Ẽ(β) = Einst (β) + Evib (2.5)

is the total vibrational energy, in which Einst is the vibrational
energy associated with the instanton trajectory and Evib is the
vibrational energy of transverse degrees of freedom given by
the Gibbs-Helmholtz expression

Evib = d

dβ
(βFvib(β)). (2.6)

The factor Corr(�) accounts for the anharmonicity of the ef-
fective one-dimensional potential barrier along the reaction
coordinate at high temperatures41 and is given by

Corr(�) = �
√

2πerf(−�)e�2/2

� = β

2

((
β̃c

β

)2

− 1

)√
−dẼ(β̃c)/dβ. (2.7)

The expression in curly brackets in Eq. (2.1) stands for the
anharmonicity of the barrier along the reaction coordinate at
tunneling temperatures β > β̃c.70 It also contains the error
function erf(�) ≡ (1/

√
2π )
∫ �

−∞ exp(−x2/2)dx which trun-
cates spectrum of energies available for tunneling at the bar-
rier top.

The above parameters Einst (β)= − 1
2 ẋ2+V (x), Winst (β)

= ∫ ¯β0 [ 1
2 ẋ(τ )2 + V (x(τ ))]dτ , and λn(β) are calculated along

the ¯β-periodic classical trajectory, the instanton, on inverted
N-dimensional reactive PES in mass-scaled coordinates and
are functions of the inverse temperature β ≡ 1/κBT. Ṽ0

≡ Ẽ(β̃c) is the effective barrier height, which includes zero-
point energy contributions of the N − 1 degrees of freedom
orthogonal to the reaction coordinate. The crossover inverse
temperature β̃c is the root of equation

W̃(β) − ¯βẼ(β) = 0, (2.8)

where we have defined an effective total Euclidian action

W̃(β) = Winst (β) + ¯βFvib(β). (2.9)

Equation (2.8) is equivalent to zero value of the effective
WKB action (or the abbreviated action) W̃ ≡ 2

∫ b

a
ṡds = 0

along the reaction coordinate s. The latter occurs when the
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two real semiclassical turning points a and b coincide at the
barrier top, a = b. Physically β̃c corresponds to the tem-
perature above which an optimal tunneling path disappears,
and tunneling effects become non-dominant (although the ef-
fects of over-the-barrier reflections and non-dominant tunnel-
ing contributions are rigorously present in Eqs. (2.1) and (2.2)
as discussed further in this section).

The meaning of the parameters in Eqs. (2.1)–(2.7) is the
following. Equations (2.1) and (2.2) describe the rate of re-
active flux over some one-dimensional potential barrier, to
which an arbitrary multidimensional system with a first-order
saddle point can be reduced. This one-dimensional barrier
consists of a barrier along the effective reaction coordinate,
the instanton, which is determined in numerical calculations,
plus zero-point vibrational energies d

dβ
(βFvib(β)) of degrees

of freedom orthogonal to the reaction coordinate. Stability
parameters λj, j = 1, . . . , N − 1 along the instanton trajec-
tory effectively stand for the vibrational frequencies λj/¯β of
N − 1 transverse degrees of freedom. The properties that cor-
respond to the effective one-dimensional barrier are denoted
with tilde-hats, i.e., Ẽ, W̃ , etc., while the properties that cor-
respond to the instanton trajectories on the original PES (i.e.,
before adding the contribution of orthogonal degrees of free-
dom) are denoted with the inst subscript, such as Einst ,Winst ,
etc. The quantities W̃ and Ẽ stand for the combined Euclid-
ian action and the corresponding energy under an effective
one-dimensional potential barrier. The height Ṽ0 of this effec-
tive barrier is given by the maximum value that Ẽ can take.
The parameter β̃c defines the unstable harmonic frequency
at the top of the effective potential barrier ω̃b = 2π/¯β̃c.
Equations (2.1)–(2.5) are governed by Einst (β),Winst (β), and
λn(β). Once such trajectories are determined for given β’s,
Eqs. (2.1) and (2.2) provide an estimate of quantum reaction
rate constant k. At T̃c = 1/κβ̃c, i.e., at β = βc, both expres-
sions give the same value of k.41, 51

Instanton trajectories can be assigned a physical mean-
ing, they represent the optimal tunneling path at a given tem-
perature under a multidimensional barrier, i.e., under a given
multidimensional PES with a first-order saddle point. For a
general anharmonic barrier, longer oscillation periods of clas-
sical periodic trajectories in the inverted barrier correspond to
spatially longer trajectories, as seen in Fig. 1. Hence, lower
temperatures (higher values of β) correspond to longer ¯β-
periodic trajectories, and thus longer tunneling paths. When
β decreases, so does the corresponding period ¯β of the in-
stanton. The minimum period of classical periodic motion in
a general anharmonic well usually corresponds to oscillations
around its minimum (or in case of an inverted barrier to the
maximum of the barrier), as it can be seen in Fig. 1. Therefore
at some crossover temperature, Tc, instantons shrink down to
the saddle point, which means that at this and higher tem-
peratures instantons, or tunneling paths, disappear and reac-
tion rate starts to be dominated by over-the-barrier mecha-
nism. We note, however, that, regardless of seemingly simple
physical picture of instantons, all important quantum effects
of near-the-barrier region such as over-the-barrier reflections
are correctly captured by the semiclassical expressions in
Eqs. (2.1) and (2.2), for instance, as discussed in Ref. 41.
Clearly, the crossover temperature is determined by the shape

FIG. 1. Schematic representation of the semiclassical instanton approach. A
one-dimensional case is shown (which is equivalent to the WKB approach).
Potential barrier V (s) along the reaction coordinate s is illustrated in the right
column. The left column corresponds to the inverted barrier −V (s), on which
¯β-periodic trajectories (instantons) are sought. Rows (a), (b), and (c) il-
lustrate instanton trajectories (left figure) and their corresponding tunneling
paths (right figure) at inverse temperatures β1, β2, and β3, respectively, such
that β1 > β2 > β3. The inverse temperature β3 lies in the vicinity of the
crossover temperature.

of the barrier and is equal to ¯ωb/2πκB, where ωb is the
imaginary frequency of the unstable mode at the saddle point.
One can say that Tc separates under-the-barrier and over-the-
barrier regimes of quantum mechanical reaction rate, yet this
transition is obviously smooth, and is quantitatively given by
the continuous transition of Eq. (2.1) into Eq. (2.2) in the
vicinity of the crossover temperature. (in Ref. 51 we proposed
to use T̃c entering Eqs. (2.1) and (2.2) as a crossover temper-
ature instead of Tc, since T̃c appropriately accounts for the
additional contribution of the orthogonal to the reaction path
degrees of freedom.)

It is interesting to note here beforehand that the range
of temperatures, 460–500 K, at which KIEs of H-transfer in
cis-1,3-pentadiene were measured,57 is already above its cor-
responding crossover temperature, which means that the tun-
neling mechanism is not the primary mechanism of the H-
transfer reaction. Yet, it still considerably contributes to the
overall KIE increasing it by a factor of 2 as we show further
in this paper.

III. POTENTIAL ENERGY SURFACE

It follows from the discussion in Sec. II that the shape of
PES, and more importantly its region near the saddle point,
determines how much tunneling contributes to the quantum
mechanical reaction rate constant. In particular, the crossover
temperature Tc, that separates under-the-barrier and over-the-
barrier regimes of the quantum reaction rate, depends on the
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frequency of the unstable mode at the transition state. For a
quantitative description of KIEs one therefore needs some ac-
curate, preferably ab initio, PES. Previous theoretical stud-
ies of hydrogen transfer in cis-1,3-pentadiene molecule55 suc-
cessfully reproduced experimental KIEs using empirical va-
lence bond (EVB) PES.71, 72 In the present paper we use the
same PES to test the performance of the present semiclassical
instanton approach.

Following the Ref. 55, EVB potential is constructed by

taking the lower eigenvalue of the 2 × 2 matrix ( V11 V12
V21 V22

):

VEVB = 1

2
(V11 + V22) −

√
|V12|2 +

(
V11 − V22

2

)2

, (3.1)

in which V11 is a potential surface of the diabatic reactants
state and V22 is a potential surface of the diabatic products
state. The coupling term V12 is taken to be such that the EVB
potential VEVB(r) matches the accurate electronic PES in the
vicinity of the transition state configuration, i.e., the barrier
height, the gradient, and the Hessian of VEVB(r) in the tran-
sition state configuration should match those obtained from
ab initio electronic structure calculations. For this reason, the
EVB approach is convenient for our purposes since at non-
cryogenic temperatures instanton trajectories are concentrated
in the vicinity of the saddle point, as in Fig. 1(c). Thus, we
need an accurate description of PES only in the vicinity of
the saddle point. Yet, one needs to keep in mind that instanton
trajectories of different periods ¯β can exist only if PES is an-
harmonic. If the saddle point region was completely harmonic
with some constant unstable frequency ω0, then only instan-
tons of period ¯β = 2π /ω0 could exist on the correspond-
ing inverted PES. The latter means that, technically speak-
ing, the information of only accurate gradient and Hessian at
the saddle point is not sufficient to appropriately describe the
saddle point region, since it is anharmonicity that makes in-
stanton trajectories different. The presence of anharmonicity
along the reaction coordinate has been assumed in the deriva-
tion of Eq. (2.1). The dependence of reaction rate constants
on this anharmonicity is not surprising, since quantum rate
constants in harmonic approximation diverge at temperatures
below the crossover temperature. For this reason a simple
harmonic quantum transition state is inadequate for describ-
ing the quantum activated rate process by this method.41 Yet,
since the present PES has successfully reproduced KIEs in
Ref. 55, we assume that anharmonicity effects in the vicinity
of the saddle point are correctly captured by the EVB poten-
tial of Eq. (3.1).

Potentials V11(r) and V22(r) are taken as molecular me-
chanics potentials of the GAFF force field of the AMBER

molecular dynamics package:73, 74

V (r) =
∑
bonds

Kr (r − req)2 +
∑

angles

Kθ (θ − θeq)2

+
∑

dihedrals

Vn

2
[1 + cos(nφ − γ )]

+
∑

nonbonded pairs i<j

(
Aij

r12
ij

− Bij

r6
ij

+ qiqj

rij

)
, (3.2)

where the first term stands for bond stretches, the second term
for angle bends, the third term for dihedral angles, and the last
term represents van der Waals and Coulomb interactions be-
tween nonbonded pairs of atoms. The same modifications as
in Ref. 55 were introduced to the force field in Eq. (3.2): first,
the harmonic bond stretch potential of the bond been broken
was replaced with the Morse potential with the dissociation
energy of C-H bond; and second, the nonbonded interaction
of the bond been formed was omitted in order to reduce its
divergent contributions to the EVB potential (3.1).

The coupling term V12(r) is taken in the form55

V 2
12(r) = A exp[1 + B · �r + (1/2)�r · (C + αI) · �r],

(3.3)

where �r = r − rTS is a displacement from the transition
state configuration rTS, i.e., the saddle point, and scalar A,
vector B and matrix C are determined as follows:75

A = [V11(rTS) − V (rTS)][V22(rTS) − V (rTS)],

B = D1

[V11(rTS) − V (rTS)]
+ D2

[V22(rTS) − V (rTS)]
,

Dn = ∂Vnn(r)

∂r

∣∣∣∣
r=rTS

− ∂V (r)

∂r

∣∣∣∣
r=rTS

C = D1DT
2 + D2DT

1

A
+ K1

V11(rTS) − V (rTS)

+ K2

V22(rTS) − V (rTS)
,

Kn = ∂2Vnn(r)

∂r2

∣∣∣∣
r=rTS

− ∂2V (r)

∂r2

∣∣∣∣
r=rTS

. (3.4)

The parameter α in Eq. (3.3) was taken to be 0.9 a.u. as sug-
gested in Ref. 55. To summarize, the EVB PES used is built
to match the exact quadratic form at the saddle point. The rest
of the surface is approximated via the classical molecular me-
chanics force field, which is overall anharmonic. The resulting
PES is therefore anharmonic (inseparable) everywhere except
for the saddle point.

The optimized transition state configuration, rTS, the bar-
rier height V (rTS), the gradient ∂V (r)

∂r |r=rTS , and the Hessian
∂2V (r)

∂r2 |r=rTS in the transition state configuration were obtained
from electronic structure calculations. The latter were per-
formed with JAGUAR software package76 using MPW1K/6-
31+G(d,p) method. The search for the minimum energy con-
figurations was then performed and resulted in the barrier
height of 36.05 kcal/mol between the s-cis isomer of penta-
diene and the transition state configuration. The unreactive
s-trans conformer is 3.29 kcal/mol lower in energy than the
s-cis one. The s-trans confomer is therefore the reactant in
the overall sigmatropic rearrangement reaction, which in the
course of reaction transforms into the s-cis conformer by in-
ternal rotation followed by the H-transfer step.54 The calcu-
lated frequencies of D2C(CH)3CH3 and H2C(CH)3CD3 iso-
topologues, used in experiment,57 in their minimum energy
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TABLE I. Calculated vibrational frequencies of isotopologues of C5H8 in cm−1.

D2C(CH)3CH3 H2C(CH)3CD3

Min. energy (trans) Min. energy (cis) Transition state Min. energy (trans) Min. energy (cis) Transition state

3266.13 3337.69 3282.36 3334.48 3253.7 3282.35
3255.03 3253.87 3271.79 3264.03 3235.01 3271.71
3236.00 3246.43 3245.83 3254.36 3225.58 3245.79
3222.96 3233.18 3241.6 3237.23 3179.15 3241.59
3174.31 3224.66 3195.99 3232.01 3130.21 3195.98
3113.94 3197.08 2432.09 2390.83 2485.91 2432.05
2483.52 2351.38 2327.58 2349.29 2374.39 2327.49
2370.08 2271.19 1644.32 2241.93 2341.81 1632.44
1790.23 1774.71 1621.87 1793.07 1774.75 1606.4
1683.58 1758.28 1565.07 1725.09 1710.44 1552.21
1525.72 1504.78 i 1563.27 1511.76 1500.76 1477.25
1517.27 1468.23 1528.54 1435.04 1477.19 1303.18
1476.0 1363.15 1485.18 1357.62 1368.79 1295.6
1442.38 1352.36 1406.61 1317.14 1358.23 i 1237.89
1340.04 1333.36 1305.3 1222.22 1328.54 1205.49
1318.19 1301.94 1295.76 1150.98 1288.63 1181.86
1213.14 1148.59 1201.02 1096.33 1114.92 1162.96
1098.98 1120.93 1161.22 1094.57 1066.84 1120.69
1088.20 1076.26 1109.8 1069.75 1042.73 1071.21
1051.63 1060.39 1061.27 1033.79 1033.47 1038.19
1046.69 1051. 1033.79 995.50 1017.38 1017.33
994.93 987.116 1028.74 974.54 997.33 991.859
970.32 948.72 982.515 930.38 921.414 965.296
810.59 913.277 900.123 921.03 846.482 891.066
792.22 847.42 890.359 837.22 794.93 881.233
764.24 776.26 810.63 798.60 755.122 782.781
619.12 701.657 781.021 629.05 635.693 770.734
574.66 582.608 697.201 576.15 546.384 690.851
364.98 427.329 568.976 381.52 390.676 565.666
342.79 328.756 555.328 352.16 312.706 549.027
213.13 228.146 498.198 209.61 220.585 496.877
129.65 166.902 450.117 129.63 164.103 437.228
109.30 102.432 260.544 85.11 106.331 260.139

and the transition state configurations are listed in Table I.
These frequencies are then used to calculate reactants
partition function Qr =∏33

j=1 1/2sinh(¯ωjβ/2) that enters
Eqs. (2.1) and (2.2).

IV. INSTANTON TRAJECTORIES IN INTERNAL
COORDINATES

Pentadiene molecule has 39 degrees of freedom, 3 of
which are translational, 3 rotational, and 33 vibrational. These
33 vibrational degrees of freedom constitute a 33-dimensional
space of internal coordinates in which instanton trajectories
are sought. Overall translations do not make any influence
on the internal vibrational dynamics, while overall rotations
may interact with vibrations through the centrifugal and Cori-
olis coupling. Therefore, identification of instanton trajecto-
ries in molecules with unrestricted rotations requires appro-
priate account of vibrational-rotational interactions. Rigorous
treatment of rovibrational coupling in semiclassical instanton
theory has been developed by Mil’nikov and Nakamura in
Refs. 42 and 69. They have successfully applied semiclas-

sical instanton approach to calculate coherent tunnel split-
tings of degenerate ground state energy levels in multiatomic
molecules. Interactions of instanton trajectories with rotations
were treated by searching for instantons in curvilinear system
of internal coordinates, which is a nontrivial task. Fortunately,
our situation is somewhat different. The instanton trajectories
that arise in the theory of coherent tunnel splitting have infi-
nite period of classical motion and correspond to the infinite
value of inverse temperature β. Yet, the instanton trajectories
that are needed for the theory of chemical reaction rates cor-
respond to finite (physiological) values of β. The latter im-
plies that instanton trajectories of the semiclassical reaction
rate theory discussed in the present paper are spatially much
shorter (as seen in the comparison of Figures 1(c) and 1(a)),
and thus the corresponding vibrational motion along the in-
stanton trajectories has significantly smaller amplitude (tight
transition state is assumed in the present paper). For vibrations
of small amplitude we can separate vibrational motion from
rotations and search for instanton trajectories in non-rotating
molecule while treating molecular rotations as those of a rigid
body, as shown below.
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The Watson molecular Hamiltonian77 of a semi-rigid
molecule has a compact form in the normal mode coordinates
{Pk, Qk} and reads

H = 1

2

3N−6∑
k=1

P 2
k + V (Q1, . . . ,Q3N−6)

+ 1

2

3∑
α,β=1

μαβ (Jα − πα)(Jβ − πβ) − ¯
2

8

3∑
α=1

μαα,

(4.1)

where Jα and πα are components of the rotational and vibra-
tional angular momenta, respectively, and μαβ is the general-
ized inverse inertia tensor. The first two terms in the Hamil-
tonian (4.1) correspond to internal vibrations, the third term
correspond to the Coriolis coupling of vibrations and rota-
tions, and the last term is a small correction that appears in
the expression of Watson Hamiltonian. It is known that the
standard rectilinear normal coordinates automatically enforce
Eckart conditions,78 which minimize vibrational angular mo-
mentum and make it zero at equilibrium. For small-amplitude
motion around equilibrium configuration, we can therefore
omit vibrational angular momentum in the molecular Hamil-
tonian and obtain

H = 1

2

3N−6∑
k=1

P 2
k + V (Q1, . . . ,Q3N−6) + 1

2

3∑
α,β=1

μαβJαJβ

− ¯
2

8

3∑
α=1

μαα. (4.2)

For a moderate size molecule, small amplitude vibrational
motion does not make a significant perturbation on the mag-
nitude of μαβ . The latter separates rotations from vibrations
as can be seen from Eq. (4.2). At this point, no assumptions
were made on the form of the potential V (Q1, . . . , Q3N−6) it-
self which still contains anharmonic couplings of vibrational
normal modes. One can argue that Coriolis coupling of vibra-
tional modes may be comparable to the potential anharmonic
coupling, however, experimental studies of intramolecular vi-
brational energy relaxation in small organic molecules79, 80

suggests that Coriolis coupling is much weaker than the an-
harmonic mode coupling. The latter is partly due to the large
moments of inertia of moderate size molecules which make
the Coriolis term small. We thus conclude that for the present
purposes it is sufficient to search for instanton trajectories in a
(3N − 6)-dimensional normal mode space with the vibrational
Hamiltonian given by

H ′ = 1

2

3N−6∑
k=1

P 2
k + V (Q1, . . . ,Q3N−6). (4.3)

We expect that such normal mode representation will re-
main valid for a general class of instanton trajectories with
finite periods that correspond to the temperatures of chemical
interest.

To make a canonical transformation from Cartesian
coordinates {r3N} to normal mode coordinates {Q3N}
one needs to diagonalize mass weighted Hessian matrix

F = (1/
√

mimj )∂2V/∂ri∂rj at the equilibrium configuration
obtained from the electronic structure calculations of Sec. III.
Eigenvectors of the mass weighted Hessian matrix constitute
the columns of the tranformation matrix S, such that

� = STFS, (4.4)

where � is a diagonal matrix with the corresponding squared
vibrational frequencies along the diagonal. The transforma-
tion

	Q = ST 	x (4.5)

generates a set of internal coordinates vecQ in the body-
fixed (Eckart) frame. Vector 	xi = √

mi	ri stands for the mass-
weighted Cartesian coordinates. The first 33 coordinates Q
that correspond to non-zero eigenvalues of the Hessian consti-
tute vibrational normal modes, while the remaining six coor-
dinates correspond to rotations and translations. Setting these
six coordinates to be 0 one can use backward transformation⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

y1

z1

. . .

x13

y13

z13

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= S

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q1

Q2

. . .

Q33

0
. . .

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.6)

to relate instanton trajectories found in the {Q3N − 6} coordi-
nates with the mass-weighted Cartesian displacements x3N of
individual atoms from their equilibrium positions. Zero am-
plitudes of the latter six zero-frequency normal modes con-
stitute the Eckart conditions imposed on a semirigid molecule
for separation of rotations from vibrations.78 The same Eckart
conditions were used in the theoretical study of KIEs in
cis-pentadiene in Ref. 55.

Since instanton trajectories for the temperatures of inter-
est are concentrated around the saddle point, it is convenient
to consider the transition state configuration of the molecule
as an equilibrium configuration around which normal mode
analysis is performed. One should note again, that the normal
mode analysis here is used only to find a set of convenient in-
ternal coordinates, which yet are coupled by the anharmonic-
ities of PES.

To search for instanton trajectories, we use a procedure
described in Ref. 51, although alternative algorithms are also
available.40, 45, 48 An ¯β-periodic trajectory can be represented
in terms of Fourier series with coordinates {Q3N− 6} in the
form

Qn(τ ) =
∞∑

j=0

Cn
j cos

(
2π

¯β
jτ

)
. (4.7)

The real unknown coefficients Cn
j are to be found from the

solution of δS( 	C) = 0 by running Newton-Raphson optimiza-
tion algorithm for the Euclidian action

S( 	C) =
33∑

n=1

∫ ¯β
0

(
Q̇2

n

2
+ V ( 	Q( 	C))

)
dτ. (4.8)

Starting with 	Q = 	C0 one can add higher-order coefficients
Cn

1 , Cn
2 , . . . one by one to obtain the instanton trajectory Qn(τ )
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FIG. 2. Instanton trajectory in D2C(CH)3CH3 at 352 K determined on the
EVB PES of Sec. III. The trajectory is scaled five times to be visible, i.e.,
Fourier coefficients Cj in Eq. (4.7), j > 1 are multiplied by the factor of 5.
The red lines stand for tunnel paths of H(D) atoms, the blue lines stand for
tunnel paths of C atoms. (a) front view, (b) top view.

of arbitrary precision for any given inverse temperature β.51

In practice, it is convenient to start with assigning 2 to 3 low-
est order Fourier coefficients to the unstable normal mode
while keeping the rest of normal modes fixed and run one
round of optimization. Then to unfix some of the remaining
stable modes by assigning them the lowest order coefficient
Cn

0 . After converging optimization algorithm with this num-
ber of coefficients, higher order Fourier coefficients can be
added in the following rounds of optimization.

The Fourier coefficients Cn
j have an interesting physi-

cal meaning. Zero-order Fourier coefficients Cn
0 indicate col-

lective reorganization of atoms to promote tunneling. While
higher order coefficients Cn

j , j > 0 indicate the degree to
which a particular normal mode participates in tunneling. A
typical instanton trajectory is shown in Figure 2 and repre-
sents the collective tunneling of atoms in D2C(CH)3CH3 at
352 K.

V. KINETIC ISOTOPE EFFECTS

Kinetic isotope effect is determined as the ratio kH/kD of
the reaction rate constant for the reaction of hydrogen transfer
to that of deuterium transfer. We calculate the rate constants of
hydrogen and deuterium transfer for the same isotopologues,
D2C(CH)3CH3 and H2C(CH)3CD3 of cis-1,3-pentadiene, re-
spectively, that were measured experimentally.57

From Table I it follows that the crossover temperature
Tc = ¯ωb/2πκB, (here ωb is the unstable frequency at the
transition state), at which instanton trajectories collapse to
the saddle point is 358 K for D2C(CH)3CH3 and 283 K for
H2C(CH)3CD3. The experimentally reported range of tem-
peratures 460−500 K is above both of these crossover tem-
peratures, which means that within this range of temperatures
the reactions of hydrogen and deuterium transfer are domi-
nated by over-the-barrier mechanisms. Yet, tunneling can still
make a significant contribution since the crossover tempera-
ture, 358 K, of D2C(CH)3CH3 is not too far from the reported
temperature range.

The fact that the temperature range of interest is above the
instanton crossover temperature implies that Eq. (2.2) should
be used for evaluation of semiclassical reaction rate constants.
It is interesting that Eq. (2.2) depends only on three constant

parameters β̃c, Ṽ0, and E′(β̃c). Once these parameters are de-
termined from instanton analysis, Eq. (2.2) provides an ana-
lytical expression for the reaction rate constant at any temper-
ature above the crossover one.

Equation (2.2) needs to be modified to include overall
rotations, since its original version was derived only on the
basis of internal coordinates. Using the correspondence be-
tween the semiclassical instanton approach and the transition
state theory,33, 51 contribution of rotations can be accounted
for by multiplying Eq. (2.2) by the ratio of rotational parti-
tion functions Q

‡
rot /Q

r
rot at the transition state and reactants

state, respectively. The resulting semiclassical expression for
the rate constant of the hydrogen transfer step reads

k = Q
‡
rot

Qr
vibQ

r
rot

Corr(�)

2¯β̃c sin(πβ/β̃c)
e−βṼ0 , for β < β̃c, (5.1)

where

Qr
vib =

33∏
n=1

1

2 sinh(ωnβ/2)
, (5.2)

Q
‡
rot

Qr
rot

=
√

I
‡
a I

‡
b I

‡
c

I r
a I r

b I r
c

(5.3)

and the rest of parameters were defined in Sec. II. To obtain
the rate constant of the1, 5 sigmatropic rearrangement reaction
one needs to include the effects of the rapid pre-equilibrium
between the unreactive s-trans and the reactive s-cis conform-
ers and to multiply the rate constant of hydrogen transfer step
by the equilibrium constant Keq = Qcis/Qtrans, where Qcis and
Qtrans are the partition functions of s-cis and s-trans conform-
ers, respectively. The contribution of the latter equilibrium
isotope effect (EIE) KH

eq/K
D
eq on the overall KIE turns to be

minor and constitutes 1.07 at 460 K and 1.06 at 500 K.
To determine β̃c, Ṽ0, and E′(β̃c), that enter Eq. (5.1)

and characterize the shape of the effective one-dimensional
barrier, we search for instanton trajectories with periods ¯β
that correspond to temperatures smaller or equal than the
crossover temperature Tc = 1/κBβc. A typical temperature
dependence of instanton energies Einst(β) and abbreviated ac-
tions Winst (β) ≡ ∮ PdQ is given in Fig. 3 for the isotopologue
D2C(CH)3CH3.

Yet, the one-dimensional potential barrier that corre-
sponds to Winst (β), Einst(β), and Winst (β), such as those in
Fig. 3, is not the correct barrier along the reaction coordinate.
One needs to include the effect of degrees of freedom
orthogonal to the reaction coordinate.34 As proposed in
Ref. 51, one can include their effect by considering an effec-
tive one-dimensional potential barrier Ṽ (s) that corresponds
to the Euclidian action W̃(β) = Winst (β) + ¯βFvib(β),
where Fvib(β) is given by Eq. (2.4) and is the total free
energy of orthogonal degrees of freedom expressed through
the stability parameters λi. This approach was tested on
several bimolecular reactions and provided rather accurate
estimates of quantum reaction rate constants.51 We follow the
same procedure in this paper and calculate stability param-
eters λi along the instanton trajectories, which then provide
Fvib(β) = (1/β)

∑N−1
n=1 ln(2 sinh λn(β)

2 ). The behavior of

Downloaded 08 Oct 2012 to 131.215.21.85. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



134107-8 M. Kryvohuz and R. A. Marcus J. Chem. Phys. 137, 134107 (2012)

FIG. 3. The energy Einst and the abbreviated action Winst of ¯β-periodic
classical trajectories on the inverted PES of D2C(CH)3CH3. The vertical
dashed line and the arrow indicate the crossover temperature Tc = 1/κBβc,
defined as Winst (βc) = 0. The horizontal dashed line indicates the classical
potential barrier height V0. Temperature T is in K; Einst and Winst are in
atomic units.

Fvib(β) as a function of the inverse temperature β is shown
in Fig. 4. It turns out that as temperature becomes lower,
the value of Fvib(β) becomes smaller than that at the saddle
point. Physically it means that for the given EVB potential
energy surface the total zero-point energy of the orthogonal
degrees of freedom decreases as one moves from the saddle
point to lower energies for this particular surface.

The inclusion of the orthogonal degrees of free-
dom changes Winst (β), Einst(β), and Winst (β) to the
respective W̃(β) = Winst (β) + ¯βFvib(β), Ẽ(β) = Einst

+ (d/dβ)(βF (β)), and W̃ (β) = Winst (β)−¯β(d/dβ)Fvib(β),
is shown in Figure 5 and in the Appendix. The root of
W̃ (β) = 0 (as it can be seen in Fig. 5) defines the new
effective crossover temperature β̃c and thus the new curva-
ture of the effective barrier along the reaction coordinate,
schematically shown in Fig. 6. Since β̃c < βc the unstable
frequency ω̃b = 2π/¯β̃c at the effective barrier top is higher
than that ωb = 2π /¯βc of the PES. The latter can also be
understood from the discussion in the previous paragraph,
where we mentioned that for the used PES zero-point energy
of transverse degrees of freedom turns to be maximal at the
saddle point, as seen in Fig. 6.

From the extrapolation of W̃ (β) we find the new
refined crossover temperatures β̃c = 1/κB(375 K), for

FIG. 4. The difference between Fvib(β) = (1/β)
∑32

n=1 ln(2 sinh λn(β)
2 ) and

its saddle point value F
‡
vib(β) = (1/β)

∑32
n=1 ln(2 sinh

¯ω‡
j
β

2 ) for the isotopo-
logue D2C(CH)3CH3 at different temperatures β = 1/κBT. The frequencies
ω
‡
j are 32 stable vibrational frequencies at the transition state configuration.

The units are kcal/mol for Fvib and Kelvins for T.

D2C(CH)3CH3, and β̃c = 1/κB(292K) for H2C(CH)3CD3.
Similarly we find the respective new anharmonicity parame-
ters Ẽ′(β̃c) = −1.75 × 10−3 a.u. and Ẽ′(β̃c) = −1.3 × 10−3

a.u. Yet, determination of Ṽ0 as an extrapolation of Ẽ(β) to
the point β = β̃c is not a reliable procedure since both the rate
constant and KIE exponentially depend on Ṽ0. Extrapolation
with a second order polynomial including points in the
vicinity of crossover temperature produced KIE of 8.3 at
463.25 K and 6.5 at 500 K.

To obtain more accurate estimates of KIE one should
avoid the extrapolation procedure. An approximate analytical
expression for Ṽ0 is derived in the Appendix. Assuming that
the effects of asymmetry of ZPEs along the reaction coordi-
nate s are minor, i.e., assuming that ZPE(s) = ZPE(-s), one
obtains

Ṽ0 = V0 + 1

β

32∑
j=1

ln
[
2 sinh

(
¯ω

‡
jβ/2
)]

, (5.4)

which coincides with the expression for the free energy at
the transition state. As shown in the Appendix, for symmet-
ric barriers, the major effect from the inclusion of orthogonal
to the reaction coordinate degrees of freedom lies in reshap-
ing of the effective 1D reaction barrier, thus resulting in the
modified unstable frequency ω̃b at the barrier top. This new
curvature of the effective barrier defines the extent of tunnel-
ing contributions to reaction rates and thus the magnitudes of
KIEs. Substitution of Eq. (5.4) as well as the new curvature
ω̃b = 2π/¯β̃c and anharmonicity Ẽ′(β̃c) to the semiclassical
expression (2.2) results in KIEs kH/kD that are in good agree-
ment with experimental as well as previous theoretical results,
as seen in Table II.
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FIG. 5. The effective abbreviated action W̃ (left axis, solid circles), and the instanton abbreviated action Winst (β) (right axis, open circles) as a function of the
inverse temperature β for (a) D2C(CH)3CH3 and (b) H2C(CH)3CD3. The root of W̃ (β) = 0 defines the new crossover temperature T̃c . The original instanton
crossover temperature, Tc, is shown for reference. Atomic units are used for W̃ and W , and Kelvins for T.

A. Factors contributing to the calculated KIE

The analytical form of the expression (5.1) allows one
to study the factors that produce the observed KIE in cis-
1,3-pentadiene. Each term in Eq. (5.1) has a clear physical
meaning and the equation can be effectively represented as
a product of the following contributions. The first one is the
transition state theory (TST) reaction rate constant with the
barrier height Ṽ0 which includes zero-point energy contribu-
tions of the orthogonal to the reaction coordinate degrees of
freedom:

kTST = Q
‡
rot

Qr
vibQ

r
rot

1

2π¯β
e−βṼ0 . (5.5)

The second contribution is the quantum transmission co-
efficient for the reactive flux over the parabolic transition state
barrier81

πβ

β̃c sin
(

πβ

β̃c

) , (5.6)

FIG. 6. Potential barrier along the reaction coordinate s. Solid line represents
the effective barrier formed by one-dimensional instanton trajectories, and
dashed line represents effective one-dimensional barrier Ṽ (s) which includes
zero-point energy �Ezp contributions of the orthogonal degrees of freedom.
Only the harmonic parts of the barriers are shown in figure for simplicity.

which tends to unity as β, the inverse temperature, decreases.
And the third contribution,

Corr(�), (5.7)

is the contribution of the potential barrier anharmonicity ef-
fects, i.e., the anharmonicity of the barrier along the reaction
coordinate. The coefficient Corr(�) removes the divergence
of the parabolic barrier transmission coefficient in Eq. (5.6)
as β → β̃c.

Figure 7 illustrates contributions of each of the three
terms in Eqs. (5.5)–(5.7) to the calculated KIE in cis-1,3-
pentadiene. A single TST term given by Eq. (5.5) results in
low KIEs as was reported previously in Ref. 53. The inclu-
sion of the second, tunneling, term given by Eq. (5.6) already
captures most of the calculated KIE, as seen in Fig. 7. The
third, anharmonicity, term from Eq. (5.7), refines temperature
dependence of KIE at lower temperatures.

The difference between using the effective barrier shape
parameters, β̃c and Ẽ′(β̃c), that account for the contribution
of the orthogonal degrees of freedom, versus the original in-
stanton parameters βc and Einst(βc) on PES is illustrated in
Figure 7. This difference constitutes 20% and increases at
lower temperatures. It is mostly due to the tunneling trans-
mission coefficient of Eq. (5.6) that depends on the unstable
frequency of the barrier. The latter indicates the importance of
appropriate inclusion of zero-point contributions, since they
influence the shape of the effective reaction barrier.

TABLE II. Experimental and theoretical kinetic isotope effects in cis-1,3-
pentadiene for different temperatures.

T(K) Expt.a TSTb CVT/SCTc QId SIe

463.25 5.3 2.51 5.2 5.4 5.8
470 5.2 2.48 4.9 5.3 5.5
478.45 5.0 2.45 4.7 5.1 5.2
500 4.7 2.36 4.1 4.3 4.6

aReference 57.
bReference 53.
cReference 54.
dReference 55.
ePresent paper with EVB PES and Ṽ0 from Eq. (5.4).
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FIG. 7. H/D kinetic isotope effect as a function of temperature for the1, 5 sig-
matropic rearrangement reaction of cis-1,3-pentadiene. Solid circles repre-
sent experimental results;57 open triangles-transition state theory (TST) re-
sults with no tunneling;53 open circles-CVT/SCT theory;54 and open squares-
QI theory.55 The solid line represents semiclassical instanton results of
the present paper with Ṽ0 from Eq. (5.4). Contributions of factors from
Eqs. (5.5) to (5.7) to the semiclassical KIE: dashed line corresponds to
the single TST factor (5.5); dotted-dashed line corresponds to the product
of the TST (5.5) and the tunneling (5.6) factors; solid line is the prod-
uct of all three factors (5.5), (5.6), and (5.7). Dotted line represents the
present semiclassical results for the case when the parameters of the original
PES, βc and E′

inst (βc), are used instead of the effective parameters β̃c and
Ẽ′(β̃c).

B. Heavy atom 12C/13C KIE

We can also study the effect of isotopic replacement of
carbon atoms on the rate of hydrogen transfer. Heavy atom
isotope effects can be accurately measured in experiments and
provide additional information on the mechanisms of chemi-
cal reactions. We calculate heavy-atom KIE as a ratio of reac-
tion rate constants, k12/k13, for the reactions of H-transfer in
D2C(CH)3CH3 and in its heavier isotopologue, for this ini-
tial calculation, with all carbon atoms 12C replaced by the
isotopes 13C. (In subsequent work using a modified method
we plan to replace the C’s isotopically one at a time as in
the usual experiment on 13C effects82, 83) To calculate k13,
we search for semiclassical instantons on the same PES de-
scribed in Sec. III. The optimization algorithm for instan-
tons of k13 quickly converges if the instantons of k12, that
were found in the calculations of H/D KIEs, are taken as an
initial guess. We then use the expression in Eq. (2.2) with
the potential barrier height from Eq. (5.4) to calculate reac-
tion rate constants k13 at different temperatures. 12C/13C KIEs
were calculated in the same temperature range as that for
H/D KIEs. The results of numerical calculations are shown in
Figure 8.

Similarly to the discussion of Sec. V A, we can inves-
tigate the factors that constitute the calculated heavy-atom
KIE. The change in zero-point vibrational energy due to the
replacement of 12C with 13C influences the reaction barrier
height, and thus the contribution of TST term, Eq. (5.5), re-
sulting in the TST KIE of about 1.02 in the temperature range
from 460 K to 500 K. However, the EIE of trans-cis isomer-
ization, which constitutes 0.974 in the considered temperature
range, reduces the KIE down to 0.995. The tunneling contri-
bution, Eq. (5.6), increases KIE further to about 1.06. The in-

FIG. 8. 12C/13C kinetic isotope effect as a function of temperature in cis-
1,3-pentadiene. The notation is the same as in Figure 7: solid line represents
the semiclassical instanton results, dashed line represents TST results, and
dotted-dashed line corresponds to the TST results with tunneling under the
effective harmonic barrier.

clusion of barrier anharmonicity, Eq. (5.7), refines the overall
KIE, although its effect is small, as one can see in Fig. 8. We
therefore conclude that quantum mechanical tunneling is the
main factor that influences heavy-atom KIEs in the considered
temperature range. Since the tunneling of atoms is collective
and non-separable, as illustrated by instanton trajectories in
Fig. 2, then it is the simultaneous hydrogen-carbon tunnel-
ing that dominantly contributes to the calculated heavy atom
12C/13C KIE. This particular collective tunneling behavior is
not well-known in the enzyme field, a field where we plan to
apply the present method.

VI. DISCUSSION

This paper demonstrates application of semiclassical in-
stanton approach to calculation of KIEs in 13-atomic sys-
tem. Intramolecular hydrogen transfer in cis-1,3-pentadiene
molecule was chosen as an example. The latter can serve
as a prototype of hydrogen transfer reactions in poly-
atomic molecules. Both experimental and theoretical stud-
ies are available for this reaction, which makes it a good
test system. We showed that semiclassical instanton anal-
ysis can be efficiently applied in this 39 dimensional sys-
tem, and extensions to systems of higher dimensions are
straightforward.

The main idea behind the present instanton approach to
the reaction rate theory51 is a rigorous construction of the
effective one-dimensional reaction barrier for any particular
multidimensional PES with a first-order saddle point. This re-
action barrier is constructed from the energies of tunneling
trajectories, the instantons, plus effective zero-point vibra-
tional energies of orthogonal degrees of freedom. The latter
zero-point energies are rigorously accounted for in the theory
via the stability parameters along the instanton trajectories.
Thus constructed, the effective potential barrier has a differ-
ent shape, and, in some cases, a different height than the clas-
sical reaction barrier along the minimum energy path on PES.
While the absolute value of a reaction rate constant mostly de-
pends on the height of the barrier, the ratio of rate constants,
such as KIE, mostly depend on the shape of the barrier. It
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is therefore a promising feature of the instanton approach to
accurately reproduce KIEs, since it provides a rigorous de-
scription of the effective reaction barrier. The particular EVB
PES used in the present analysis, however, did not allow one
to numerically evaluate the effective barrier height Ṽ0. The
latter is because EVB PES resulted in total zero-point vibra-
tional energy that has maximum in the transition state con-
figuration. Further developments of the theory are needed for
this kind of systems. In the Appendix, we have derived an ap-
proximate analytical expression for Ṽ0 neglecting the effects
of ZPE asymmetry. Since KIEs, being a ratio of two rate con-
stants, are not very sensitive to the barrier height Ṽ0, the cal-
culated H/D KIEs turn out to be in a good agreement with the
experimental and the available theoretical results, as shown
in Table II and Figure 7. We also studied the effect of heavy
atom isotopic replacement 12C → 13C on the rate of hydrogen
transfer in D2C(CH)3CH3 and predicted its 12C/13C KIEs, re-
ported in Fig. 8.

One of the main merits of the analytical form of the
semiclassical expression of a reaction rate constant is that
it allows one to investigate the physical mechanisms that
are responsible for the observed KIEs. The analyses of both
H/D and 12C/13C KIEs indicate that a significant contri-
bution to the calculated KIEs comes from quantum me-
chanical tunneling of reactive flux, i.e., collective tunnel-
ing of hydrogen and carbon atoms, under the effective one-
dimensional reaction barrier. Only a small portion of reactive
flux tunnels in the reported temperature range of 460–500 K.
Yet, it contributes a factor of about 2 to the H/D KIE.
For the given EVB PES, quantum tunneling becomes the
primary reaction mechanism at temperatures below 375 K
for hydrogen transfer in D2C(CH)3CH3, and at tempera-
tures below 292 K for deuterium transfer in H2C(CH)3CD3,
as it follows from the corresponding instanton crossover
temperatures.

An attractive feature of the semiclassical instanton re-
action rate theory is the possibility of its integration with
on the fly ab initio calculations of PES. The latter has been
demonstrated for low-temperature systems with 21 degrees of
freedom,49 and up to 39 degrees of freedom.47, 50 Semiclas-
sical instanton approach is therefore a promising technique
for calculation of quantum mechanical reaction rate constants
and kinetic isotope effects in real multiatomic systems.
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APPENDIX: EFFECT OF TRANSVERSE DEGREES OF
FREEDOM ON REACTION BARRIER

In this Appendix the effect of orthogonal to the reaction
coordinate degrees of freedom on the shape of effective po-
tential barrier is demonstrated. For simplicity we consider the

Hamiltonian of the form

H (s,X) = 1

2
ṡ2 + V0(s) +

∑
j

1

2
Ẋj

2 + 1

2
ω2

j (s)X2
j , (A1)

where s is a one-dimensional coordinate along the instanton
trajectory (unstable mode) and X are the orthogonal degrees
of freedom (stable modes). Semiclassical instanton approach
assumes that any multidimensional system with one unstable
degree of freedom can be approximated with Hamiltonian of
the form in Eq. (A1). The partition function that corresponds
to this Hamiltonian, i.e., the barrier partition function, is

Zb =
∮

D[s(τ )]
N−1∏
j=1

∮
D[Xj (τ )]

× exp

(
− 1

¯

∫ β¯

0
dτ

[
1

2
ṡ(τ )2 + V0(s(τ ))

+
∑

j

1

2
Ẋj (τ )2 + 1

2
ω2

j (s)Xj (τ )2

])
. (A2)

Integration over the harmonic coordinates Xj can be per-
formed analytically resulting in40

∮
D[Xj (τ )] exp

(
− 1

¯

∫ β¯

0
dτ

[
1

2
Ẋj (τ )2+1

2
ω2

j (s)Xj (τ )2

])

= 1

2sinh(λj [s(τ )]/2)
, (A3)

where λj is a stability parameter that corresponds to
the solution Xj(τ + β¯) = Xj(τ )exp (λj) of the equation
−∂2Xj/∂τ 2 + ω2

j (s(τ ))Xj = 0.33, 40 Substituting Eq. (A3)
into Eq. (A2), we get

Zb =
∮

D[s(τ )] exp

(
− 1

¯

∫ β¯

0
dτ

[
1

2
ṡ(τ )2 + V0(s(τ ))

]
− σ (s(τ ))

¯

)
, (A4)

where σ (s(τ )) = ¯∑N−1
j=1 ln[2sinh(λj (s(τ )))].

We first review calculation of partition function of a one-
dimensional barrier, i.e. for the case when σ (s) is absent in
Eq. (A4). For temperatures above the crossover we can use
asymptotic analysis41 and Taylor expand V (s) around the bar-
rier top V0 ≡ V (sb) up to the quartic term

V (s) = V0 − ω2
b

2
(s − sb)2 + 1

3!
c(s − sb)3 + 1

4!
g(s − sb)4.

(A5)

Representing ¯β-periodic quantum paths s(τ ) in terms of
Fourier series

s(τ ) − sb =
∞∑

n=−∞
s̃n exp(ı�nτ ) (A6)
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with �n = 2πn/β¯, the Euclidean action S takes the following
asymptotic form41

S

¯
=
∫ β¯

0
dτ

[
1

2
ṡ(τ )2 + V0(s(τ ))

]

= βV0 − 1

2
βω2

b

(̃
s0 − c

ω2
b

|s̃1|2
)2

+β�̄2
2

∣∣∣∣(̃s2 + c

2�̄2
2

s̃2
1

)∣∣∣∣2
+β�̄2

1 |̃s1|2 + β
A

2
|̃s1|4 +

∑
n>2

β�̄2
n |̃sn|2, (A7)

where �̄2
n = �2

n − ω2
b and A = (g/2) + (c2/ω2

b) − (c2/2�̄2
2).

The result of integration over new coordinates s̃j in the path
integral Zb = ∮D[s]exp (−S/¯) is the same as that for the
parabolic barrier −ω2

bs
2/2 except for the coordinate s̃1, which

needs to be treated separately, and results in the additional fac-
tor Corr, Zb = CorrZpb,

Corr =
∫∞

0 d(|s1|2) exp(−β�̄1|s1|2 − βA|s1|4/2)∫∞
0 d(|s1|2) exp(−β�̄1|s1|2)

= �
√

2πerf(−�)e�2/2, (A8)

where �=�̄2
1

√
β/A, and Zpb=(ı/2 sin(¯βω̃b/2)) exp(−βV0).

In a multidimensional system, the instanton approxima-
tion adds an extra term σ (s(τ )) to the expression of the par-
tition function in Eq. (A4). In a similar way we represent it
with asymptotic series. The frequencies of orthogonal degrees
of freedom, ωj(s), can be Taylor expanded around the barrier
top, i.e., the saddle point region

ωj (s) = ω
‡
j + dωj

ds
(s − sb) + 1

2

d2ωj

ds2
(s − sb)2, (A9)

where ω
‡
j is the corresponding frequency at the saddle point.

Quasiclassical approximation can be then invoked40 to ex-
press stability parameters λj in terms of the frequencies ωj(s)

λj =
∫ β¯

0
ωj (s(τ ))dτ. (A10)

Substituting here Eq. (A9) as well as Fourier representation
of s(τ ) from Eq. (A6) we get

λj = ¯β
{

ω
‡
j + dωj (sb)

ds
s̃0 + 1

2

d2ωj (sb)

ds2

∞∑
n=−∞

|̃sn|2 + · · ·
}

.

(A11)

Taylor expansion of ln(2 sinh(x)) ≈ ln(2 sinh(x0)) + coth(x0)
(x − x0)

ln

(
2 sinh

λj

2

)
≈ ln

(
2 sinh

¯βω
‡
j

2

)

+ ¯β
2

coth

[
¯βω

‡
j

2

](
dωj (sb)

ds
s̃0

+1

2

d2ωj (sb)

ds2

∞∑
n=−∞

|̃sn|2 + · · ·
)

(A12)

allows one to represent σ in the form

σ = σ ‡ + ¯β
(

ãs0 + b̃s2
0 + 2b

∞∑
n=1

|̃sn|2
)

, (A13)

where

σ ‡ = ¯
∑

j

ln

(
2 sinh

¯βω
‡
j

2

)
, (A14)

and

a = ¯
2

∑
j

coth

[
¯βω

‡
j

2

]
dωj (sb)

ds
,

(A15)

b = ¯
4

∑
j

coth

[
¯βω

‡
j

2

]
d2ωj (sb)

ds2
.

If we assume that the asymmetry of the saddle point is
rather small and dωj(sb)/ds ≈ 0 we may neglect the coefficient
a in Eq. (A13). The integrand in the power of exponent in
Eq. (A4) then becomes

1

¯

∫ β¯

0
dτ

[
1

2
ṡ(τ )2 + V0(s(τ ))

]
+ σ (s(τ ))/¯

= (βV0 + σ ‡/¯
)− 1

2
βω̃2

b

(̃
s0 − c

ω̃2
b

|s̃1|2
)2

+β�̃2
2

∣∣∣∣(̃s2 + c

2�̃2
2

s̃2
1

)∣∣∣∣2
+β�̃2

1 |̃s1|2 + β
Ã

2
|̃s1|4 +

∑
n>2

β�̃2
n |̃sn|2, (A16)

where �̃2
n = �2

n − ω̃2
b, Ã = (g/2) + (c2/ω̃2

b) − (c2/2�̃2
2), and

the new effective frequency at the barrier top is ω̃2
b = ω2

b

− 2b. In cases when b < 0, the new curvature of the reac-
tion barrier is larger than the original, ω̃b > ωb. The latter, for
instance, is the case of the EVB PES used in the present paper.

Integration over the Fourier coefficients s̃j in Eq. (A16)
can be done similarly to the one-dimensional case of Eq. (A8),
resulting in the barrier partition function Z = C̃orrZ̃pb, where
Z̃pb is the partition function of an effective parabolic barrier
−ω̃2

bs
2/2. The coefficient C̃orr accounts for the anharmonic-

ity of the barrier given by the anharmonicity constant Ã. An
account of higher order Taylor expansion terms in2\break
Eqs. (A9) and (A12) is expected to result in Eqs. (2.2)–(2.7),
while the direct evaluation of partition function path integral
with asymptotic expression (A16) provides another estimate
of the high-temperature barrier partition function

Zb = Corr(�)
ı

2 sin(¯βω̃b/2)
exp(−βV0 − σ ‡/¯) (A17)

and the corresponding reaction rate constant kQr = (ω̃b/2π )
ImZb, see Ref. 41, of the form

kQr = Corr(�)
1

2¯β̃c sin(πβ/β̃c)
e−βV0−σ ‡/¯, (A18)

where β̃c = 2π/¯ω̃b.
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